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Abstract: Small satellites empower different applications for an affordable price. By dealing with a
limited capacity for using instruments with high power consumption or high data-rate requirements,
small satellite missions usually focus on specific monitoring and observation tasks. Considering
that multispectral and hyperspectral sensors generate a significant amount of data subjected to
communication channel impairments, bandwidth constraint is an important challenge in data trans-
mission. That issue is addressed mainly by source and channel coding techniques aiming at an
effective transmission. This paper targets a significant further bandwidth reduction by proposing an
on-the-fly analysis on the satellite to decide which information is effectively useful before coding and
transmitting. The images are tiled and classified using a set of detection algorithms after defining the
least relevant content for general remote sensing applications. The methodology makes use of the
red-band, green-band, blue-band, and near-infrared-band measurements to perform the classification
of the content by managing a cloud detection algorithm, a change detection algorithm, and a vessel
detection algorithm. Experiments for a set of typical scenarios of summer and winter days in Stock-
holm, Sweden, were conducted, and the results show that non-important content can be identified
and discarded without compromising the predefined useful information for water and dry-land
regions. For the evaluated images, only 22.3% of the information would need to be transmitted to the
ground station to ensure the acquisition of all the important content, which illustrates the merits of
the proposed method. Furthermore, the embedded platform’s constraints regarding processing time
were analyzed by running the detection algorithms on Unibap’s iX10-100 space cloud platform.

Keywords: satellite communication; image compression; cloud detection; vessel detection; change
detection

1. Introduction

The number of satellites in orbit is growing fast. According to [1], the number of
satellites in orbit in constellations for commercial purposes was around 4000 in 2022
and will be the double by 2024. Most satellite constellation projects are designed aiming
at medium Earth orbit (MEO) and low Earth orbit (LEO) constellations. Among the
target fields, 4% are related to space observations, 46% to earth observations, and 50%
to communications. In case of satellites for earth observations, constellations are able to
image the entire land surface of the Earth every day. Consequently, medium-resolution or
high-resolution multispectral sensors (e.g., 4 bands or 8 bands) can generate a large amount
of information daily. For hyperspectral sensors, the amount of data generated per area can
be even greater, increasing the demand for bandwidth availability for data transmission.

In this context, image compression is an important strategy adopted by most commu-
nication systems, to reduce the bandwidth used in image transmission [2,3]. For aerospace
applications, some algorithms have been recommended by the Consultative Committee

Sensors 2023, 23, 730. https://doi.org/10.3390/s23020730 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23020730
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1405-4718
https://orcid.org/0000-0003-4859-3100
https://orcid.org/0000-0002-8785-5380
https://orcid.org/0000-0003-3965-520X
https://orcid.org/0000-0002-0406-0962
https://doi.org/10.3390/s23020730
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23020730?type=check_update&version=1


Sensors 2023, 23, 730 2 of 23

for Space Data System (CCSDS). The CCSDS 122.0-B-2 Recommended Standard details
an image compression algorithm that can be seen as a minimalist version of JPEG2000, in
which a careful trade-off between compression performance and complexity has been made
to make the compressor more suitable to be implemented in either hardware or software [4].
An alternative to the CCSDS image compressor is the JPEG-LS standard, presenting lower
complexity and similar performance in terms of data compression, but this is limited to
lossless and near-lossless compression [5]. Other general-purpose wavelet-based image
compression algorithms capable of providing effective lossless and lossy compression can
be found in [6,7]. Video compression methods focused on aerospace applications can also
be found [8,9], aiming at eliminating long-term redundancy among multiple periodically
revisited videos.

The images acquired by the satellite are compressed and transmitted to the ground-
station assuming that: (1) all the images are equally important; and that (2) all the content
in each image is equally important too. However, both assumptions are not true for some
applications. As mentioned in [10], one of the limitations of small satellite missions is
the platform’s capacity for using instruments with high power consumption or high data
rate requirements. Thus, small satellite missions usually focus on one specific physical
phenomenon to be observed and monitored. One can consider as small satellite projects
constellations of pico-satellites, nano-satellites, and some of micro-satellites, which are
common among constellation projects. In fact, among the satellites constellation projects
accounted for in [1], 1% correspond to pico-satellites (mass less than 1 kg), 30% to nano-
satellites (mass between 1 and 10 kg), and 18% to micro-satellites (mass between 10 and
100 kg). These percentages could be even greater, since 35% of constellation projects do not
give information about the sizes of their satellites.

Overall, some acquired images can be considered useless, or partially useless, for some
applications. For instance, cloud-covered images may not be useful for applications such as
surveillance or deforestation mapping, and as a consequence, there is no need to transmit
them to the ground-station. The potential of data saving for such applications is high, since
the global cloud coverage (cloud fraction) is approximately 67%, according to informa-
tion retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) [11].
More precisely, MODIS detected that the cloud fraction over land is around 55%, with a
distinctive seasonal cycle, whereas the ocean’s cloudiness is around 72%, and it has far less
seasonal variation. For oceanic areas, even more images can be considered not useful if the
application relies on vessel detection, which fits, for instance, Maritime Domain Awareness
(MDA) applications. The potential of data saving for applications where other content than
vessels can be discarded is huge, since the oceans cover 70% of the earth’s surface.

The previous knowledge about which content is not useful allows optimizing the
image compression step for further information saving. In that sense, regions of interest
(ROI) can be defined by deciding on-the-fly if the content of the images (or part of the
content) is actually useful for the target application. Thus, the ROI can be compressed with
higher compression rates than the other regions, preserving the image quality for the useful
content while ensuring data savings from the others.

This paper targets significant data savings by proposing an on-the-fly analysis to guide
the compression of images on satellites before transmission. Thus, additional bandwidth
reduction can be achieved. The proposed method performs the detection of content having
available measurements of the red band, green band, blue band (i.e., the RGB bands), and
the near-infrared band (NIR band). The challenge is to achieve a sufficient probability of
detection (PD) while keeping false alarm ratio (FAR) as low as possible, but within the
expected platform’s constraints with respect to processing time and energy expenditure.
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Preliminary results illustrating achievable gains in terms of information saved are
described in [12]. In [12], information is discarded that is considered not useful content:
(1) images covered by clouds and (2) water images without vessels. Thus, the methodol-
ogy described in [12] is composed of a cloud detection algorithm and a vessel detection
algorithm, and was evaluated using four satellite images.

In our study, the proposed method is based on three detection algorithms: a cloud
detection algorithm, a change detection algorithm, and a vessel detection algorithm. In
turn, better gains in dry-land regions can be achieved, ensuring the image quality when
something interesting has significantly changed in an area or when a new type of object
appears. Experiments using 25 satellite images were conducted, representing typical
scenarios of summer and winter days in Stockholm, Sweden. Precisely, the behavior of
the system was evaluated in scenarios involving clouds, cloud shadows, fog, snow/ice,
and vessels; and the strengths and weaknesses of the proposed method are discussed.
The results show that a large amount of data can be saved, paving the way for large
reductions in transmission costs to the ground station. For the images analyzed, 77.7% of
the information can be discarded without compromising the predefined useful information.
The merits of the proposed method are also shown through an individual analysis of some
key images belonging to the dataset. Moreover, processing time analyses were performed
using Unibap’s iX10-100 space cloud platform, and we point out future directions. To the
best of our knowledge, is there no other related work combining detection algorithms with
one image compression algorithm aiming at remote sensing satellite data saving.

