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Abstract: Internet of Things (IoT) devices are becoming a part of our daily life; from health monitors
to critical infrastructure, they are used everywhere. This makes them ideal targets for malicious
actors to exploit for nefarious purposes. Recent attacks like the Mirai botnet are just examples in
which default credentials were used to exploit thousands of devices. This raises major concerns
about IoT device security. In this work, we aimed to investigate security of IoT devices through
performing automatic penetration test on IoT devices. A penetration test is a way of detecting security
problems, but manually testing billions of IoT devices is infeasible. This work has therefore examined
autonomous penetration testing on IoT devices. In recent studies, automated attack execution models
were developed for modeling automated attacks in cyber ranges. We have (1) investigated how
such models can be applied for performing autonomous IoT penetration testing. Furthermore, we
have (2) investigated if some well known and severe Wi-Fi related vulnerabilities still exist in IoT
devices. Through a case study, we have shown that the such models can be used to model and design
autonomous penetration testing agents for IoT devices. In addition, we have demonstrated that
well-known vulnerabilities are present in deployed and currently sold products used in IoT devices,
and that they can be both autonomously revealed through our developed system.

Keywords: cybersecurity; IoT; penetration testing

1. Introduction

Penetration testing describes the attempt of hacking a computer system in order to
uncover potential vulnerabilities and thus assess its level of security. Because a penetration
test is mostly done manually, it is costly and time-consuming, and the results will depend
on the incline and expertise of the tester. A fully automatic penetration test would be fast,
inexpensive, and deterministic. In addition, it would be highly useful for training purposes
in a cyber range [1]. However, existing research has proven autonomous penetration
testing to be a complex task and especially challenging for devices in the Internet of Things
(IoT) domain.

Researchers [2] have developed a new modeling plan to subdivide the task of au-
tonomously attacking and defending systems in a cyber range network. In the study, they
demonstrated how agents on both sides could employ the modeling plan with a selected
number of offensive and defensive tactics. This research aims to expand and investigate
the capabilities of autonomous attack agents created in the work of Yamin & Katt [2] by
both introducing new types of attacks and using the agents to automate penetration testing
on IoT devices. This work will try to expand the capabilities and usability of the attacking
agent. This will be done by employing the modeling plan on an exploit, targeting a vulner-
ability in an IoT device. Finally, the new attack agent is tested on running IoT devices and
is compared with current automated vulnerability scanners and exploitation systems.
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In this paper, we will first share the background and related work to the IoT threat
landscape. Continuing that, we will provide details of the case study environment in which
a manual cyber attack on IoT devices is performed and share its results. Moving forward,
we will present the system design for automated attack and verification on IoT devices. We
will then discuss the results and conclude the article.

2. Background and Related Work
2.1. Internet of Things and Cybersecurity

One may think that the security breach of a smart light bulb would be inconsequential,
but there are numerous risks associated with the successful attack on IoT devices. In this
Section, we will address the importance of IoT security and why it is difficult, along with
potential attack vectors, threat actors, and existing counter measures.

2.1.1. Threats and Risks

If an IoT device is compromised, then perhaps most evident issues come from the
potential loss of availability as defined in the CIA Triad [3]. As mentioned, IoT devices
are used for an extensive number of applications. In the case of smart homes, a breached
device can imply a broken refrigerator, unknown access to home security cameras, or an
open smart lock on a front door or a safe. A broken sensor or actuator in a factory can halt
production or endanger workers and end-users. In terms of the IoMT (Internet of Medical
Things), the negative implications on availability in equipment like modern pacemakers
and insulin pumps can have fatal consequences [4].

Many IoT devices handle sensitive information. When used in commerce, this could
be customer information, physical security information, or industry secrets that could be
valuable to criminals or competitors. Devices sold to consumers may handle and store
sensitive information about the owner. For instance, data processed by a smart thermostat
may reveal when a house is vacant [5], workout devices may handle sensitive health data
about the owner, and home surveillance cameras may record continually, even when the
owners are home. Stolen data from such devices may be used in profiling for criminal
purposes, identity theft, blackmailing, spear-phishing, or weakening the security of a
physical place of residence or business. A security researcher also revealed that a smart
light bulb stored network access keys in plaintext, which were retrievable even after the
light bulb was disconnected [6]. Similarly, a compromised device can act as an entry point
into a system or network [5].

IoT devices have also been the main target for different types of malware. In 2016,
the largest DDOS attack ever recorded at the time was delivered by a botnet named Mirai
[7]. It consisted of over 300,000 infected IoT devices, and the attack brought down several
global services including GitHub, PayPal, Amazon.com, BBC, PlayStation Network, and
Spotify. Following the attack, the source code of the botnet malware was published on
Hack Forums and GitHub, allowing anyone to recreate the Mirai malware or use parts of
it in their own malware [8,9]. IoT devices are continually operative and connected to the
Internet while often requiring minimal human interaction; they are highly favorable for
botnets and malware [10]. Botnet devices can be used for DDOS attacks, cryptomining,
password hash cracking, or other types of distributed computing. While it is unlikely
that the owner is persecuted for the malicious acts of an infected device, the device itself
may become slow, malfunction, or take damage from overheating. In addition, the botnet
administrator may extract sensitive information or in other ways misuse the device.

2.1.2. Threat Actors

As IoT devices are used in many different fields, from smart homes to billion-dollar
industries and government projects, the potential threat actors are similarly diverse. Back-
ground, funding, motivation, skills, target, and scope will vary between different types,
which we can categorize under groups described below [11]. They are loosely sorted in
ascending order based on their cybersecurity threat level for companies, governments, and
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other high-value targets. The last two groups are the most likely to act as an APT (Advanced
Persistent Threat) once compromising a device, posing as a major threat unbeknownst to
the victim over weeks, months, or even years [12].

1. Cyber-criminals is a term used for individuals that conduct illegal activities on the
Web that does not involve hacking. This includes drug dealing, human trafficking,
sharing or downloading child pornography, and conducting financial fraud. While
they are not directly a cybersecurity threat, they are criminals within the cyber realm
and are included in this list for the sake of completeness.

2. Script kiddies and cyber-punks have limited knowledge and skills and use exist-
ing tools to exploit low hanging fruit. Fame among peers, small gains, or simply
entertainment are usually their motives.

3. Hacktivists are the digital equivalent to activists. They consist of anonymous groups
that target private organizations and governments to publicize a political agenda.

4. Cyber-terrorists are terrorists using the web to recruit new members and share infor-
mation. They may also conduct attacks in the cyber domain with the same motives as
terrorist attacks in the physical world.

5. Black hat hackers are mostly individual hackers with knowledge and expertise in
hacking and the tools used. Their targets may be specific companies or individuals or
arbitrary devices found by means such as the search engine Shodan. Their motives
are usually reputation or financial gains.

6. Malware- and hacking tools coders are highly skilled adversaries that create tools
and malware used to target different types of systems. They may work alone or in a
criminal organization. The may sell the tools or use them in ransomware attacks or to
create botnets. This is one of the most prevalent threats for IoT devices [13].

7. State-sponsored attackers are groups with extensive expertise and resources. They
target corporations or governments in order to reveal trade or state secrets, plans,
or ideas, or in other ways harm the victim. Their attacks are sophisticated and may
utilize zero-days, making them difficult to avert.

