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Abstract: The accurate measurement of mass and centroid is indispensable for accurate control
of aircraft. In order to eliminate the influence of assembly error and product pose error on the
measurement results, a multi-station measurement idea that can self-compensate for the geometric
parameter error is proposed in this paper based on. At the same time, the kinematic model of the
mechanical structure of the measurement equipment is established to prove the effectiveness of the
structure in error compensation theoretically, and the experimental verification of the standard part
and aircraft is carried out. The test results show that the measurement results using the idea of the
multi-station compensation measurement are significantly better than those of the more common
methods, with the mass measurement accuracy of 0.03% and the centroid error within ±0.15 mm,
meeting the requirement of high precision measurement for the mass properties.
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1. Introduction

The accurate measurement of the aircraft mass and centroid is a prerequisite for
the precise control of aircraft. The mass of the aircraft reflects its carrying capacity, and
the accuracy of the aircraft mass measurement directly affects the correctness of its force
analysis and dynamics modeling [1]. The position of the aircraft centroid determines the
origin of its trajectory-related coordinate system; for example, the origin of the ballistic,
projectile body and velocity coordinate systems are all selected at the centroid of the aircraft.
Deviations of the centroid measurement will lead to inaccurate dynamics modeling and
the scalar equation of kinematics of the aircraft, thus affecting the final flight trajectory [2].
With the rapid development of aerospace technology in recent years, the aircraft structure
has already broken through the limitations of small and medium-sized rotating bodies.
Higher accuracy requirements in trajectory and attitude and more difficult control of the
new aircraft have been raised for its special shape structure, which has also put forward
higher requirements on the accuracy of mass and centroid measurement [3].

There are two main methods for determining the mass and centroid parameters; one
is the computer simulation analysis method [4], and the other is the experimental measure-
ment method [5]. Since the workload of simulating the real situation of a large-sized and
heterogeneous structure is huge and the simulation analysis cannot completely simulate
the real situation, the simulation analysis results are often just a reference, which is needed
to verify each other experimentally. A variety of experimental test methods, such as multi-
point weighing, a compound pendulum, a three-wire pendulum, and visual measurement,
can be used as the experimental measurement. Na established a measurement unified
model of the multi-configuration planetary rover based on the measurement characteristics
of the static balance equation and multi-point weighing method [6]. Dario proposed a
method based on the class of suspension techniques and dual-axis inclinometer readings
for determining the center of gravity of a small spacecraft [7]. Oliveira estimated the 2D
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coordinates of the projection of center of gravity (CG) of an object by constructing a reaction
board mounted on three supports instrumented with FBGs and applying the equilibrium
conditions of a rigid body and proper calibration procedures [8]. Wang presented an
experimental method to measure the gravity center of an UAV by using the projection
method and the compound-pendulum device [9].

The measurement methods above have been developed for a long time and have been
able to achieve considerable accuracy when the measured parts are of moderate size and
regular shape, meeting the general measurement requirements [10]. However, the follow-
ing problems still exist for the mass and centroid parameters measurement of large-sized
aircraft which is difficult to install by manpower in terms of size and mass, and corre-
sponding hoisting equipment is required to achieve the effect. Firstly, these measurement
methods involve a variety of problems in the actual operation process, such as the need for
multiple clamping, complex clamping processes, low efficiency, and the introduction of
large positioning errors. Secondly, in the process of centroid measurement of the measured
target, there is often a certain geometric error in the process of mounting the tooling, which
leads to the actual position of the measured object not matching the theoretical situation,
resulting in systematic errors in the centroid measurement result. When the measured
object is a small or medium-sized warhead or a part of the cabin of a large-sized aircraft,
the measurement system structure is simple, and the measurement accuracy can still be
guaranteed even if the above-mentioned influencing factors are ignored [3]. However, as
the size of the aircraft increases and the shape diversifies, any small assembly error will lead
to the deviation of the centroid measurement value from the true value being magnified
several times, which seriously restricts the further improvement of the mass and centroid
parameters measurement accuracy of large-sized aircraft. Meanwhile, the research on the
influence and compensation of product pose error on the measurement results is also rare.
Finally, in practical applications, due to the limitation of the versatility of the measurement
equipment, in order to meet the measurement requirements of different models of aircraft,
it is necessary to redesign and process for individual models of aircraft, which causes great
production costs [11].