This paper is organized as follows. Section 2 describes the proposed method and
the experimental framework used to evaluate its performance. We present our results in
Section 3, and in Section 4 we discuss them in the larger context. Finally, Section 5 presents
our conclusions.

2. Materials and Methods

The proposed method relies on a pre-processing step before coding and transmitting
the acquired images. The focus is on remote sensing satellite applications that agree with
the following: (1) changes in dry-land regions other than clouds are considered as ROI;
(2) water regions containing vessels are considered as ROI. Other content is considered
as not useful. Thus, let r be the coding rate of the image compressor. The ROI can be
compressed with a coding rate r = α, and the other content can be compressed with a
coding rate r = β, for β < α. As mentioned in Section 1, the proposed method makes use of
a cloud detection algorithm, a change detection algorithm, and a vessel detection algorithm.
The algorithm’s workflow is shown in Figure 1.

Cloud Detection

Vessel Detection

Image

Cloudy Sea/Water
No-vessels

Vessels

No-cloud

Change Detection

No-changes

Changed
r = α

r = α

r = β

Dry-land

Location

S1
r = β

Figure 1. Diagram of the pre-processing step. The image (tile) compression with the coding rate α is
represented by the green circles, and the compression with the coding rate β is represented by the red
circles. The algorithms for cloud detection, change detection, and vessel detection are illustrated by
the yellow blocks.

First, the input image is segmented into tiles of δ by δ and processed by the cloud
detection algorithm. The tiles classified as containing clouds (labeled as “Cloudy”) are com-
pressed with the coding rate r = β. The other tiles (labeled as “No-cloud”) are processed
by the change detection algorithm if they contain dry-land regions. The differentiation
between dry-land and water regions by georeferencing is considered in this paper. For
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water regions, the “No-cloud” tiles can be processed by the vessel detection algorithm.
Alternatively, the tiles located in water regions can be processed by the change detection
algorithm, in case the target application is interested in any other changes (e.g., oil spill or
icebergs) in addition to the vessels, which can also be considered as a change. In this case,
the reference image used by the change detection algorithm can be, for instance, a synthetic
image which best characterizes the water region or oceanic area. The option of using the
change detection algorithm instead of the vessel detection algorithm is represented by the
switch S1.

The ability of the change detection algorithm to detect vessels as changes must be
taken into account when setting S1. The use of the vessel detection algorithm may be
preferable, as cloud detection algorithms generally can not ensure a 100% detection rate.
Consequently, the tiles wrongly classified as “No-clouds” will be marked as ROI by the
change detection algorithm, which can reduce the performance of the system. Ideally, that
problem can be solved by using the vessel detection algorithm, since detecting vessels in
cloudy images should result in "No-vessels". However, the cloud detection step is still
necessary, considering that the presence of clouds increases the number of false alarms
produced by the vessel detection algorithm. In addition, the computational costs for vessel
detection and change detection are different, varying according to the implementation
of the algorithms (including optimizations) and the restrictions imposed by the platform.
These issues can also be considered when setting S1 while aiming at processing time and
energy savings.

Finally, the tiles containing changes or vessels are compressed with the coding rate
r = α, and the other tiles are compressed with the coding rate r = β.

In this paper, baseline algorithms for the cloud detection, change detection, and vessel
detection steps are proposed. The proposed method was expected to show good results,
even compared with non-learning-based algorithms. However, the use of other algorithms
that satisfy the constraints presented by the embedded platform can also be considered.
The baseline algorithms were modeled using ForSyDe [13], which is a methodology with a
formal basis for modeling and design of heterogeneous systems-on-chip and cyber-physical
systems. This methodology allows modeling the baseline algorithms considering a high
level of abstraction, focusing on functionality. ForSyDe envisions automated generation
of optimized codes for the target platform in the near future, and a trade-off analysis
of the demands and resources savings as part of the design space exploration tool in
ForSyDe [14]. In this paper, Matlab and Python code was created manually based on the
ForSyDe models to perform the analyses in Section 3. The baseline algorithms are detailed
in the following sections.

2.1. Baseline Algorithm for Cloud Detection

The task of detecting clouds in satellite images is still a challenge. Different algorithms
have been proposed over the years aiming at even lower FAR for the achievable values of
PD. A survey of cloud detection methodologies is given in [15], in which 59 approaches are
discussed among the classical and machine learning approaches.

Approaches vary in accuracy and output values. The results of classification can
vary from a simple cloud/no-cloud to a wider range of labels, such as: thin cloud, thick
cloud, cloud shadow, snow, ice, and others. In fact, different properties of the clouds
are explored by the approaches to perform the detection and classification, which can be
physical parameters (e.g., shape attributes) or optical properties (e.g., spectral content,
brightness temperature, and polarization characteristics).

This paper makes use of the threshold-based algorithm described in [12] to perform
the detection of the clouds. More precisely, the algorithm makes use of the RGB bands as
input signals to explore the brightness content, for which the threshold value may vary
by season, sun elevation, and other factors, to avoid false alarms. Figure 2 shows the
processing steps of the cloud detection algorithm, which can be described as follows.
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threshold
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Figure 2. ForSyDe model for the cloud detection algorithm using the synchronous model of compu-
tation (modified from [12]). In (1), one threshold operation (with the value τ1) is applied to each one
of the input bands. In (2), the resulting binary matrices from each band are element-wise multiplied.
Then, the elements are summed and divided in (3) according to the dimensions of the tiles. In
(4), another threshold operation (with the value τ2) is performed to label each tile as “No-cloud”
or “Cloudy”.

First, one threshold operation (1) of value τ1 is applied to each one of the RGB-bands
(Ired, Iblue, and Igreen) of the tiled image. Next, the resulting binary matrices from each
band are multiplied element-wise (2). Then, the values are summed and divided by
δ2 (the area of the tile) (3), resulting in one value for each tile as a ratio of brightness
per area. Finally, another threshold operation (4) is applied to the value calculated for
each tile, with a threshold value of τ2, resulting in the binary flag Fbin. In fact, the last
threshold operation labels each tile as “No-cloud” or “Cloudy”. The labels “mapSY” and
“zipWith3SY” represent the process constructors of the ForSyDe framework [13].