Knowing where the threats come from is important in order to understand how the
security of a system should be adequately tested. The motivation and skill of an adversary
will determine its targets and attack vectors. Due to the diverse set of threat actors, it is
important that security audits test the breadth of potential attacks as they may come from
any of these adversaries.

2.1.3. Attack Surface and Security Issues

To map the attack surface of a system, one should consider the various parts of
the system, and how it operates. Due to the numerous applications and heterogeneous
environments of IOT, researchers, and developers have not been able to universally agree
on a single architecture for describing IoT devices [14]. The approach described in this work
is a three-layer model that differentiates between the perception, network, and application
layer [15,16]. The attack vectors used on each of the three layers are highly different from
each other, due to which the model is especially useful when investigating topics related to
penetration testing [16].

• Perception Layer

The physical part of the device is represented by the perception layer. The layer gathers
information from and interacts with the physical world around it. To achieve this,
the device can use sensors, actuators, GPS, RFIDs, or other similar technologies. IoT
devices may often have limited computing powers, storage, and battery capacity. This
limits the complexity of its encryption schemes and key lengths [17]. Furthermore,
the devices may need to be small and lightweight which limits the possible physical
hardening options. The IoT devices may be situated in places where maintenance is
difficult or neglected because they rarely receive human interaction. Such devices may
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be left untouched simply because they work, contributing to the growing concern of
orphaned devices [18].

• Network Layer

To control the actuators or process the information gathered in the perception layer,
data must be transmitted between the physical and the application layer. The network
layer connects the end nodes to network devices, servers or other IoT objects, and
handles the corresponding data flow. The connection is often wireless due of cost,
coverage, and mobility. Examples of wireless technologies used within this layer
include ZigBee, Bluetooth, WiFi, 4G, 5G, satellites, and combinations of them. The
network layer is prone to jamming attacks, access point spoofing, data sniffing, MITM
(Man-in-the-Middle) attacks, and more [17]. The devices may be used as an entry point
into their connected networks, which makes their security increasingly important [16].

• Application Layer

The application layer provides user interaction and management of the service pro-
vided by the IoT device. This may be presented as a smart home hub, a Web or mobile
application, or a machine-to-machine interface. Depending on the field, service, and
user, there are numerous technologies and applications that can be used on this layer.
Because the application layer often presents an interface to the Internet, it has the
same security issues as most other computing devices with an Internet connection.
While this layer can be harder to exploit, it will often be accessible from anywhere
in the world, substantially increasing the potential threat actors. Examples of com-
mon attacks include credential guessing, SQL injection, buffer overflow, and social
engineering attacks [19].

2.2. Penetration Testing

A penetration test is a form of security audit that can be performed to ensure an
appropriate level of security of a system [20,21]. It is a form of stress test that usually
attempts to bypass or break the authentication mechanism of the device, or in other ways
compromise its integrity, availability, or confidentiality. This is accomplished by discovering
vulnerabilities in hardware, software, or communication protocols. A penetration tester
may exploit the discovered vulnerabilities as a proof of concept or elevate its privileges
within the system to reveal more vulnerabilities. The test can be defined as either black
box or white box [20]. The former suggests the tester knows nothing about the underlying
systems and acts as an external attacker. In a white box penetration test, the attacker has
some kind of inside knowledge or access, like a software source code. In this work, we
will only consider black box penetration testing because this method emulates hacking
attempts as they are realistically performed. Penetration tests are commonly performed
by one or more experienced penetration testers who employ a broad set of hardware and
software tools, depending on the target system [21]. The software tools are used to scan
the target in order to both map the system and discover potential vulnerabilities. Some
tools are capable of exploiting vulnerabilities. Essentially, the software tools are automating
parts of the process, but they require interaction to both run and interpret the output.
A penetration test on a system will have a large number of potential attack vectors and
surfaces to test. The action space of possible steps to scan and exploit is vast, while the
outcomes may have severe implications for the system and people compromised by the test.
Therefore, a structured procedure should be followed to ensure the outcomes are correct
and the interests of all afflicted parties are accounted for. To standardize the procedure,
several methodologies have been suggested [22]. A commonly acknowledged and utilized
methodology is the PTES (Penetration Testing Execution Standard) [23]. This standard
describes the penetration test in seven steps:
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1. Pre-Engagement Interactions
This step involves and emphasises the importance of clearly defining the target, scope,
and potential boundaries before interacting with a system.

2. Intelligence Gathering
Before attacking the system, the tester must know how it functions, how it is struc-
tured, and how it can be interacted with. As mentioned above, automated software
tools can often be used for this purpose.

3. Threat Modelling
To properly analyze the security of a system, the tester should know who could attack
it and why. Thus, PTES threat modelling focuses on the assets that can be targeted
and the liable threat actors.

4. Vulnerability Analysis
This step is where potential vulnerabilities, from misconfigurations to faulty designs,
are uncovered. Many software tools, as well as human interaction with the system,
are important to properly examine it.

5. Exploitation
To analyze the discovered vulnerabilities, the tester will attempt to exploit them.
This should reveal their potential implications and may be used to uncover more
vulnerabilities.

6. Postexploitation
If a component of the system has been successfully compromised, the value of the
component should be evaluated with regards to its usefulness in further exploitation
of the system.

7. Reporting
The value of the penetration test comes from reporting the discovered and exploited
vulnerabilities. These should be evaluated according to their severity and risk.

2.2.1. Testing of IoT Devices

Penetration testing IoT devices is not much different from penetration testing of larger
computer systems. The audit must inquire all three layers described in Section 2.1.3, which
would be the case regardless of the target system. However, the tests performed on the
network layer and particularly the perception layer may be different depending on the
device tested. Due to the vast number of different applications and utilities provided by the
IOT, there is a corresponding diversity in the various technologies utilized. The devices may
have particular vulnerabilities related to their services, location, sensors, communication
protocol, and so on.

The steps of the PTES discussed above can be applied to the penetration testing of
IoT systems as well. The threat actors described in Section 2.1.2 are an important part of
the threat modeling step, while the IoT architecture and security issues from Section 2.1.3
are essential when evaluating step 2, 3, and 5 of the PTES model. Other models and
methodologies designed specifically for penetration testing within the domain of IoT have
recently been proposed [16,24–26].

2.2.2. Autonomous Penetration Testing

As discussed, penetration tests are traditionally performed manually, which makes
them time-consuming and expensive with potentially unreliable results. Autonomous
penetration tests would solve these issues and be beneficial for development, production,
certification, education, and research. While autonomous tools exist, they are either used
for a specific purpose within penetration testing, require some level of human expert
interaction or are not as capable as a human penetration tester. The main reason for
automated penetration testing still being an open challenge comes from the large action
space in which such an agent would operate [27]. The task becomes even more difficult
when accounting for IoT devices due to their different applications and heterogeneous
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environments. The current state of the art and related work will be discussed in more detail
in Section 2.5.