In order to solve the above problems, Wang Meibao used the multi-point weighing
method and combined it with the idea of flexible measurement to develop the mass and
centroid test equipment suitable for large-sized aircraft [11,12]. The device uses two
subsystems, and the relative position between them can be adjusted according to the size
of the measured product to be compatible with a variety of models of measured products.
However, the equipment only applies to rotary aircraft, and it cannot be used to measure
the centroid of large-sized aircraft with an irregular shape. Additionally, it does not have
the compensation function for the product attitude error. Wang Chao [10,13] researched
measurement attitude error correction technology based on kinematics, considered the
situation that the actual attitude of the measured product does not coincide with the
theoretical attitude, analyzed the influence of the measured product attitude error on the
measurement results, modeled the mechanical structure of the measurement system while
calibrating its geometric parameters, and established a calibration equation based on the
attitude error. However, in this process, each step needs to reflect the actual posture of the
object under test, relying on the laser tracker, which greatly increases the difficulty of use
and prolongs the testing time. Additionally, decoupling is required when performing error
compensation, which increases the difficulty of obtaining accurate centroid data.

In view of the above situation, a multi-station measurement idea which can com-
pensate for the pose error is proposed based on the equipment described in [14], After
the initial calibration, the conversion of measurement results into the measured object’s
own coordinate system without a laser tracker is realized by the homogeneous coordinate
transformation matrix based on the kinematic concept. At the same time, this function
can also effectively suppress product pose errors caused by assembly errors introduced
by the measurement system or the object under test. In order to verify the compensation
effect of the multi-station transfer device on the measurement of the product centroid, the
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corresponding kinematic error model is established for the mass and centroid measurement
system, and the quantitative analysis of the measurement error compensation effect of the
device is carried out from the theoretical level.

This paper introduces the basic principles of the mass and centroid measurement
and innovatively proposes a multi-station measurement idea that can self-compensate the
measurement results. A multi-station switching device is then designed, which can improve
the versatility of the measurement system while compensating for pose errors. Meanwhile,
it defines different coordinate systems according to the structure of the measurement system,
and it gives the coordinate conversion method while establishing a general kinematic error
model and proving the feasibility of the idea feasibility. Finally, the reliability of the
measurement system is verified by testing on the standard part and the large-sized aircraft.

2. Materials and Methods
2.1. Theoretical Basis

As shown in Figure 1, the measurement system consists of four load cells [15].
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Figure 1. The principle diagram of the mass and centroid measurement.

Before the measurement, the four load cells are adjusted to the same height. Record
the output value of the load cell in the no-load state and the load state, respectively, noted
as P1i and P2i [14], namely:

Mg = P11 + P12 + P13 + P14 (1)

Mz = P21 + P22 + P23 + P24 (2)

where Mg is the equipment work parts mass, and Mz is the total mass of the equipment
tooling and the measured object.

The mass of the object under test MC can be expressed as:

Mc = Mz −Mg (3)

The theoretical 2D coordinates of the centroid of the measured object in the sensors’
coordinate system can be measured through the principle of moment balance, combined
with the position information and output data of the load cell.

xCG = ∆P1xs1+∆P2xs2+∆P3xs3+∆P4xs4
∆P1+∆P2+∆P3+∆P4

yCG = ∆P1ys1+∆P2ys2+∆P3ys3+∆P4ys4
∆P1+∆P2+∆P3+∆P4

(4)

where xsi, ysi are the coordinates of the ith cell in the XOY plane of the coordinate system
where it is located, and ∆Pi is the difference between the measured values before and after
the ith cell loads the measured object, denoted as ∆Pi = P2i − P1i [14].