2.2. Baseline Algorithm for Change Detection

Detecting changes between multiple images of the same scene taken at different times
has a large number of applications in diverse disciplines, including remote sensing, medical,
civil infrastructure, and others [16]. Typically, for remote sensing applications, this would
mean either that something interesting has significantly changed in the area or that a new
type of object is in an area. Several strategies can be found in the literature aiming at
detecting changes in optical satellite images [17] and in synthetic aperture radar (SAR)
images [18,19]. The challenge is that an image over a surveillance ground can look different
every time the satellite passes, considering, for instance, the position of the sun, cloud
shadows, satellite angle of incidence, satellite azimuth angle, and other factors. In urban
areas, the vehicle traffic and parking lots would look different almost every time, which
can be considered non-relevant content for some applications. However, there might still
be interesting changes that do not involve cars, such as mass protests, fires, deforestation,
and other events. In that sense, these contents can be detected by the on-board software
and marked to be transmitted to the ground-station as ROI.

A comparison of representative change extraction methods based on pixel analysis is
given in [17], in which different methodologies are grouped as: algebraic and statistical
analysis, feature space transformation, change classification, feature clustering, and deep
neural network methods. Approaches combining more than one of the representative
methods can also be found. The robustness of the models was evaluated considering the
detection accuracy of the changed area, and also the accuracy of the non-changed area to
point out a FAR. In this paper, we propose one methodology that fits into the group of
algebraic and statistical analysis to perform the change detection step. Figure 3 shows the
processing steps of the change detection algorithm.

As illustrated by Figure 3, one low-pass filter is applied (2) to both the surveillance
image (Isur) and the reference image (Ire f ) to reduce the influence from noise. Thus, the
image (tile) is padded (1) before allowing the application of the filter to image borders.
In this paper, the low-pass filter used is an averaging filter of window size 5 by 5 pixels.
In the sequence, the differences in the image are computed from the averaged data by
subtracting the reference image from the surveillance image (3). The absolute values of the
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pixels are calculated in the next step (4), since positive differences and negative differences
are considered of interest. Then, the threshold operation is applied (5) to the absolute
values of the image-difference. The threshold value, τ3, might vary according to the satellite
image sensors. Overall, the choice of a reference image acquired by the same sensor as
the surveillance image will avoid complications in choosing the value of τ3, and the use of
images acquired in the same season, with same sun elevation and acquisition angle, will
be beneficial. Finally, morphological operations are applied (6) to the binary output of the
threshold block with the objective of reducing the false alarms related to single pixels (the
circle “morph. op.”). Morphological operations can also avoid small alarming changes and
deviations in georeferencing. In that sense, operations of erosion and dilation are applied.
Finally, the image (tile) is labeled as containing changes if the binary output matrix Ibin
contains at least one value equal to 1.

Ire f

zipWithSY

difference
mapSY

threshold

mapSY

Isur mapSY

padding
mapSY

mapSY

low-pass

low-passpadding

mapSY

absolute
mapSY

morph. op.

Ibin

(1) (2) (3) (4) (5) (6)

Figure 3. ForSyDe model for the change detection algorithm using the synchronous model of
computation. In (1), the tiles are padded to allow the application of the low-pass filter in (2). Then,
the resulting values of the reference image are subtracted from the values of the surveillance image
in (3). In (4), the absolute values of the pixels are calculated, and in the sequence, one threshold
operation is performed (with the value τ3) in (5). Morphological operations are performed in (6).

2.3. Baseline Algorithm for Vessel Detection

The world merchant fleet alone counted over 99800 ships of more than 100 gross
tons in 2021 [20]. This amount of vessels demands detection, classification, or identifi-
cation, in satellite images, since carrying an Automatic Identification System (AIS) or
Long-Range Identification and Tracking (LRIT) system is not required for vessels weighing
less than 300 tons [21]. In addition, fishing vessels do not carry a Vessel Monitoring System
(VMS), depending on the region. Furthermore, illegally operating vessels can spoof their
mandatory position reports, and as a consequence, the cooperative systems to provide
comprehensive MDA can not be considered sufficient.

An overview of 119 selected publications on vessel detection from optical satellite
imagery can be found in [21]. Strategies exploit different features on images to perform
the vessel detection, and their effectiveness depends on image resolution and other image
properties. In [21], methodologies are classified as: threshold-based, statistical methods,
transform domain methods, computer vision methods, deep learning methods, and shape
and texture methods, among others.

The threshold-based algorithm proposed in [12] was used in this study. The algorithm
makes use of the constant false alarm rate (CFAR) normalization described in [22] as a
part of the change detection algorithm for VHF UWB SAR images. The normalization is
carried out to allow finding an appropriate threshold that can be applied globally to give a
constant probability of false alarms. The normalized image is produced by centering the
filter at each pixel of the image and estimating the mean and standard deviation for the
pixels lying within a background window (BG), as illustrated by Figure 4.

The outer kernel and inner kernel sizes were set to, respectively, 31 by 31 pixels, and
19 by 19 pixels, as in [22]. The pixels of the output CFAR image are computed by
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po =
pc −mean(BG)

std(BG)
, (1)

where po and pc denote the output and central pixel values, respectively.

Background (BG)

outer kernelinner kernel

Test pixel (pc)

Figure 4. Illustration of the CFAR filter window (modified from [12]).

The diagram containing all the processing steps of the vessel detection algorithm
is shown in Figure 5. As pointed out by Figure 5, the algorithm makes use of the NIR
band as input signal (INIR), since the reflectance of water in NIR band makes the contrast
between vessels and water greater than in the other available bands [23]. First, the padding
operation (1) is performed in the input image (tile) to avoid missing detection on the edges,
where the amount of padded pixels relies on the size of the CFAR filter window. Then,
the CFAR normalization is performed (2), followed by a threshold operation with a value
τ4 (3). Next, similarly to what is done by the change detection algorithm, morphological
operations are applied (4) to the binary output with the objective of reducing the false
alarms related to single pixels. For the vessel detection algorithm, one operation of erosion,
followed by one operation of dilation, are applied. Finally, the tile is labeled as containing
vessels if the binary output matrix Ibin contains at least one value equal to one.

INIR mapSY

threshold
mapSY

padding
mapSY

CFAR
mapSY

morph. op.
Ibin

(1) (2) (3) (4)

Figure 5. ForSyDe model for the vessel detection algorithm using the synchronous model of com-
putation (modified from [12]). In (1), a padding operation is performed in the tile borders. CFAR
normalization is applied in (2), followed by a threshold operation (with value τ4) in (3). Then,
morphological operations are applied in (4).

2.4. Evaluation

The image compressor recommended by the Consultative Committee for Space Data
Systems (CCSDS) was used to evaluate the proposed method. The CCSDS 122.0-B-2 [4]
recommends a gray-scale image compressor for aerospace applications composed of a dis-
crete wavelet transform (DWT) followed by a bit plane encoder (BPE). The implementation
made available by the University of Nebraska was used to compress the tiles classified
with the proposed method [24].