2.3. Wi-Fi

Wireless Fidelity, commonly abbreviated to Wi-Fi, is a wireless communication tech-
nology based on the IEEE 802.11 standards for LAN [28]. Wi-Fi allows devices equipped
with a wireless NIC to act as clients, connecting to a local AP over the air interface. The AP
will often provide Internet access to its clients, but it may also simply create a local network
in which the stations can communicate. The clients and APs in a LAN are called stations. To
distinguish individual networks in a WLAN, the term SSID (Service Set Identifier) is often
used [29]. This describes the network name which is usually how a Wi-Fi user will address
and identify networks. In this work, we will refer to the term ESSID (Extended SSID) for a
network name to clearly separate it from the BSSID (Basic SSID), which describes individual
APs MAC addresses. ESSID technically describes the set of all BSSIDs in a network, but for
the practical context of this work, the terms SSID and ESSID can be considered equivalent.
The term ESSID is also employed by the case study software tools discussed in Section 3.
Some IoT devices are connected to the Internet through a Wi-Fi connection. Other devices
may run their own Wi-Fi network to provide Internet access, like wireless routers, mobile
hotspots, or to transmit data to its clients.

2.3.1. Encryption Standards and WPA2 Personal

There are several generations of encryption schemes that can be employed on a Wi-Fi
connection. WPA version 3 is the most recent and secure [30]. Still, many APs run on WPA2,
which has several vulnerabilities associated to it [31–33]. WPA2 is based on IEEE 802.11i
and was ratified in 2004 [34,35]. It can be further differentiated between its modes Personal
and Enterprise, where the latter has a few additional security features. Enterprise mode
utilizes an authentication server that administers individual session keys and is designed
for larger networks of upwards of 10 stations [36]. The WPA2 Personal is sometimes
referred to as PSK mode because the AP authenticates the user and encrypts the connection
based on a single key known by all stations in the network [31].

A 2022 study suggested that private WLANs are predominantly encrypted using
WPA2 or less secure protocols, four years after the publication of WPA3 [37]. When probing
21,345 WLANs in Cyprus, they found that only 13 networks employed WPA3. 74.7%
used WPA2 or WPA2/WPA in mixed mode meaning that devices will choose WPA2 if they
support it. Only a 0.2% used WPA or the older WEP, while 25.1% had no encryption. Similar
studies from 2019 show comparable results in Romania and Bulgaria where WPA2 was
distinctly the most popular protocol [38,39]. While these results may be slightly different in
other countries, they show that WPA2 is still common and that we can expect millions of
devices to communicate over this encryption scheme for several years forward.

2.3.2. The 4-Way Handshake

WPA2 Personal encryption is based on CCMP (Counter Mode with Cipher Block
Chaining Message) with the AES block cipher [31,34]. Unicast messages are encrypted
using a PTK while a GTK is used for multicast and broadcast messages on the network.
The process of authenticating and negotiating these keys is known as the 4-way handshake.
Its name comes from the four EAPOL (Extensible Authentication Protocol over LAN)
messages, which constitute the process, transmitted between the client and AP as seen in
Figure 1. The roles are often labeled supplicant and authenticator during the handshake [34],
but we will stick to the terms client and AP as they are used throughout the context of
this project.

Upon finishing the initial connection process, the handshake authentication is begun.
Both parties derive the PMK from the PSK, which is distributed out of band. The first
message of the handshake contains a random 128-bit value called ANonce, which is sent
from the AP to the client. The client generates its own random value called SNonce. The
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client now knows the two random values, the PMK and the BSSIDs which are the MAC
addresses of the two stations. With this information, the client can calculate the PTK. The
client then transmits the SNonce with a MIC created using the PTK. The AP can now also
calculate the PTK and then utilize it to verify the MIC. If validated, a third EAPOL message
is sent from the AP. This contains a confirmation of the PTK, a GTK encrypted with the PTK,
along with a MIC. Finally, the client replies with a MIC, completing the 4-way handshake.

Client
Access
Point

PSK

PMK

PSK

PMK

4-Way Handshake

PTK
SNonce,

MIC 
PTK

ANonce

Out of band password
distribution

PTK confirmation,
GTK, MIC 

MIC

2/4

EAPOL 1/4

3/4

4/4

Figure 1. The 4-way handshake.

2.3.3. Deauthentication Frames

A type of management frames called the deauthentication frame is used to instruct
a station to drop its network connection [40]. Usually, the station will automatically
attempt to reconnect, which initiates a new handshake process. However, if a client
continuously receives deauthentication frames from the AP, it will not be able to establish a
new connection. This constitutes a serious concern because in the IEEE 802.11i standard,
which WPA2 is based on, the stations do not authenticate or encrypt management and
control frames [35]. The frames are sent in plain-text, meaning that an adversary can forge
a deauthentication frame that appears to be from an AP in order to kill the connection to
a client [40]. The adversary can then capture the handshake process upon reconnection
or continue to send the deauthentication frames. The latter would act as a DOS attack by
withholding the client from reconnecting.

In 2009, the IEEE published the 802.11w version, which addressed the lacking pro-
tection of management frames [34]. With these changes, management frames should be
protected if possible. To facilitate these security aspects, the third messages of the WPA
handshake would contain an encrypted IGTK along with the GTK. The changes to the
802.11 version allows a station, i.e., a client, to drop the deauthentication frame if an IGTK
check fails. Essentially, this means that an adversary that does not know the IGTK can not
deauthenticate a station by simply spoofing the BSSID of the other connected station.

2.3.4. Evil Twin Attack

If a client is disconnected from its AP, it will usually attempt to reconnect automatically.
Originally, the client would only check if the ESSID of the network it disconnected from
matches any networks within range and attempt to reconnect if it finds a match [41]. If
there are more than one network with the same ESSID, it will connect to the one with
the strongest signal. This is a severe vulnerability because the ESSID is visible to anyone
within range, making it trivial to create a matching Wi-Fi network. Impersonating an AP to
target unaware clients is called an Evil Twin attack and it can be classified under the serious
category of MITM attacks.

Because of severity of this attack, many new devices will now examine the encryption
scheme of the AP. If the ESSID of the network matches a previously associated network,
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but the encryption scheme is different or removed, it will not connect automatically. Fur-
thermore, if attempted to connect manually, the device will issue a warning as shown
in Figure 2. Because of this, a successful Evil Twin attack on an encrypted network will
usually require knowledge of the encryption key used.

Figure 2. Warning issued when attempting connection to a rogue AP with no encryption scheme.

2.4. The EP Model and Formal Specification

The Execution Plan model was developed by Yamin and Katt to specify and describe
the decision making process of autonomous agents within a cyber range [42]. The model
has a tree structure with three levels. The tree translates the high-level goals of the agent
into concrete commands for the agent to perform. The results when running EP model are
either plan fulfilled, plan not fulfilled, or plan maybe impractical.

Level 1 contains the root node of the tree. This describes the main goal of the agent.
Connected to the main goal and within the first level are one or more branches describing
subgoals. These are separated by the logical operators ∧ (and) and ∨ (or), which determine
whether one or all subgoals must be achieved in order for its parent goal to succeed.

Level 2 describes actions and conditions that will eventually decide what commands
will be executed. These conditions are Boolean, meaning they can only be answered with
yes/true or no/false. As a consequence, the ∨ operator is the only allowed operator within
this level. Each root node in the second level has its own subtree that corresponds to a
subgoal in the upper level. Each of the second level leaf nodes are either a "Not fulfilled"-
node or an actions-node. The former has no children and implies that the conditions to
fulfill the plan have not been met, while the latter has one or more children in the next level.

Level 3 contains a single layer of nodes which describes concrete commands. These
commands execute the actions described by the parent nodes in the layer above. The
siblings within the third layer are separated by either the ∧ operator, which implies that all
commands must be executed for the plan to be fulfilled, or the ∨ operator, implying that
either of them is sufficient. If a command is not executed successfully, the model indicates
that the plan may be impractical.