Then, the coordinates are converted to the object’s own coordinate system, so that
the 2D centroid coordinates can be obtained from a single measurement. Similarly, the
coordinates of the other direction are measured by rotating the object accordingly.
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2.2. Design of Multi-Station Measurement

A multi-station measurement idea that can self-compensate the results is proposed on
the basis of the mass and centroid measurement system introduced in the paper [14]. The
idea is realized by the multi-station switching device in [14].

As shown in Figure 2, the inner disk can be rotated 360◦ around the central positioning
hole and is positioned and locked by quadrant positioning pin holes at the boundary
positions of four quadrants (noted as I, II, III, and IV), respectively.
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Figure 2. 3D model of the multi-station switching device.

Furthermore, in the measurement process, as shown in Figure 3, the multi-station
switching device is connected to the measurement tooling or product through the center
positioning hole and tooling positioning pin holes, which play the roles of positioning and
switching between the measuring tool (or the object to be measured) and the measurement
table, providing an expanded interface for the measured objects of different sizes and
their matching tooling, and providing the measurement function of horizontal and vertical
positions for the measured object.
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In the process of measurement, firstly, only the matching tooling of the measured object
is installed, and then the inner disk of the multi-station switching device is rotated to the I,
II, II, and IV quadrant positions, respectively, and the measuring equipment is operated
to record the output data of the four load cells in the no-load state in the four positions,
respectively. Secondly, the measured object and the matching tooling are installed, and
the operation of the steps above is repeated. Then, the output values of the load cells in
the four positions will be recorded, which will be combined with the coordinates of the
load cells in the coordinate system to obtain the centroid coordinates of each posture in
the corresponding coordinate system by Equation (4). Finally, convert the results to the
coordinate system of the measured object and calculate the average value to obtain the 2D
centroid coordinates in the current pose.
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2.3. Pose Errors Analysis
2.3.1. Homogeneous Coordinate Transformation Matrix

The coordinates of the point P in the coordinate system U are (UPx, UPy, UPz) and in
the other coordinate system V are (VPx, VPy, VPz), then:

U Px = V Px · nx + V Py · ox + V Pz · ax + px
U Py = V Px · ny + V Py · oy + V Pz · ay + py
U Pz =

V Px · nz + V Py · oz + V Pz · az + pz

(5)

where Px, Py, Pz are coordinates of the origin of the coordinate system V in the coordinate
system U; nx, ny, nz are three direction cosines of the Xv axis of the coordinate system V
onto the coordinate system U; ox, oy, oz are three direction cosines of the Yv axis of the
coordinate system V onto the coordinate system U; ax, ay, az are three direction cosines of
the Zv axis of the coordinate system V onto the coordinate system U.

Equation (5) can be written in the following form:

UP = V
UT · VP (6)

where

UP =
[

U Px
U Py

U Pz 1
]T

, VP =
[

V Px
V Py

V Pz 1
]T

V
UT =


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

 =

[
n o a p
0 0 0 1

]
=

[ V
UR p
0 I

]
= Trans(px, py, pz) ·Rot(k, ε)

V
UT is the homogeneous transformation matrix of the coordinate system U to the coor-

dinate system V; Trans(px, py, pz) is the translation homogeneous coordinate transformation
matrix; p = [px py pz]T is the translation vector, representing the displacement vector from
the origin of the coordinate system U to the origin of the coordinate system V; V

UR = [n o a]
is the rotation transformation matrix, representing the rotation matrix of the coordinate
system U turning to the coordinate system V consistently; Rot(k, ε) is the rotation homoge-
neous coordinate transformation matrix; k is the unit vector in the direction of the rotation
axis, ε is the angle of rotation around k.