The CCSDS image compressor allows operating with two arithmetics: (a) integer DWT
for lossless compression; (b) float DWT for lossy compression. In this study, the image
compressor was set to perform the lossless compression with the coding rate (r) of α bits
per pixel (bpp). Thus, the tiles containing the ROI can be decoded in the ground station free
of distortions (regarding the source coding), but their final amount of bits is variable. In
other words, compressing a tile with r = α means that α will be equal to the lowest possible
value achieved by the image compressor to perform the lossless compression of the tile,
which varies depending on the image pixels. This means that the α value is a variable not
defined by the user.
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The compressor was set to compress the tiles with losses for r = β. In this configura-
tion, the compression rate is fixed but the distortion varies slightly depending on the image
pixels. Thus, the cost in terms of amount of information is fixed for the tiles without useful
content. In that sense, β = 0 means that the tiles without useful content are just discarded.

Another option would be to configure the compressor to fix the distortion instead of
fixing the coding rate. Then, the amount of information related to the non-relevant tiles will
be variable. Both options will result in the same rate-distortion curve, since this function is
intrinsic to the compressor. In this study, it was chosen to operate with a fixed coding rate
to have the costs of transmitting the non-relevant content well defined.

The distortions resulting from the lossy compression were measured in terms of mean
squared error (MSE), where

MSE =
1
δ2

δ−1

∑
i=0

δ−1

∑
j=0

(p(i, j)− p̂(i, j))2 . (2)

p(i, j) and p̂(i, j) represent the pixel values of indexes i = 0, · · · , δ − 1 and
j = 0, · · · , δ − 1 for the tiles, respectively, before and after the compression. In addi-
tion, values in terms of peak signal-to-noise ratio (PSNR) were calculated from the MSE
values by

PSNR (dB) = 10× log10

(
M2

MSE

)
, (3)

whereM denotes the maximum possible pixel value. For instance,M = 216 − 1 = 65535
for input images of 16 bpp.

Finally, gain in terms of information saved (G) was calculated as a ratio: the number
of bits resulting from the application of the proposed method divided by the number of
bits required for lossless compression of the whole image (usual case). Thus, the lower the
gains values, the better.

2.5. Scenarios

Experiments were conducted considering typical scenarios containing clouds, vessels,
and small changes on dry land. One area in Stockholm, Sweden, composed of both dry
land and water regions, was arbitrarily selected—around the Skärpo region. The area has
the following approximate central coordinates: 18.75991, 59.33307 for WGS84; and 372579,
6579199 for EPSG 32634.

Then, some images used by a Saab-developed AI-based data fusion system were
selected. The images were from PlanetScope, which is a constellation of approximately
130 satellites (orbit type LEO-SSO) that is able to image the entire land surface of the
Earth every day [25]. The images have approximately 3m per pixel resolution and 16 bpp
precision (bit depth); they are composed of 4 bands (PSScene4Band): blue, green, red, and
near-infrared bands.

Altogether, 25 images were selected and cropped to the selected area of 1300 per
1300 pixels. More precisely, the 25 images were randomly selected from those covering the
selected area within the time range of approximately 8:44 to 10:10 (considering summer and
winter days). The time range was limited to these values to select images with similar solar
conditions, which allowed the use of a fixed threshold value for the detection algorithms
during the experiments. Table 1 gives more details about the selected images.

The labels listed in the last column of Table 1 were defined after a careful, deep visual
examination of the images. Then, the images were grouped as no-clouds, cloudy, small
clouds, fog, snow and clouds, and snow and no-clouds. The selected images have possible
vessels in the water region, excluding images 1 and 21–24, in which highlighted pixels
were not detected in the water region. It is worth mentioning that the dataset is not labeled.
Thus, some possible vessels could be the results of noise, movements in the water due to
the wind, or very small vessels (e.g., surfboards and jet-skies). However, as the objective
was to mark ROI containing possible vessels, lack of labeling was not an issue. In other
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words, possible vessels can be losslessly compressed in addition to real vessels to avoid
loss of interesting content for the application.

Table 1. Images details.

Image Date Time (UTC) Platform Instrument Details

0 2020-06-10 10:07:59 1061 PS2.SD no-clouds
1 2020-06-20 10:09:24 1066 PS2.SD no-clouds
2 2020-07-17 09:42:17 1040 PS2 no-clouds
3 2020-06-14 09:41:23 1003 PS2 no-clouds
4 2020-06-27 09:41:43 1027 PS2 no-clouds
5 2020-07-17 09:36:55 1034 PS2 no-clouds
6 2020-07-20 08:44:31 106d PS2.SD no-clouds
7 2020-07-24 08:45:15 106d PS2.SD no-clouds
8 2020-08-16 09:14:40 2235 PSB.SD no-clouds
9 2020-07-12 09:37:36 1005 PS2 clouds

10 2020-08-25 09:43:03 1034 PS2 clouds, no-vessels
11 2020-07-27 10:06:39 105a PS2.SD clouds
12 2020-07-24 10:09:45 1060 PS2.SD clouds
13 2020-07-09 09:13:40 2259 PSB.SD small clouds
14 2020-07-22 09:13:40 2277 PSB.SD small clouds
15 2020-08-17 09:45:32 1026 PS2 small clouds
16 2020-08-21 09:12:56 222b PSB.SD small clouds
17 2020-07-20 09:11:52 2235 PSB.SD fog
18 2020-08-07 09:39:37 0f17 PS2 fog
19 2020-08-07 09:37:09 0f15 PS2 fog
20 2020-08-30 09:39:13 0f34 PS2 fog
21 2018-03-16 09:24:33 0e16 PS2 snow, clouds, no-vessels
22 2019-02-20 09:34:19 1042 PS2 snow, clouds, no-vessels
23 2019-02-04 09:35:57 1018 PS2 snow, no-clouds, no-vessels
24 2019-02-06 09:30:34 1010 PS2 snow, no-clouds, no-vessels

Figure 6 shows two images of the selected area as examples. The maximum amplitude
of the pixels was truncated at 2000 to simplify the visualization of the images in this paper
(i.e., the pixel values higher than 2000 are printed as being equal to 2000).
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(a) Image 0 (b) Image 1

Figure 6. Images samples, RGB bands (truncated at 2000): (a) image 0; (b) image 1.
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3. Results

The proposed system was implemented in Matlab, and the experiments were con-
ducted using the images listed in Table 1. The parameters configured for the experiments
can be summarized as follows:

• Tile size: δ = 100 ;
• Lossy compression rate: β = 0.2 bpp;
• Cloud detection threshold values: τ1 = 1500, τ2 = 0.9;
• Change detection threshold value: τ3 = 300;
• Vessel detection threshold value: τ4 = 6;
• Reference image for change detection: image 0;
• Morphological operations for vessel detection: 1 erode (length: 1 pixel), 1 dilate

(length: 1 pixel);
• Morphological operations for change detection: 1 erode (length: 2 pixels), 1 dilate

(length: 2 pixels).