2.4.1. Formal Specification and Verification

Formal specification within computer science is used to describe system requirements
and function through abstraction and mathematics [43]. This is useful to aid with the design
and testing of the system before, during, or even after development. Formal specification
can reduce redundant and ambiguous specifications and facilitate the development of more
effective code with less errors [44]. While code verification like unit tests can demonstrate
that code modules work as intended, the tests may not detect logical flaws in the system
design. By abstracting the software and its elements, developers can verify that the pro-
posed design works as intended before writing the code and its details. The EP model
can and should be formally verified to ensure that its logic is correct and the final states
can be reached. For the purpose of verifying the EP model within this work, the formal
specification language called TLA+ (Temporal Logic of Actions) [45] will be used. TLA+
is a formal specification language developed by Leslie Lamport for use in the design and
verification of distributed systems. It is a high-level language that allows users to describe
the behavior of a system in a precise and unambiguous way. There are several reasons why
TLA+ may be considered better than other formal specification methods:
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1. TLA+ is expressive: It allows users to describe complex systems and their behaviors
in a clear and concise way.

2. TLA+ is modular: It allows users to divide a system into smaller, easier-to-manage
components, making it easier to understand and verify.

3. TLA+ is reusable: Because it is a high-level language, TLA+ specifications can be
reused and adapted to different systems, saving time and effort.

4. TLA+ is supported by powerful tools: The TLA+ Toolbox is a suite of tools that
support the development and verification of TLA+ specifications, including a model
checker and an automatic theorem prover.

2.4.2. TLA+

A formal model written in TLA+ is called a specification [45]. The specification is a
mathematical interpretation and abstraction of the discrete events of a system, which, in
this case, will be the decision making process of the agent. The fundamental elements of a
specification are the states. A state describes the variables of a system at a specific point in
time during system operation. The transition from one state to the next is often what would
be described as a program event. In TLA+, this transition is called a step. The full system
execution will be represented by a specific sequence of states where the first state is the init
state. The init state represents the initial condition, and all successive steps must adhere
to the rules described by the next-state relation. A state explosion [46] is a phenomenon
that occurs when the number of possible states in a formal model becomes too large to be
manageable. It can be a major challenge when it comes to analyzing and understanding
complex systems. One way to tackle state explosions in formal models is to use abstraction
techniques [47], which involve simplifying the model by ignoring certain details that are
not essential to the problem at hand. This can help to reduce the number of states and make
the model more tractable. Another approach is to use heuristics, which are rules of thumb
or shortcuts that can help to guide the analysis of the model. Heuristics can be useful in
identifying key features or trends in the data and can help to reduce the complexity of
the model. Other methods for tackling state explosions in formal models include using
automated tools, such as model checkers and theorem provers, to analyze and verify the
model, and applying machine learning techniques to learn from data and make predictions
about the model. We used the TLC Model Checker to evaluate all possible states that can
be reached beginning in the init state. The state transition diagram displays all reachable
states as nodes, while their sequence is described by directed edges between them.

2.5. Related Work

As mentioned in Section 2.2, a number of tools that automate parts or most of the
penetration testing already exists. Examples of partial automation tools include Nmap,
which can be used to scan open ports and identify services on a given system [48], and
SQLmap, which can test for SQL injection vulnerabilities and more [49]. Proprietary
tools like Metasploit Pro [50] and Nessus [51] have automated vulnerability scanning
and exploitation capabilities. However, these tools require some level of interaction with
a human penetration tester. Numerous attempts have been made at fully automating
penetration testing. In the current state of research, many are attempting to solve the
issue by employing AI and specifically machine learning techniques. The first hurdle to
overcome when developing such solutions is the vast action space in which the agents
must train and operate. In 2021, a cybersecurity researcher and former penetration tester
developed and trained an autonomous penetration testing agent using deep RL algorithms
[52]. Modules within a penetration testing software called Metasploit were used to create
an abstraction of the action space. Within a testbed containing a highly vulnerable machine,
the agent was able to acquire root privileges in all test runs. However, a control agent using
the same modules were able to reach this access level in more than 20% of the test runs
when randomly selecting attack vectors.
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Similar work has been done by Schwartz and Kurniawati [53], Zennaro and Erdod [54]
and Hu et al. [55], which involved various Q-learning algorithms to train RL penetration
testing agents. Another suggestion proposed by Tran et al. investigates an algebraic
approach to structure the action space hierarchically [56]. Within this abstraction, they
trained the penetration testing agent using deep RL algorithms. Their experiments showed
positive results when compared to the deep Q-learning approach. While the machine
learning methods have shown positive results, even in large action spaces, the environments
in which they have been trained and tested are still limited in scope of all computing
systems. Especially, when accounting for all the various IoT devices and their applications.
Moreover, new services and vulnerabilities are discovered every day. Limited research has
been done on how these agents adapt and perform in volatile environments.

Another issue comes from the risk of damaging systems as penetration tests are often
performed on live services and systems. A human penetration tester would both consider
the implications of an exploit, and only execute it on a single device as a proof of concept
if it is considered safe to perform. An autonomous agent will have less understanding
of potential consequences. When a RL agent learns that exploiting a certain vulnerability
provides a reward, it will attempt to perform this exploitation whenever possible. Some
work has been done related to the automated penetration testing of IoT devices specifically.
Chu and Lisitsa proposed the use of a BDI model to map the goals and plans of a penetration
test to concrete actions and perceptions of the target system [16]. An autonomous agent will
then make the decisions based on an AI framework called procedural reasoning system. Rak et
al. developed an automatic threat modeling system which would describe concrete actions
to manually perform the penetration test [26]. The actions and instructions were intended
to be easy enough for a smart home owner without training to test the vulnerabilities.
Considering IoT devices often are part of a larger network, Yadav et al. developed a
penetration testing framework for analyzing both the IoT devices and the their connected
network in its entirety [27].

Some researchers used Attack trees [57], which are a graphical tool used to model the
ways in which a system can be attacked. They are commonly used in the field of cybersecu-
rity to identify and assess potential threats and vulnerabilities. They help to identify the
assets that need to be protected, such as sensitive data or critical infrastructure. Determine
the potential attacks that could compromise these assets. These attacks can be grouped
into categories, such as physical attacks, network attacks, or software vulnerabilities. For
each attack category, identify the specific attacks that could be used to compromise the
assets. These attacks can be represented as branches on the attack tree. For each attack,
identify the prerequisites or subattacks that would be required to execute the attack. These
prerequisites can be represented as additional branches on the attack tree. Continue adding
branches to the attack tree until all possible attacks and prerequisites have been identified.
Evaluate the likelihood and impact of each attack, and prioritize the ones that pose the
greatest risk. Develop strategies to mitigate or eliminate the identified threats. This may
include implementing security controls, strengthening security policies, or educating users
about potential threats [58].