Clearly, the rotation homogeneous coordinate transformation matrix of the coordinate
system U rotated εx around the XU axis at the origin can be expressed as:

Rot(XU, εx) =


cos 0◦ cos 90◦ cos 90◦ 0

cos 90◦ cos εx cos(90◦ + εx) 0
cos 90◦ cos(90◦ − εx) cos εx 0

0 0 0 1

 =


1 0 0 0
0 cos εx − sin εx 0
0 sin εx cos εx 0
0 0 0 1

 (7)

Similarly,

Rot(YU, εy) =


cos εy 0 sin εy 0

0 1 0 0
− sin εy 0 cos εy 0

0 0 0 1

 (8)

Rot(ZU, εz) =


cos εz − sin εz 0 0
sin εz cos εz 0 0

0 0 1 0
0 0 0 1

 (9)

As shown in Figure 4, if the coordinate system U is first rotated by εx, εy and εz around
the XU, YU and ZU axes, respectively, and then translated by px, py and pz along the XU,
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YU and ZU axes, respectively, the homogeneous coordinate transformation matrix charac-
terizing the rotation and translation transformation above from U to the new coordinate
system V is:

V
UT = Trans(px, py, pz) ·Rot(ZU, εz) ·Rot(YU, εy) ·Rot(XU, εx)

=


cos εy cos εz sin εx sin εy cos εz − cos εx sin εz cos εx sin εy cos εz + sin εx sin εz px
cos εy sin εz sin εx sin εy sin εz + cos εx cos εz cos εx sin εy sin εz − sin εx cos εz py
− sin εy sin εx cos εy cos εx cos εy pz

0 0 0 1

 (10)
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When the rotation angles εx, εy and εz are very small:

sin εx ≈ εx; sin εy ≈ εy; sin εz ≈ εz; cos εx ≈ 1; cos εy ≈ 1; cos εz ≈ 1 (11)

When the translational displacement is very small, δx, δy and δz are used to represent px,
py and pz, respectively. Clearly, the micro-values above the second order can be neglected,
and the homogeneous coordinate transformation matrix can be expressed as:

V
UT =


1 −εz εy δx
εz 1 −εx δy
−εy εx 1 δz

0 0 0 1

 (12)

2.3.2. Coordinate Systems Definition

The multi-station switching device is compatible with different aircraft through the
tooling in order to complete their mass and centroid measurements, which would constitute
a variety of different mechanical structures. For ease of expression and analysis, take
the example of the measuring equipment with a standard part mounted separately via
positioning pins, as shown in Figure 5. The mechanical structure of the equipment is a
tandem type structure, which establishes the reference coordinate system (RCS), the target
coordinate system (TCS), and the coordinate system based on the outer ring and inner disk
of the multi-station switching device (ECS-E External of Equipment Coordinate System)
and (ECS-I Internal of Equipment Coordinate System).
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In the ideal (error-free) case, the kinematic model of the coordinates TCG of the
centroid RCG measured in the product coordinate system can be expressed as:

TCGi = T
EIT

i · EI
EETi · EE

R Ti · RCG (13)

where:

EE
R Ti =


1 0 0 a0
0 1 0 b0
0 0 1 c0
0 0 0 1

, EI
EETi =


cos εz − sin εz 0 0
sin εz cos εz 0 0

0 0 1 0
0 0 0 1

, T
EIT

i =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


2.3.3. Establishment of the Error Model

In the actual measurement, the measurement table needs to be raised or lowered to
complete the loading of the measured object, in which the ECS-E has three displacement
error components δx(EE), δy(EE), δz(EE) and three angle error components εx(EE), εy(EE),
εz(EE) with respect to the RCS. The transformation matrix of the ECS-E with respect to the
RCS is:

EE
R Te =


1 −εz(EE) εy(EE) a0 + δx(EE)

εz(EE) 1 −εx(EE) b0 + δy(EE)
−εy(EE) εx(EE) 1 c0 + δz(EE)

0 0 0 1

 (14)

There is a systematic error ∆ε in the rotational positioning of the inner and outer disks
of the multi-station switching device. Then, the transformation matrix of the ECS-I with
respect to the ECS-E is:

EI
EETe =


cos εz cos ∆ε− sin εz sin ∆ε − sin εz cos ∆ε− cos εz sin ∆ε 0 0
sin εz cos ∆ε + cos εz sin ∆ε cos εz cos ∆ε− sin εz sin ∆ε 0 0

0 0 1 0
0 0 0 1

 (15)

The assembly error between the TCS and the ECS-I includes three displacement error
components δx(T), δy(T), δz(T) and three angle error components εx(T), εy(T), εz(T). The
transformation matrix of the coordinate system TCS with respect to the ECS-I is:

T
EIT

e =


1 −εz(T) εy(T) δx(T)

εz(T) 1 −εx(T) δy(T)
−εy(T) εx(T) 1 δz(T)

0 0 0 1

 (16)

In the ideal case, the actual centroid coordinates of the measured object should coincide
with the theoretical coordinates in space. However, in the actual case, the two are separated
in space due to the error of the measured object’s pose.