Some comments about the parameters can also be made. For δ = 100, the input images
have 169 tiles. It is also worth mentioning that β equal to 0.2 was chosen empirically, as
this value results in an acceptable lossy representation of the non-relevant content without
requiring a large amount of data.

Furthermore, note that τ2 = 0.9 implies that at least 90% of the tiles must be covered
by clouds to be labeled as “Cloudy”. Ideally, τ2 would be equal to one. However, parts of
the clouds cannot be detected due to brightness gradients in the clouds being higher with
the higher values of τ1. In that sense, giving a tolerance for τ2 can improve the performance
of the detection for some values of τ1. Thus, both threshold values must be balanced.

Another point to be mentioned is that the threshold value for the vessel detection
algorithm was empirically set to τ4 = 6, as in [12,22]. Other values for τ4 did not per-
form a better balance between PD and FAR. Gains in terms of image compression were
computed using the NIR band as case of analysis. Results for the other bands can be
considered analogous.

Image 0 was selected to be used as reference image by the change detection algorithm.
There was no particular reason for this choice other than that image 0 had the entire dry-
land region still as green, as shown by Figure 6a. Thus, the images containing changes in
the green area could be detected, as illustrated by Figure 6b. The results for the 25 images
are given in Table 2.

First we discuss the results for image 0. Image 0 was selected to be used as the
reference image by the change detection algorithm, so the surveillance image is the same as
the reference image for the results shown in the first row of Table 2. Consequently, there
were no changes to be detected. The reference image does not contain well defined vessels,
but three small detections were found in the water region. Two of the three detections were
in the same tile. Consequently, 2 of the 169 tiles were marked as ROI by the system, and
almost the whole image was lossy compressed with r = β. These detections can be due to
small vessels, noise, or simply movement of water due to wind, for instance. This result can
be verified in the second column of Table 2, where it can be seen that the final amount of
information, measured in BPP, is close to β. The gains achieved with the proposed method
are shown by columns six and seven (calculated as defined in Section 2). To facilitate further
comparisons, columns eight and nine show the BPP values achieved in the case of lossless
compressing the images with the CCSDS image compressor and with JPEG2000—using the
implementation provided by OpenJPEG [26]—respectively.

The result of image 1 describes a scenario without clouds containing changes in the
dry-land region, as illustrated by Figure 6b. The major changes in dry-land regions can
be observed by comparing the upper-left quadrants of Figure 6a,b. Figure 7a shows the
combined binary images resulting from the cloud detection algorithm, change detection
algorithm, and vessel detection algorithm. The final labeled tiles are illustrated in Figure 7b.
In this paper, the labeled tiles are marked as follows:
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• Tiles with ROI in dry-land regions are outlined with yellow traced lines;
• Tiles with possible vessels in water region are outlined with blue traced lines;
• Cloudy tiles are crossed with red traced lines.
• Other tiles without interesting content are crossed with cyan traced lines;

Table 2. Numerical results.

Image Bits per
Pixel

Mean
Squared

Error

Peak
Signal-to-

Noise Ratio

Amount of
ROI Tiles

Gain for
β = 0.2

Gain for
β = 0

Bits per
Pixel with

CCSDS

Bits per
Pixel with
JPEG2000

0 0.29 5896.2 58.6 2 0.043 0.011 6.66 6.56
1 1.09 4834.0 59.5 20 0.155 0.128 7.02 6.93
2 1.67 4006.4 60.3 38 0.263 0.236 6.37 6.27
3 1.07 3701.5 60.6 23 0.177 0.146 6.06 5.95
4 1.29 2976.4 61.6 28 0.210 0.181 6.14 6.02
5 1.66 3069.4 61.4 36 0.261 0.234 6.35 6.25
6 1.31 5701.3 58.8 24 0.187 0.160 7.04 6.95
7 1.21 4668.8 59.6 22 0.170 0.143 7.10 7.01
8 1.93 449.4 69.8 56 0.414 0.383 4.65 4.58
9 2.00 1984.6 63.3 44 0.320 0.294 6.24 6.15

10 2.07 4247.0 60.0 44 0.307 0.283 6.73 6.67
11 2.22 2883.9 61.7 46 0.309 0.287 7.20 7.14
12 1.43 3916.0 60.4 27 0.207 0.180 6.93 6.84
13 1.33 1462.8 64.7 33 0.263 0.228 5.07 5.02
14 1.53 1993.4 63.3 38 0.282 0.251 5.44 5.40
15 1.29 2737.8 61.9 24 0.197 0.169 6.53 6.44
16 1.20 2042.5 63.2 30 0.224 0.191 5.36 5.31
17 1.47 1214.6 65.5 38 0.289 0.256 5.08 5.01
18 1.22 3067.9 61.5 24 0.191 0.162 6.37 6.26
19 1.39 2612.4 62.1 28 0.219 0.191 6.36 6.26
20 2.62 390.9 70.4 58 0.406 0.384 6.45 6.35
21 1.30 5848.8 58.6 33 0.237 0.205 5.47 5.58
22 2.60 1139.6 65.8 53 0.372 0.351 6.99 6.92
23 1.38 19384.8 53.4 24 0.182 0.158 7.58 7.53
24 2.83 4001.6 60.3 53 0.385 0.365 7.37 7.31
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(a) Binary image (b) Labeled tiles

Figure 7. Results of image 1: (a) binary image; (b) labeled tiles (truncated at 4000).
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Figure 7b shows the NIR band of image 1 compressed with the proposed method, in
which the labeled tiles are marked. Tiles A10, A12, A13, B7, B11, B12, C11, and C12 were
labeled as containing changes, whereas tiles E1, F1, F2, F3, F13, H4, I7, I11, K2, K13, L6,
and M1 were labeled as containing vessels. The other remaining tiles were labeled as not
containing interesting content.

As pointed out by Table 2, the image distortion achieved for image 1 was 59.5 dB
of PSNR. To simplify observing the image distortion’s impacts, Figure 8a shows the NIR
band compressed with the proposed method but without the tile markings, and Figure 8b
shows its upper-left quadrant zoomed in. The differences in image distortion between the
tiles compressed with r = α and r = β can be seen, for instance, when comparing the tiles
B13 and C13 (lossy compressed) with the tiles B12 and C12 (lossless compressed). It is
important to mention that the images in this paper contain small amounts of distortion
resulting from the editorial process, such as resizing or file manipulation.
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(a) Compressed image (b) Compressed image zoomed in

Figure 8. NIR band of the image 1 compressed with the proposed method (truncated at 4000):
(a) compressed image; (b) compressed image zoomed in.

The final amount of information required to compress the NIR band of the image 1
is 1.09 bpp, which results in gains of 0.155 for β = 0.2, and 0.128 for β = 0. This means
that only 15.5% of the information required for lossless compression of the whole image is
needed. This percentage can be reduced to 12.8% in case of discarding the tiles without ROI.