For securing IoT infrastructure, Blockchain technology can be used in a number of
ways [59]. It can be used to verify the identity of IoT devices and ensure that only authorized
devices are able to access the network. This can help to prevent unauthorized access and
protect against attacks. Its decentralized and distributed nature makes it well-suited for
storing and verifying data from IoT devices. It can help to ensure that data is not tampered
with or altered in any way, making it more reliable and trustworthy. It can be used to
manage the distribution of software updates to IoT devices in a secure and controlled
manner. This can help to ensure that devices are always running the most up-to-date
software and are not vulnerable to attacks [60]. It can be used to encrypt and transmit
data between IoT devices in a secure manner, helping to protect against interception
or tampering.
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There have been several studies related to WLAN and IoT security. Hossain et al.
presented and discussed various security issues and challenges in the IOT, including WLAN
connectivity [17]. In 2020, Kristiyanto et al. analyzed a deauthentication attack on a Wi-Fi
connected IoT camera [40] equivalent to the DOS attack presented in Section 5.1. Verma et al.
demonstrated several serious security risks for IoT devices on connected to IEEE 802.11ah
WLAN networks [61]. Vanhoef and Piessens demonstrated that an adversary can force
a reinstallation of the key generated during the handshake process, effectively resetting
the nonce and replay counters [62]. In WPA2 PSK-CCMP, this would allow the adversary
to decrypt and replay frames but not forge new ones. In 2021, Vanhoef discovered more
vulnerabilities in both design and common implementations of all WPA versions [63].
With user interaction, an adversary uses the design vulnerability to steal sensitive data.
Furthermore, Vanhoef demonstrated how the vulnerabilities could be exploited to attack
IoT devices. Over the last years, some tools that automate attacks on the Wi-Fi related
vulnerabilities have been developed. Specifically, we know of the “WiFi Exploitation
Framework-WEF” [64], “Airgeddon” [65], and “Wifiphisher” [66]. These are all capable
of running several attacks on WPA2 including versions of the Evil Twin attack. Yet, to the
best of our knowledge, we do not think they are able to fully automate the process of the
second attack presented in Section 5.1.

3. Case Study and Environment

A laptop with the Kali Linux operating system was used as a basis of the attacks.
Kali Linux is an open-source Debian based distribution of Linux, made as a platform that
can facilitate advanced security audits and penetration tests [67]. Several software tools,
including those used in the final developed python script, come preinstalled with Kali
Linux. In addition, the distribution has a number of word lists containing commonly used
passwords, which were employed to crack the WiFi keys.

3.1. Hardware

In addition to the hardware presented by a regular laptop itself, a few additional
requirements must be satisfied for the attack to succeed. Most importantly, a wireless NIC
capable of being set to “monitor” mode is required. This NIC will serve as an interface
from which most of the steps in the Python script will be launched. In the final step of
the client takeover, another NIC is required to run the rogue AP. While this could be run
on the wireless card with monitoring capabilities, this card is used to kill the connection
between the original AP and the client while the rogue AP is running. The laptop used was
a “Lenovo ThinkPad T430 2349-EH9” with a Intel Core i5-3320M 2.60GHz CPU, and an
Intel Centrino Advanced-N 6205 Dual Band NIC. The additional external USB NIC was a
Linksys AE1200.

3.2. Software

All software used in the Python program, including the Python libraries, which were
mostly from the Python Standard library, comes preinstalled with Kali Linux. The following
is an overview of the software tools used.

3.2.1. The Aircrack-ng Suite

Aircrack-ng is a suite of programs written in shell code that can be used to test the
security of the most common encryption methods used in Wi-Fi today. The suite is a free,
open-source, terminal run set of tools that is continuously maintained and utilized. The
suite consists of several tools including Airmon-ng, Airodump-ng, Aireplay-ng, Aircrack-
ng, and more. The tools can be used together to perform various actions including hardware
analysis, packet monitoring and injection on the wireless interface, and performing brute-
force and dictionary attacks against WEP and WPA-PSK encryption keys. It can also spoof
an AP, and trick a client computer into connecting to its own rogue AP imitating the target
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Wi-Fi. The specific tools mentioned above were those of the Aircrack suite used in this
project. Below is a description of their applications in the scope of this project.

3.2.2. Airmon-ng

This tool gathers and displays information about the computer network cards, inter-
faces, and network processes. It can change the mode of the computer wireless cards to
"monitor" mode which enables them to read and inject packets on the air, regardless of their
source and destination. It can also kill the running network process that may interfere with
the wireless interfaces while they are used by other tools. While it is not essential to run for
most of the other tools to work, it creates a more stable foundation for them to operate on.

3.2.3. Airodump-ng

When wireless cards are operating in monitor mode, Airodump-ng is capable of
sniffing any packets transmitted within range over the air interface. As a baseline, this can
be used to get an overview over all APs and probes in the area. The information gathered
on each node will include the ESSID, the BSSID, the encryption scheme, the channel on
which it operates, its relative signal strength, and its connected stations. Airodump can
also be configured to narrow its scope to a single AP and its clients, for instance, to capture
initialization vectors or WPA handshakes. The captured data is displayed in the terminal
as shown in Figure 3, or can be written to files.

Figure 3. Airodump-ng running in terminal.

3.2.4. Aireplay-ng

Aireplay-ng can be used to inject packets and spoof their source. One particular useful
application in the scope of our project is to transmit deauthentication packets to clients.
These packets claims to be from their connected AP, resulting in the clients dropping their
connection. By continuously transmitting these packets, the client will not be able to
reconnect with the AP, effectively executing a DOS attack. If no further deauthentication
packets are transmitted, the clients will attempt to reestablish their connection through a
new authentication process. During this process, a wireless sniffer like Airodump-ng may
capture the handshake.

3.2.5. Aircrack-ng

With the same name as the tool suite itself, Aircrack-ng is used to crack WEP and
WPA-PSK encryption keys. To retrieve WEP keys, several methods can be used. In terms
of cracking a WPA-PSK key, Aircrack can use information captured from the four-way
handshake, along with the BSSID of the AP. With this data, the tool performs a dictionary
attack, testing several thousand keys each second, and outputs its result in the terminal or
to a file. When a WPA2 is cracked, the output will look similar to the screenshot shown in
Figure 4.
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Figure 4. Aircrack-ng cracking a WPA2 key.

3.2.6. Hostapd

Hostapd, or “Host Access Point Daemon”, enables communication between various
802.11 wireless access points when operating in Host AP mode [68]. It allows us to run our
own AP from a wireless NIC with the name, encryption scheme, and password that we
specify, in addition to numerous other parameters Airbase-ng may seem to be a sufficient
tool for this purpose. Unfortunately, it is unable to host a functional WPA2 encrypted
AP.. The daemon reads its configuration from a text file specified upon launch. This tool
allows us to create a rogue AP that resembles the target AP enough that the client will
unknowingly reconnect to it if the original connection is temporarily lost.

3.3. Target IoT Device

The IoT device used in the project is the AIS displayed in Figure 5. It is the A200
AIS Class A produced by Em-Trak [69]. An AIS is a autonomous monitoring and tracking
system that communicates positional data and vessel information with nearby harbors
and ships [70]. The AIS makes an operator able to see the location of other vessels in
vicinity, aiding with navigation and collision avoidance. It is used on larger ships and
utilities ashore like VTS for tracking, monitoring, and identification. The AIS transmits
data continuously and is required by international treaties to be installed and operational
for larger vessels.