Take the inner disk turned to I position (εz = 0◦) as an example in the ideal condition.
From Equation (13), the transformation matrix of the TCS with respect to the RCS is:

T
RTi = T

EIT
i · EI

EETi · EE
R Ti =


1 0 0 a0
0 1 0 b0
0 0 1 c0
0 0 0 1

 (17)

Assuming that the coordinates of the 2D centroid of the measured object in RCS are
RCG (xIr,yIr,0). Then, ideally, the coordinates of the measured object centroid in TCS are:

TCGi = T
RTi · RCG = T

RTi ·
[
xIr yIr 0 1

]T (18)
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However, in the actual case, considering the influence of the object’s pose error, the
transformation matrix of the TCS with respect to the RCS is:

T
RTe = T

EIT
e · EI

EETe · EE
R Te

=


1− εz(E) · (∆ε + εz(T))− εy(E) · εy(I)− ∆ε · εz(T)
∆ε + εz(T) + εy(E) · εx(T)− εz(E) · (∆ε · εz(T)− 1)

∆ε · εx(T)− εy(T)− εy(E) + εz(E) · (εx(T) + ∆ε · εy(T))
0

εx(E) · εy(T)− εz(T)− ∆ε + εz(E) · (∆ε · εz(T)− 1)
1− εz(E) · (∆ε + εz(T))− εx(E) · εx(T)− ∆ε · εz(T)

εx(E) + εx(T) + ∆ε · εy(T) + εz(E) · (εy(T)− ∆ε · εx(T))
0

εy(T) + εx(E) · (∆ε + εz(T))− εy(E) · (∆ε · εz(T)− 1)
εy(E) · (∆ε + εz(T))− εx(T) + εX(E) · (∆ε · εz(T)− 1)

1− εy(E) · (εy(T)− ∆ε · εx(T))− εx(E) · (εx(T) + ∆ε · εy(T))
0

δx(T)− (b1 + δy(E)) · (∆ε + εz(T)) + εy(T) · (c1 + δz(E))− (a1 + δx(E)) · (∆ε · εz(T)− 1)
δy(T) + (a1 + δx(E)) · (∆ε + εz(T))− εx(T) · (c1 + δz(E))− (b1 + δy(E)) · (∆ε · εz(T)− 1)

c1 + δz(E) + δz(I)− (a1 + δx(E)) · (δy(T)− ∆ε · εx(T)) + (b1 + δy(E)) · (εx(T) + ∆ε · εy(T))
1



(19)

The actual coordinates of the centroid of the measured object in its own coordinate
system are:

TCGe = T
RTe · RCG = T

RTe ·
[
xIr yIr 0 1

]T (20)

2.4. Self-Compensation Effect Analysis

The inner disk of the multi-station switching device is rotated to the positions I
(εz = 0◦), II (εz = 90◦), III (εz = 180◦), and IV (εz = 270◦). Moreover, the coordinates of the
object centroid (RCGI, RCGII, RCGIII, RCGIV) in the current state are measured in the RCS.
Then, the coordinates are converted into the TCS. The object centroid errors in the TCS with
and without the product pose errors are sorted out in (21).