Image 2 results in smaller gains. It requires 26.3% and 23.6% of the information,
respectively, for β = 0.2 and β = 0. The differences in the gains between image 1 and
2 are due to the numbers of tiles marked as ROI. Indeed, 38 tiles were marked as ROI
for image 2, which is almost the double the number for image 1. As a consequence, the
increase in the number of tiles that were losslessly compressed raised the final coding rate
to 1.67 bpp. An increase in image quality was achieved also, resulting in a PSNR value of
60.3 dB. Figure 9a–c show the RGB image, the labeled tiles, and the compressed NIR band
image, respectively.
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(a) RGB image (b) Labeled tiles (c) Compressed NIR band

Figure 9. Results for image 2: (a) RGB image (truncated at 2000); (b) labeled tiles (truncated at 4000);
(c) compressed NIR band (truncated at 4000).

As shown by Figure 9a, image 2 has new changes in the upper-left quadrant of the
image and many vessels in the water regions. The changes in dry-land region comprise
10 tiles, and possible vessels cover 28 tiles, as illustrated by Figure 9b. According to Table 2,
the same number of tiles marked as ROI in image 2 was marked in images 14 and 17,
but resulting in different values of gains. As mentioned in Section 2, the coding rate α is
variable in order to ensure lossless compression. For the lossily compressed tiles, β was
fixed to 0.2, which generated the differences in the PSNR values. Thus, the differences in
gains for images 2, 14, and 17, were due to the lossless compression. The same was true for
other images with the same number of ROI.

The results for most other no-cloud images in Table 2 are similar. Variations were
observed both in the number of tiles marked as containing changes on dry land and in the
number of tiles marked as containing vessels in water regions, resulting in gains between
0.155 and 0.263 for β = 0.2. The exception is observed for image 8, in which 56 tiles were
marked as ROI: 35 tiles were marked as containing changes in dry land and 21 tiles were
marked as containing vessels in water regions. The increase in the number of tiles marked
in dry land was a result of deviations between the surveillance image and the reference
image due to image corrections and calibrations. In fact, the results for image 8 illustrate
possible consequences of deviations in georeferencing, differences in sensors calibrations,
or failure of other corrections to the images.

Another point that can be observed concerns the border between dry-land and water
regions. In this paper, the tiles containing partially dry land and partially water regions
were marked as dry land. In turn, such tiles are processed by the change detection algorithm
(i.e., not by the vessel detection algorithm). This choice was made because the change
detection algorithm can detect some vessels in the water region as changes if the reference
image does not contain the same vessel in the same position, while the vessel detection
algorithm is not able to detect changes in the dry-land region. In a real application in the
future, the proposed method can be adjusted to allow the execution of both algorithms if
the application requires more accurate vessel detection in these tiles. The results of image 5
are brought by Figure 10 and can be used to illustrate that issue.

Figure 10a shows image 5, in which many vessels can be observed in the water region.
One of them is located near a small island around the tile F5, which was defined as dry
land because it contains part of the island. Figure 10b shows detection in tile F5, close to
the tile G5, and as a consequence, tile F5 was labeled as containing changes by the system,
as shown by Figure 10c.
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(a) RGB image (b) Binary image (c) Labeled tiles

Figure 10. Results for image 5: (a) RGB image (truncated at 2000); (b) binary image; (c) labeled tiles
(truncated at 4000).

The system’s behavior in scenarios containing clouds can also be discussed. Initially,
some comments can be made by analyzing the results achieved with image 9. Figure 11a
shows the RGB-bands image of image 9, where it is possible to observe the cloud portion
mostly in the lower-left quadrant. In addition, small portions of clouds can be found
over the water region. The shadows of the clouds on the ground can be observed in both
dry-land and water regions.
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(a) RGB image (b) Binary image (c) Labeled tiles

Figure 11. Results for image 9: (a) RGB image (truncated at 2000); (b) binary image; (c) labeled tiles
(truncated at 4000).

Figure 11c shows the tiles labeled by the system. Tiles labeled as “Cloudy” can be
found in the lower-left quadrant of Figure 11c. This is the case for tiles A1, B1, A2, B2, C2,
A3, B3, C3, D3, B4, and D4. The other tiles with clouds in dry land were wrongly labeled as
containing changes. The reason for this is: (1) some parts of the clouds into the tiles are not
sufficiently bright to cross the threshold τ1 (e.g., tile A4), or (2) the tiles are not sufficiently
covered by clouds to cross the threshold τ2 (e.g., tile B6). As mentioned in Section 2, the
tiles wrongly classified as “No-clouds” can be marked as ROI by the change detection
algorithm. The real changes detected in dry land are similar to those detected in image
5, which are located at the upper-left quadrant. In addition, tiles labeled as containing
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changes due to the shadows of the clouds can also be observed. This is the case for tiles A8,
B8, and C8, for instance. Cloud shadows can generate differences between the image and
the reference image that exceed the threshold value τ3, as pointed out by the white dots
in the tiles A8, B8, and C8, of Figure 11b. In general, detection failures caused by cloud
shadows, or by the undetected clouds, will reduce the system’s performance on dry land.
In water regions, false alarms caused by cloud shadows were not observed. However, false
alarms on the vessel detection step can be seen due to small portions of clouds, which is the
case for tiles F7, G7, I5, G4, G3, I3, E1, and H1. Tiles E2, H8, J10, and E13, can be considered
tiles containing well-defined small vessels.

In fact, false alarms caused by undetected clouds can reduce the efficiency of the
proposed method in terms of information saved, but they cannot compromise the useful
information. To illustrate that issue, Figure 12a shows the NIR band of the image 9
compressed with the proposed method, and Figure 12b shows its lower-left quadrant
zoomed in. The tiles A4, C4, D2, D1, and C1, were lossless compressed, but the other tiles
in Figure 12b were lossy compressed. Thus, uninteresting content (e.g., tile A1) had loss of
details, and content with uncertainty had its details preserved (e.g., tile A4). According to
Table 2, the PSNR value and the final coding rate reached for image 9 were, respectively,
63.3 dB and 2 bpp. The gains achieved by using the proposed method were 0.320 and 0.294
for β = 0.2 and β = 0, respectively.
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(a) Compressed image (b) Compressed image zoomed in

Figure 12. NIR band of the image 9 compressed with the proposed method: (a) compressed image;
(b) compressed image zoomed in.

Figure 13 shows the results of the proposed method applied to the image 10, which is
another cloudy image. Similarly to the results of image 9, cloud shadows on the ground
can be seen to increase the number of tiles marked as “changed” in the dry-land region. At
all, the tiles classified as “No-changes” were the tiles B13, C13, D13, D12, and E12. Other
tiles that were lossily compressed and showed dry land were due to the presence of clouds
itself (cloudy tiles), such as tiles A1, A2, and C4, for instance. In the water region, two tiles
were wrongly marked as containing vessels. Tile F12 resulted in a false alarm due to noise
in image synthesis, and tile G2 resulted in a false alarm due to the presence of clouds. The
other tiles in the water region were not classified as ROI, and were compressed with the
coding rate β. The gains for image 10 were 0.307 for β = 0.2 and 0.283 for β = 0.
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Figure 13. Results for image 10: (a) RGB image (truncated at 2000); (b) binary image; (c) labeled tiles
(truncated at 4000).