When mounted on a ship, the A200 AIS is connected to several sensors on the ship
along with a VHF antenna for communication with other AIS systems. It has a wireless
NIC which it uses to run its own Wi-Fi AP. The Wi-Fi configuration menu is displayed in
Figure 6. From there, the user can set the ESSID, choose internet protocol, select channel,
and more. A ship operator can access and read data from the device by connecting to it
with a laptop, tablet or similar device. The data is transmitted using NMEA 0183 messages
which are continuously sent to all clients on the network. To read the NMEA messages,
the client needs some kind of chart plotter software. There are many alternatives, but
OpenCPN was used for this project [71]. The connection is protected with WPA2 Personal
by default, which is the highest level of encryption the device supports. There is no
password complexity validation.
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Figure 5. The A200 connected to a battery and a VHF antenna.

Figure 6. The Wi-Fi settings menu in A200.

The Em-Trak A200 AIS Class A is an expensive AIS device used for larger vessels like
freight and passenger ships and is priced at almost £2000 [69]. The tested device is the
current version in production and market, shipped with a three year global warranty. Thus,
we can expect this model to be operative in its current state in many years to come.

3.4. Physical Setup

In the facilities of the NCR we set up the testing environment. The A200 device was
enabled in Wi-Fi mode with an Apple MacBook running the operating system MacOS
Monterey as the client. They were located one meter apart from each other, with no physical
objects between them. The laptop with Kali Linux was placed about one meter away from
both the A200 and the MacBook. The AP options were left as displayed in Figure 6, which
are the default values.

Because the AIS was not connected to all of its sensors, the messages that it transmitted
had no geographical data that could be displayed in the chart plotter. However, the debug
window within OpenCPN displays all received NMEA messages, which was sufficient to
prove the wireless connection and possible interruptions. Figure 7 displays a diagram of
the case study setup, while Figure 8 shows the debug window of OpenCPN while receiving
packets over a Wi-Fi connection.
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Figure 7. Diagram of the case study setup.

Figure 8. OpenCPN debug window with received NMEA packets.

4. Manual Attack Results

To launch an attack, the agent must know the ESSID or BSSID of the target AP. This
information is provided using a YAML file. Figure 9 displays the contents of a YAML
file for launching a DOS attack on a network named “AIS200”. Below are the results of
each attack.
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Figure 9. YAML file for a DoS attack.

4.1. Attack 1: DoS

The MacBook was connected to the A200 AP as described in Section 3.4, continuously
receiving NMEA 0183 packets every second which were interpreted using OpenCPN. The
ESSID of the network was “AIS200”, which is the default setting, and the client had the
BSSID “86:32:FC:1A:7C:25”. The DOS attack was launched and sustained for 45 s, with
the terminal output displayed in Figure 10. The agent used 18 s to gather the information
required to launch the attack, resulting in a complete program run time of 1 min and 3 s.
In Figure 11, we can see a sudden time gap between received NMEA packets of 53 s. The
additional 8 s comes from the time it took for the client to reestablish its connection.

Figure 10. Performing the DoS attack.

Figure 11. DoS attack in OpenCPN debug window.

4.2. Attack 2: Evil Twin

Again, we followed the setup previously described. The network ESSID remained
unchanged, but the client BSSID was “8C:85:90:61:1F:1A” for this experiment. “12345678”
was used as the network encryption password. As seen in Figure 12, the agent was able
to successfully impersonate the A200 AP and trick the client into connecting to it. The
reconnection was done automatically and transparently by the client MacBook operating
system without interaction from the user. When running the attack in verbose mode, we
can see the client connection in the debug logging messages as displayed in Figure 13.
The command for deauthenticating the client using Aireplay-ng is also visible in the
screenshot. The run time from start to client connection takeover was 39 s. A notable
variable considering the result is the time it took to crack the password. Aircrack-ng used
less than one second to find “12345678” in the provided wordlist. This due to the size of
the wordlist, which contained less than 200 words. A discussion of this matter is found in
Section 7.

Figure 12. Performing the Evil Twin attack.
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Figure 13. Debug view of Evil Twin connection.

5. System Design for Automated Attacks

Two similar attacks on the A200 IoT device were designed and implemented. Both are
based on vulnerabilities in the WPA2 encryption scheme, targeting the network layer of
the device. We have chosen these attacks because they affect all implementations of Wi-Fi
using WPA2, and can be performed without extensive knowledge, expertise, or equipment.
This Section will describe the attacks, define their EP models, and verify them using TLA+
and the TLC Model Checker. Finally, the verified design is implemented in Python.

5.1. The Attack Procedure

The first attack is a DOS attack using deauthentication frames, and the second is an
Evil Twin attack. Figure 14 displays a sequence diagram of the two attacks. As evident
from the diagram, the first two steps in both procedures are equal.

alt loop

AttackerAP Client

Probe response

Probe request (broadcast)

NMEA 0183

1) Capture APs

2) Capture clients

Deauthenticate
[Attack: DoS]

3) Launch attack

(Eavesdrop)

[Attack: Evil Twin] Deauthenticate

Handshake (Eavesdrop)
Capture
handshake 

3)

Crack
pw 

Find
password

4)

Deauthenticate

Association request

Launch
attack 

5)
Start
AP 

Figure 14. Sequence diagram of DOS and Evil Twin attack.

Attack 1: DOS
1. Capture APs

First, the agent will capture all APs within range. This can be done within a couple
of seconds using Airodump-ng but should be performed on a monitoring network
interface. To change the mode of NIC, the agent will use Airmon-ng.

2. Capture clients
If the target AP is found in previous step, the agent will capture the clients connected
to the AP using Airodump-ng. Depending on the traffic on the network, this may take
few more seconds than capturing the APs.

3. Launch attack
Provided that there are clients on the network, the agent should perform the DOS
attack. Each client will continuously receive deauthentication frames that appear to
be from the AP, withholding them from the reconnecting.
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Attack 2: Evil Twin
1. Capture handshake

This step involves capturing the handshake process between a client and the AP. By
deauthenticating the client using Aireplay-ng, the agent can capture the handshake
upon reconnection using Airodump-ng.

2. Find password
The password can be cracked using a dictionary attack if the nonces of the handshake
was captured in the previous step. To perform the dictionary attack, Aircrack-ng will
be used.

3. Launch attack
If the password is cracked, the agent will spoof the network of the target AP using
Hostapd. When deauthenticating the client again using Aireplay-ng, the client should
automatically reconnect to the Evil Twin AP if its signal strength is stronger than that
of the true AP.

5.2. EP Models of Attacks

The attack was performed through an agent that was designed based on the EP
modeling discussed in Section 2.4. The diagrams displaying the high level abstraction of
the DOS and Evil Twin attack models are shown in Figures 15 and 16, respectively. When
running the attack, the agent should analyze the main goal, which is either Evil Twin or
DOS, and then attempt to fulfill the subgoals subsequently read from left to right in the
model. Because both attacks involve sequential tasks where either a plan is fulfilled or the
program terminates, this specific EP model is relatively simple with a single condition in
the second level of each subgoal.

Level 1

Level 2

Level 3

Run DoS Attack

Reconnaissance
/\

airodump-ng
wlan0mon

Exploitation

Scan target AP
connected clients

Capture APs

/\

Capture clients

Scan APs

airmon-ng
start wlan0

Is target AP
reachable?

Not fulfilled

/\

airodump-ng
wlan0mon --bssid

$ap_bssid --
channel $channel

\/

\/

Launch attack

Does target AP
have connected

clients?