∆TCGI =
TCGe

I − TCGi
I =

T
RTe

I · RCGI − T
RTi

I · RCGI
∆TCGII =

TCGe
II − TCGi

II =
T
RTe

II · RCGII − T
RTi

II · RCGII
∆TCGIII =

TCGe
III − TCGi

III =
T
RTe

III · RCGIII − T
RTi

III · RCGIII
∆TCGIV = TCGe

IV − TCGi
IV = T

RTe
IV · RCGIV − T

RTi
IV · RCGIV

(21)

Bringing Equations (13), (17)–(20) into (21) and neglecting the micro-values above the
second order, the expression of the mean value of the errors is:

∆TCG = 1
4 (∆

TCGI + ∆TCGII + ∆TCGIII + ∆TCGIV)

=


δx(T) + c1 · εy(T)
δx(T)− c1 · εx(T)

c1 + δz(E) + δz(I)− 1
4 ·∑ x · εy(E) + 1

4 ·∑ y · εx(E)
1

 (22)

Since the measured amount is the 2D centroid of the measured object, only the first
two items in Equation (22) need to be considered, and it can be seen that the 2D centroid
error does not contain random variables at this time, which can be regarded as systematic
error and compensated by calibration experimentation. Comparing with Equation (19),
it can be seen that the measurement results of the object centroid using the multi-station
switching device for multi-station measurement can greatly reduce the measurement errors
and pose errors introduced by the assembly.



Sensors 2023, 23, 701 9 of 13

3. Results
3.1. Calibration Result

The equipment and the experimental process refer to the cite [14].
The test items and the measurement accuracies are given in Table 1.

Table 1. Specification and design requirements of the systems.

Item Dimensions

Test parameters Mass; CG along axes X, Y, and Z;
Mass measurement range 100–3000 kg

Length measurement range 800–4000 mm
Mass measurement accuracy ≤0.03%

Radial CG measurement accuracy ≤±0.15 mm
Applicable product maximum diameter No less than ϕ 1650 mm

In order to verify that the multi-station switching device can compensate for the errors
introduced by the assembly and the measured product pose errors in the mass and centroid
measurement of large-sized aircraft, the standard part was tested first, as shown in Figure 6.
The mass and center of gravity of the standard part have been calibrated by the metrology
institution. The mass is 883.495 kg, and the center of gravity coincides with the centroid.
The standard part is a pie-type structure, which can be installed and positioned with the
multi-station switching device through positioning pins.
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Figure 6. (a) Physical picture of the measurement system; (b) 3D model of standard parts; (c) standard
sample mass centroid measurement diagram.

In the test process, the standard part was placed on the measuring table. First, record
the measurement results of the mass and centroid of the inner disk of the multi-station
switching device in position I, recorded as MI and CGI. Second, rotate the multi-station
switching device to position I, II, III, and IV, then the average of the results of the four
positions of the mass and centroid is calculated and recorded as Mavg and CGavg. Finally,
the geometric center position of the plane on the standard part was measured by the laser
tracker and compared with the CGavg, as shown in Figure 6c.

The standard part was placed on the measuring table at 10 different positions, and the
above operation was repeated; the results are shown in Figure 7.

It can be seen that for the mass and centroid measurement system, the error (2σ) of
the mass parameter was not greater than 0.2 kg and the repeatability accuracy of the mass
measurement can reach 0.02%. The mean value of the centroid measurement results of the
four positions was significantly lower than the error of the single position measurement
results, and the error uncertainty (2σ) of the centroid measurement was within 0.1 mm.
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Multi-Station 
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Figure 7. Standard sample mass centroid measurement error.

3.2. Example

According to the measurement method described in the previous section, a large-
sized aircraft with a mass of about 250 kg is used as the object to be measured, and the
vertical measurement pose is adopted, as shown in Figure 8. The measured parameters
are the mass of the aircraft and its radial two-dimensional centroid, ten sets of experi-
mental cycles were completed, and the results are shown in Table 2. The data of centroid
measurement are the averages of multi-station measurement and single-station (station I)
measurement, respectively.
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(2) The influence of the uncertainty of sensor coordinates on YCG. 
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Figure 8. Aircraft mass centroid measurement diagram.

It can be seen that the error (2σ) of the mass parameter is no more than 0.1 kg, and
the repeatability accuracy of the mass parameter is no more than 0.03%. In terms of the 2D
centroid, the deviation of the multi-station measurement results is significantly lower than
that of traditional single station measurement.
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Table 2. Measurement results of mass and centroid.