The cloud cover in image 11 is similar to that in image 10, producing somewhat similar
gains, as described in Table 2. In image 12, the cloud portion is slightly smaller than the
cloud portion in image 10, as shown by Figure 14a. Thus, the negative impacts of cloud
shadows on the change detection step are smaller, being limited to tiles A4, A5, and A6, as
illustrated by the detections in Figure 14b.
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(a) RGB image (b) Binary image (c) Labeled tiles

Figure 14. Results for image 12: (a) RGB image (truncated at 2000); (b) binary image; (c) labeled tiles
(truncated at 4000).

In the water region, four tiles were correctly marked as containing vessels. In particular,
it is interesting to observe tile J2 in Figure 14c, which contains two possible vessels almost
covered by clouds (near the border with tile K2). Tile J2 is an example of a tile partially
covered by clouds, but with interesting content elsewhere. This justifies using high values
of τ2 to avoid missing out on interesting content.

The results of images 13 to 16 are similar to those already discussed for the group of
images containing clouds. Moving forward with the description of the results, the behavior
of the system in fog scenarios can be discussed through the results of images 18 and 20.
Figure 15a illustrates a case of moderate fog, whereas Figure 16a is a scenario of denser fog
along with small clouds.
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(a) RGB image (b) Binary image (c) Labeled tiles

Figure 15. Results for image 18: (a) RGB image (truncated at 2000); (b) binary image; (c) labeled tiles
(truncated at 4000).
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(a) RGB image (b) Binary image (c) Labeled tiles

Figure 16. Results for image 20: (a) RGB image (truncated at 2000); (b) binary image; (c) labeled tiles
(truncated at 4000).

Most of the fog is over the water region in image 18. Thus, the fog is not affecting
much of the change detection in the dry-land region. The damages are basically in tiles
C13, D13, D12, E12, and D11, where the differences from the reference image exceed the
threshold τ3. The other tiles marked as ROI on dry land can be considered the result of
very small and punctual changes. Differently, the fog greatly compromised the detection of
changes in image 20, in which almost all the tiles were marked as ROI in Figure 16c. The
exception are tiles E12 and D3, the latter being eliminated by the cloud detection algorithm.

For the water region, the results of image 18 reveal that most of the vessels were
detected even with the fog. The tiles containing vessels but not marked as ROI exist
because fog reduces the contrast between the water and the vessel, changing the pixels’
statistic in the CFAR normalization filter window. This was the case for tiles M6 and G7, for
instance. Thus, some pixels related to small vessels ended up not reaching the threshold
τ4. In the case of image 20, all vessels that could be perceived were detected. As shown
by Figure 16a, two vessels can be seen at the top-right quadrant, resulting in three tiles
marked as ROI in Figure 16c, as one of them is located on the boundary between tiles J12
and K12.
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The behavior of the proposed method with images containing snow and ice can be
initially discussed through Figure 17, which shows the results of image 21. Image 21 is a
scenario with both snow and clouds. Figure 17a shows the RGB-bands image of image
21 with the maximum value truncated at 2000, in which the bright pixels resulting from
both snow and clouds can be observed. Considering that τ1 = 1500, detections from both
sources can be equally perceived by the cloud detection algorithm. However, the dry-land
tiles were not wrongly classified as cloudy, as shown by Figure 17c. That is because in the
case of image 21, the volume of snow in the area was not sufficient to exceed threshold τ2
due to vegetation and terrain topography. The tiles of dry-land region that are not covered
by clouds were marked as ROI by the change detection algorithm. Figure 17b shows that
all the pixels of the tiles processed by the change detection algorithm were marked because
they reached threshold τ3. In the water region, the vessel detection algorithm produced
seven false alarms due to clouds. Overall, the gains for image 21 were 0.237 for β = 0.2 and
0.205 for β = 0.
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(a) RGB image (b) Binary image (c) Labeled tiles

Figure 17. Results for image 21: (a) RGB image (truncated at 2000); (b) binary image; (c) labeled tiles
(truncated at 4000).

The gains achieved with image 22 were 0.372 for β = 0.2 and 0.351 for β = 0, which
are less attractive than those achieved with image 21. The amount of snow in image 22 is
less than that in image 21, but also distributed over the entire dry-land area. The difference
in the gain values of the two images occurred because almost all tiles were classified as
containing changes in image 22, as there were no clouds over the dry-land region. The
other characteristics presented by both images are similar.

The results for images 23 and 24 can be used to describe some undesirable outcomes.
Figure 18 shows the labeled tiles for both images. Differently from image 21, image 23
has no clouds, but 33 tiles in dry-land region were marked as “Cloudy”, as shown by
Figure 18a. This is because both τ1 and τ2 were reached due to snow. As a consequence,
most tiles with snow were lossily compressed, which may be considered undesirable for
some applications. For image 24, four tiles were wrongly lossily compressed on dry land
due to snow: tiles A4, A5, A10, and A11. In turn, the gains of image 23 are better than those
of image 24; however, the distortions of image 23 are greater.
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(a) Image 23 (b) Image 24

Figure 18. Labeled tiles of images 23 and 24 (NIR band truncated at 4000): (a) image 23; (b) image 24.

4. Discussion

The average gains for the 25 images were 0.251 (25%) for β = 0.2 and 0.223 (22.3%)
for β = 0. The individual gains in terms of percentage achieved for the 25 images with the
application of the proposed method can be compared in Figure 19.
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Figure 19. Percentage gains for the evaluated images.

The best gains observed were for image 0, reaching around 4.3% for β = 0.2 and
1.1% for β = 0.2. As mentioned in Section 3, image 0 is a case of no changes in the dry-
land region and two tiles containing possible vessels in the water region. That result can
be considered compatible with scenarios of entirely images of water regions containing
few vessels.

If all the tiles of image 0 are not marked as ROI, and consequently the whole image 0 is
lossy compressed with encoding rate β = 0.2, the gain would be 0.030. This is around 3% of
the information needed by the whole losslessly compressed image. This can be considered
the case for ocean images without vessels, for instance. On the other hand, the images
will be entirely losslessly compressed in dry-land areas, having changes in all of their tiles,
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which indicates that no information will be saved, resulting in gains equal to 1. The same
goes for images entirely in water regions containing vessels in all of their tiles.