\/

Not fulfilled

Continuously
deauthenticate

target

\/

/\

aireplay-ng
wlan0mon --
deauth 10 -a
$ap_bssid -c

$c_bssid

Figure 15. EP model of the DOS attack.
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Figure 16. EP model of the Evil Twin attack.

6. System Implementation and Formal Verification

In the work of Yamin and Katt, Datalog [2] was used for formal modeling and verifica-
tion of the EP. In this work, TLA+ were chosen as the formal language because it presents
an approach that is based on theoretical mathematics and is thus more expressive. While
Datalog is a language mainly used for database querying capable of verifying models, TLA+
was designed for modeling hardware and software at an abstract level [45,72]. Furthermore,
a software called TLA+ Toolbox provides both the TLC Model Checker which can verify the
formal model, as well the possibility to create state transition diagram of the results.

The model complexity for a single Evil Twin attack in this setup is trivial to the point
where the formal model verification is practically unnecessary. However, its value becomes
evident in complex systems where one or more agents are capable of performing many
different attacks and intelligently choosing between them based on the reconnaissance
phase. The formal models of the attacks written in TLA+ are presented in Figures 17 and 18.
Each next-state relation definition within the specification translates to a subgoal branch of
the EP model. The actions represented by the bottom node within the second layer of the
model defines the variable changes of the state. For instance, the “Capture clients” subgoal
node in Figure 16 is described by the next-state relation “Capture_clients” in Figure 18.
Within this relation definition, the condition “Is target AP reachable” of the EP model is
tested by the operation “IF f ound_ap = TRUE”. If this is found true, the action “Scan
target AP connected clients” is performed by giving the variable “clients” an integer from
0 to 2, indicating the number of captured connected clients The max limit of clients should
in theory be equal to the maximum number of possible clients connected to the AP but was
set to 2 because it would limit the state diagram to where it was possible to display within
the thesis. During testing, we also set the limit to 100 devices to ensure that the validity of
the model did not change.

The level three commands of the EP model is not described by the specification, but
by the abstraction defined in the action node of the level above. This corresponds to the
TLA+ concept of abstracting the functionality and conforms to explaining whats of the
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system, leaving the hows to the lower level code implementation. In the final state of an EP
where the last plan and subgoal was fulfilled, the specification prints “Launching attack. . . ”
to illustrate a successful run. In the cases where the plan was successful until the very
last state but failed the last condition, the specification prints either “Not able to crack
password” or “Not able to capture any clients” to indicate that the plan was not fulfilled.

First, we wanted to formally verify that the logic of the TLA+ specifications, and
consequently, the EP models and agent decision making processes, were not flawed. This
includes situations were the program terminates without reached a “Done” state, or where it
enters an infinite loop. Second, we wanted to verify that the final states of the models could
be theoretically reached. For verification, we used the TLC Model Checker. The model
checker was able to compile and run the specifications without errors, which ensures there
are no logical flaw in the specifications. We could see from both the printed output of the
model and generated state transition diagrams that the final states were reachable. The state
transition diagrams for the DOS and Evil Twin attacks are displayed in Figures 19 and 20,
respectively. When running model checker for the DOS attack, the following output
was produced:

Figure 17. The formal specification of the DOS attack EP model written in TLA+.



Sensors 2023, 23, 733 21 of 30

Figure 18. The formal specification of the Evil Twin attack EP model written in TLA+.

<<"Launching attack...">>
<<"Not able to capture any clients">>
<<"Launching attack...">>

These strings represent the final three possible states seen in the corresponding state
diagram where the agent found the target AP. There are three of them because there are
three possible values for the number of clients found in the previous state. The states in
which the model found one or two clients were able to launch the attack while the third
did not. Thus, the specifications and EP models were verified.
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Figure 19. State transition diagram showing all possible states of the DOS attack EP model.

Figure 20. State transition diagram showing all possible states of the Evil Twin attack EP model.
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6.1. Implementation

The agent was implemented in Python 3.10. An essential part of the program is the
Subprocess module from the Python Standard library [73]. The module was used to create
and communicate with the processes running the software tools presented in Section 3.2. To
ensure modifiability and applicability in other implementations, the program was written
with high modularity following an object oriented approach. Figure 21 shows a simple
class diagram of the program.

ToolExecutor

Airmon Airodump Aireplay Aircrack HostETd

wpa2attacker

Paircrack

Agent

Figure 21. Class diagram of the agent.

6.1.1. Tool Interface

A custom package named Paircrack was created and used as an interface between
the agent decision making process and the software tools used. Each class within the
package corresponds to a tool from the Aircrack-Ng suite or HostAPd. Because of common
functionality between the package classes, an abstract class named ToolExecutor was created.
Most importantly, this class runs and interprets the outputs of the individual tool processes.
In Algorithm 1, the function for scanning and capturing APs is presented. This function
uses the helper function “_capture” which calls the “run” function of the ToolExecutor class.
All classes in the Paircrack package call the “run” function to start its processes. A part of
this function which uses the Subprocess module is displayed in Algorithm 2. Because some
processes run until they are manually interrupted, like those started by Airodump-Ng, a
process timeout ensures their eventual termination.

A Python package for running Aircrack-Ng programs named Pyrcrack [74] already
exists, and it serves many of the purposes we have implemented in Paircrack. While
originally intended to be used as the tool interface and foundation for the agent, the
package was discarded due to limited documentation and difficulties of use. Pyrcrack is
still under development, which may make it applicable in future generations of the agent.
The custom Paircrack package used in this project has some features inspired by Pyrcrack.
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Algorithm 1: The function for capturing all APs within range.
def capture_aps(self, interface : str, proc_timeout=2) -> str:

"""Captures all access points within range

Parameters
----------
interface : str

Interface to capture packets on
proc_timeout : int, optional

Amount of seconds to run the capture, by default 2

Returns
-------
str

filepath to xml file containing AP data
"""

self.logger.debug(’Capturing all APs...’)

fsuffix = []
flags = {

’--write-interval’: ’1’,
’--output-format’: ’netxml’}

return self._capture(interface, fsuffix, flags, proc_timeout)

Algorithm 2: Part of the "run" function within the abstract ToolExecutor class.
self.logger.debug(f’Running command: <{command}>’)
if self.verbose:

self.logger.debug(f’\tkeywords: <{proc_flags}>’)

try:
output = subprocess.run(command, **proc_flags)

except subprocess.TimeoutExpired as e:
self.logger.debug(f’Process timout’)
return True

else:
if self.verbose:

self.logger.debug(f’Captured stdout: <{output.stdout[:-1]}>’)
self.logger.debug(f’Captured stderr: <{output.stderr}>’)

return output

6.1.2. Agent Decision Making

The agent decision making process discussed in Chapter 5.2 was implemented in the
class wpa2attacker. This class creates instances of the classes within the Paircrack package,
and use their functionality to execute the actions described in the EP model. To determine
what type of attack to run, i.e., DOS or Evil Twin, the attack type is given as program
input in a YAML file. This file also contains a string that can be either the BSSID or the
ESSID of the target AP. The YAML file is the only input required for the agent to run either
attack. Providing the initial configuration data in a YAML file is, for compatibility reasons,
conducted with the framework and setup first created in the work of Yamin and Katt by
matching the interface with that of the autonomous agents on which this work is based.
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7. Discussion

The case study was performed in a controlled environment. Because of this, we will
address some important factors the could change the results of the Evil Twin attack if
performed in a realistic scenario.