In this sense, from 2 to 58 tiles were marked as ROI for the images evaluated, within a
range of possible amount of tiles from 0 to a maximum of 169. Estimates of gains for the
other possible number of tiles can be performed through a linear curve fitting. Figure 20
shows the estimated curves of gains for β = 0.2 and β = 0, together with the gains achieved
for each image (the dots round its respective curves). The behavior of both curves needs to
be the same for 169 tiles, as there is no information being saved in this situation (i.e., gains
of 100%). On the other hand, when the number of tiles as ROI is equal to zero, the gain for
β = 0 is also zero, indicating that all information is being discarded. For β = 0, zero tiles
means that all the tiles are lossily compressed, so the gain must be greater than zero. The
curves should better fit this theoretical behavior for a larger number of images.
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Figure 20. Percentage gains by number of tiles classified as ROI.

To discuss the weaknesses of the proposed method, the following needs to be consid-
ered. In general, detection algorithms present a trade-off between PD and FAR, in which
maximizing the PD generally implies an increase in the number of false alarms. This can be
considered a multi-objective optimization problem. Thus, the application rules the balanc-
ing point between the two. For the proposed method described in this paper, the policy is
to ensure the transmission of all important content. Consequently, the PD of the change
detection algorithm should be as high as possible, since false alarms on change detection
results in unimportant content marked as ROI, and not the opposite. The same is true
for the vessel detection algorithm. Thus, the parameters of both algorithms were chosen
to prioritize the PD. However, the same is not valid for the cloud detection algorithm.
False alarms can cause loss of important content (e.g., a tile containing snow), whereas an
undetected cloud can lead unimportant content to be marked as ROI. In turn, the choice of
parameters for the cloud detection algorithm should prioritize the minimization of false
alarms, even if this leads to a decrease in the PD.

As discussed in [27], cloud detection is a challenge for cloud and snow coexisting
areas, since both have similar spectral characteristics in the visible spectrum. To overcome
this challenge, some methodologies based on machine learning have been proposed. Most
of them focus on exploring textures and other image features to improve the accuracy of
automated methods. However, some machine learning models for cloud detection are
large, which limits their applicability and explainability. Thus, the use of these models has
not been investigated at this time, but may be carried out in the future.

In general, the gains on dry-land regions are expected to be similar to or better than
the gains of the global cloud fraction over dry land, which were 55%, even considering lack
of detections in the cloud detection step. This expectation is considering that several tiles
in dry-land regions over the globe can be classified as not containing changes. Actually,
a cloud is a change, but an undesirable one for the application. With respect to the
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water regions, the proposed method can significantly reduce the transmission costs for
applications which rely on vessel detection. In addition, the number of false alarms due
to undetected clouds are lower for the vessel detection algorithm when compared to the
change detection algorithm.

Finally, a short discussion about the processing time of the algorithms can be given.

Processing Time Analyses

Processing time experiments were conducted in the Unibap’s flight representative
hardware for the Unibap iX10-100 space cloud hardware solution (iX10-ADS) [28]. iX10-100
is based on the 14nm AMD Ryzen V1000 family. It offers up to 8 processor threads and up
to 8 CU graphics acceleration units, along with a PCI express generation 3.

The baseline algorithms for cloud detection, change detection, and vessel detection
were implemented in Python to be evaluated separately using a single core. Processing
times measured are as follows:

• Cloud detection algorithm: 0.47 s (image 11);
• Change detection algorithm: 0.47 s (image 1);
• Vessel detection algorithm: 88.48 s (image 2).

The processing time required by the cloud detection and change detection algorithms
fits into a small window of time between image acquisitions. However, the processing
time for the vessel detection algorithm can be considered not suitable. The large amount
of processing time for the vessel detection algorithm is due to the CFAR normalization.
The CFAR normalization computes each pixel of the image sequentially, since it was
implemented to run in a single core. Thus, an optimized implementation aiming at parallel
pixel processing is expected to considerably reduce processing time, for instance, by making
use of available GPU cores.

5. Conclusions

This paper describes a methodology that aims at significant data saving in the trans-
mission of remote sensing satellite images by proposing an on-the-fly analysis to decide
which information is effectively useful for specific target applications before compressing
and transmitting. As a consequence, bandwidth reduction can be achieved. The proposed
system classifies the content as important or not important in order to define regions of
interest. Then, the image compressor recommended by the CCSDS is used to compress the
ROI with a coding rate α, and the non-important content with a coding rate β. To make it
possible, the proposed method relies on a cloud detection algorithm, a change detection
algorithm, and a vessel detection algorithm. Baseline algorithms for these three detections
steps were proposed and formally modeled considering the ForSyDe framework. Then,
the algorithms were implemented in Matlab and integrated according to the proposed
method to simulate the compression gains. The algorithms were also implemented in
Python in order to be executed on the satellite platform iX10-100, aiming at measuring their
processing times.

Experiments were conducted using 25 images from PlanetScope cropped to a selected
area of the Stockholm archipelago, Sweden. The images were selected in order to test
the behavior of the system in different situations in both dry-land and water regions.
The analyses involved scenarios containing: clouds, cloud shadows, fog, snow/ice, and
vessels. Thus, one can evaluate the behavior of the system and observe the strengths and
weaknesses of the proposed method.

The average gain achieved in case of lossy compressing the regions other than ROI
was 0.251, which means that the information to be transmitted was reduced to around 25%
of the information required to transmit the images just losslessly compressed. Individually,
the gains of each image were in the range of 4.3% to 40.6%. Small improvements to the
gains were reached when discarding the regions other than ROI, taking the range of gains
to 1.1% to 38.4%, and the average gain to 22.3%. This amount of data saving illustrates
the merits of our proposal. We expect that future low-orbit imaging satellites with limited
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data transmission capacity for specific missions can benefit from this study. The proposed
method can also be used in multispectral satellites that work with a larger number of
available bands (e.g., PlanetScope SuperDove). In this case, we recommend using the same
bands (or bands of similar wavelength) as input to the detection algorithms. Experiments
with images from other bands can be carried out in future works.

A few weaknesses of the proposed method were observed and discussed, pointing out
future directions for the proposed system. First, one can mention the false alarms for cloud
detection due to snow/ice on the ground results in lossy compression of the misclassified
tiles. To overcome this challenge, the use of more robust cloud detection methodologies
can be investigated. Other false alarms observed impact the information savings, but do
not compromise the information considered useful.

Finally, the need for improvements in the processing time of the vessel detection
algorithm can also be mentioned. An implementation aiming at the parallel processing
of image pixels in the CFAR normalization step must be performed. In that sense, the
automated generation of optimized codes for the target platforms can be pursued consider-
ing the design space exploration tools envisioned by ForSyDe. Reductions in processing
time can also lead to reductions in energy consumption, since the runtime is an important
component in the energy consumption of the embedded platform [2]. Generally, energy
consumption measurement is hardware-dependent and relies on how the algorithms are
implemented, depending on whether the implementation makes use of parallel processing,
GPU processing, and other features. We expect that the energy savings in data transmission
will be greater than the energy required to make use of the proposed method, resulting
in benefits that go beyond bandwidth reductions and lower transmission costs. Analyses
involving energy consumption are not within the scope of this paper, but can be carried
out in future work.
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