7.1. Network Interface Range

A potential limitation of the attack efficiency comes from the distance between attacker,
client, and AP. The client will only connect to the rogue AP if the AP signal strength is
stronger than that of the authentic AP. If the signal strength of the impersonated network
is weaker, the client will simply reconnect its original AP. Unless the attacking device is
onboard the ship, it is likely to be further away from the client than the AIS is. On the other
hand, this issue can be addressed by either jamming the authentic AP [75], or increasing
the strength of the wireless signal [76]. In this work, an old and simple network adapter
was used to host the rogue AP. Even in its default signal strength configuration, the client
is connected to it. With a new and better adapter, the wireless signal strength would be
stronger, which could be further increased by modifying the signal strength.

7.2. Time to Crack Network Password

In the case study, we used a wordlist with 200 words where we knew the AP (Access
Point) password was one of them. Because of this, the time it took to crack the password
was less than one second, which would certainly not be the case in a real scenario. The
number of keys tested per second on the case study computer using Aircrack-ng amounts to
approximately 2300. Testing the cracking speed on desktop computer with an AMD Ryzen
5 3600 6-Core processor, we saw an increase to about 22,500 keys per second. However,
these numbers could be outperformed by software tool for hash cracking called Hashcat
using GPU acceleration. According to a speed test on Hashcat using GPU services provided
by Google Cloud, the tool can test 1.1 million WPA2 keys per second when running on
Nvidia-Tesla-a100 [77]. Using these password cracking speeds to calculate the time it
takes to exhaust different wordlists, we get the results as presented in Table 1. By using
the Aircrack-ng on the Kali Linux machine, a wordlist with the same size as the famous
“rockyou.txt” can be exhausted within minutes. Even a random eight integer password is
feasible to crack. However, Aircrack-ng would not be able to crack a random password
of integers and letters of eight characters. By using Hashcat, attacks on wordlists with
millions of passwords or even random letter passwords would be possible as indicated in
Figures 22 and 23.

Figure 22. Aircrack-ng password cracking speed on Kali Linux machine.

Figure 23. Aircrack-ng password cracking speed on the desktop computer.
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Table 1. Comparison of key test speeds on different wordlists using Aircrack-ng and Hashcat.

Aircrack-ng,
Kali Machine

Aircrack-ng,
Desktop

Hashcat

Crack speed (k/s) 2300 22,500 1.1 million

Dictionary attack on
1.4M key wordlist (s)

10 m 6 s 62 s 1 s

Brute-force 8
integers 13 h 75 min 2 min

Brute force 8
lowercase letters

3 years 4 months 53 h

Brute force 8 integers
and lowercase letters

40 years 5 years 30 days

Brute force 12 integers
and lowercase letters

66,234,755 years 6,770,664 years 138,491 years

7.3. Comparison with Similar Systems

In 2018, researchers [16] proposed the idea of automated penetration testing of IoT
devices. They discussed the general threats faced by IoT devices and ran a simulation to
validate those threats. There initial results were useful; however, they required experi-
mental validation in real IoT environment. In 2020, researchers [25] performed a study in
which they performed penetration testing on real IoT devices. They proposed a general
methodology to develop test cases for penetration testing IoT devices and planned to
automate the test cases in future studies. Similarly, in a recent 2022 study [78], researchers
proposed an expert system that takes IoT infrastructure details as an input and suggest a
threat model and a penetration testing plan. A penetration tester then can utilize the plan
to systematically test the IoT infrastructure. Comparing to the above mentioned work in
our study we first formally model and verify different IoT threats and then automatically
execute the attack on IoT devices with minimal human involvement.

8. Conclusions

In this work, we investigated vulnerabilities in IoT devices. We developed an au-
tonomous agent whose decision-making process was based on the EP model. The agent
decisions models were verified using the formal language TLA+. By successfully launch-
ing the two attacks in a case study involving a currently employed IoT device, we have
demonstrated that the EP model can be used to automate penetration testing. The results
indicated that the agents were not only able to put the target device out of service but
also spoof the connection to the client. Only considering the fact that we could easily and
automatically kill all wireless connections to the device proves its security to be inadequate.
As mentioned, the device is used on large vessels like yachts, cruise ships, and freight ships,
and international maritime law requires it to be operative at all times. Hourly docking fees,
labor, and maintenance costs are high for these kinds of ships. If the navigational device is
put out of service for only a few hours, the associated extra costs can amount to thousands
of dollars, not to mention that many of these ships are considered critical infrastructure.
The particular device tested is a high end, off-the-shelf product with three year warranty,
and may be employed for many more years as discussed in Section 2.1.3.

Furthermore, by being able to make the client automatically and transparently connect
to a rogue AP, the issue increases in severity. In the case of AIS devices, sending fake GPS
data can lead to collisions with harbors, underwater reefs, or other ships. The connection
can also be misused to send malware or in other ways attack the client. In the case of
routers or other devices providing Internet access, the connection can be used for MITM
attacks. As IoT devices are used in anything from private homes to critical infrastructure,
the fact that many of them are using insecure methods of communication and may continue
to do so for several years to come should be an alarming conclusion. As we have discussed
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and seen, WPA2 is inherently vulnerable. To mitigate the vulnerabilities presented in this
work, Wi-Fi networks should utilize the more secure WPA3. If WPA2 must be used for
compatibility or other reasons, strong password policies should be employed. As displayed
in Table 1, if the password length is sufficiently long and hard to guess, it is infeasible to
crack, even with cloud provided GPU accelerated hash cracking tools.

As attackers develop new methods to compromise systems, automated penetration
testing tools will need to evolve to identify and exploit these new vulnerabilities. At
the same time, automated testing tools will need to be updated to identify and defend
against new attack methods. Automated penetration testing tools may be integrated with
other security tools and processes, such as vulnerability management, incident response,
and compliance management. Automated tools may use machine learning and artificial
intelligence to improve their ability to identify and exploit vulnerabilities, leading to greater
integration with other security tools and processes.
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AES Advanced Encryption Standard
AI Artificial Intelligence
AIS Automatic Identification System
AP Access Point
APT Advanced Persistent Threat
BDI Belief–Desire–Intention
BSSID Basic SSID
CCMP Counter Mode with Cipher Block Chaining Message Authentication Code Protocol
DDoS Distributed Denial of Service
DoS Denial of Service
DSR Design Science Research
EAPOL Extensible Authentication Protocol over LAN
EP Execution Plan
ESSID Extended SSID
GPS Global Positioning System
GTK Group Temporal Key
IDS Intrusion Detection Systems
IEEE Institute of Electrical and Electronics Engineers
IGTK Integrity Group Temporal Key
IIoT Industrial Internet of Things
IoMT Internet of Medical Things
IoT Internet of Things
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IPS Intrusion Protection Systems
LAN Local Area Network
MIC Message Integrity Code
MitM Man-in-the-Middle
NCR Norwegian Cyber Range
NIC Network Interface Card
NMEA National Marine Electronics Association
PMK Pairwise Master Key
PSK Preshared Key
PTES Penetration Testing Execution Standard
PTK Pairwise Transient Key
RL Reinforcement Learning
SSID Service Set Identifier
VHF Very High Frequency
VTS Vessel Traffic Services
WEP Wired Equivalent Privacy
WLAN Wireless LAN
WPA Wi-Fi Protected Access
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