Test No.
Multi-Station

Coordinate of CG (mm)
Station I

Coordinate of CG (mm) Mass (kg)

Y Z Y Z

1 28.120 −4.056 27.771 −4.263 258.529
2 28.038 −4.073 27.730 −4.262 258.632
3 28.022 −4.059 27.638 −4.320 258.632
4 28.044 −4.079 27.567 −4.345 258.641
5 28.012 −4.098 27.708 −4.316 258.628
6 28.016 −4.090 27.746 −4.348 258.621
7 28.022 −4.070 27.736 −4.313 258.640
8 27.987 −4.042 27.714 −4.260 258.680
9 28.001 −3.975 27.878 −4.176 258.652

10 27.993 −4.046 27.793 −4.287 258.670
Average result 28.025 −4.059 27.728 −4.289 258.633

Standard deviation 0.036 0.033 0.080 0.049 0.038
Repeatability — — — — 0.014%

3.3. Uncertainty Evaluation of 2D Centroid

Take full scale (3000 kg) as an example: the uncertainty of the load cells is 0.01% (C6);
the length design value of sensor group is 1600 mm; each load cell bears the same weight;
and the distance L from the center of mass to the tail of the aircraft is about 2000 mm.

(1) Influence of Uncertainty of Load Cell on YCG

Differentiate Equation (4) with respect to YCG, namely:

∆y1 =

√
4
(
∂∆P1

2/∂ycg
)
y2

s1

(4∆P1)
2 = 0.03 mm (23)

(2) The influence of the uncertainty of sensor coordinates on YCG.

In fact, the laser tracker determines the coordinates of the sensors, and the distance
between the tracker and the load cells is less than 5 m; thus, ∆y2 can be regarded as 0.1 mm.

(3) The influence of the uncertainty of inclination angle of the aircraft on YCG. The
inclination angle can be controlled at 10′′, then ∆y3 = Lsin10′′ = 0.1 mm.

(4) The influence of other factors on the YCG ∆y4 = 0.05 mm.

The uncertainty of 2D centroid single-station measurement is:

σy =
√

∆y2
1 + ∆y2

2 + ∆y2
3 + ∆y2

4 = 0.15 mm (24)

Reasoning from Section 2.4, the multi-station measurement virtually eliminates the
effects of inclination angle; thus, the uncertainty is:

σavg =
√

∆y2
1 + ∆y2

2 + ∆y2
3 + ∆y2

4 = 0.12 mm (25)

According to Equations (24) and (25), it can be seen that the uncertainty of the multi-
station measurement is significantly better than that of the single-station measurement.

3.4. Comparison and Analysis

As shown in Table 3, this method is compared with the centroid measurement equip-
ment with error compensation proposed in cite [10] and cite [11].
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Table 3. Comparison of 3 self-compensating centroid measuring equipment.

Multi-Station
Equipment

Equipment in Cite
[10]

Equipment in Cite
[11]

Standard
deviation 0.12 mm 0.18 mm 0.14 mm

Applicable scope of
aircraft

Rotary body and
irregular body

Rotary body and
irregular body Rotary body

It can be seen that, in terms of standard deviation, the cite [11] is almost an approach
to the multi-station method proposed in this paper; however, the shape of the tested
aircraft is limited to the rotary structure that the equipment in cite [11] can be compatible
with. Although equipment in cite [10] is compatible with aircrafts of different shapes and
structures, the standard deviation is still greater than that of the multi-station method
proposed in this paper even after compensation. Additionally, the cite [11] relies heavily on
the use of laser trackers during the measurement process.

In summary, the self-compensating multi-station centroid measurement method men-
tioned in this paper can adapt to different shapes of aircraft to the greatest extent while
maintaining high measurement accuracy.

4. Discussion

In view of the fact that there is little research on the error compensation method of
large mass and centroid measurement equipment, this paper proposed an idea of self-
compensating multi-station measurement, designed and implemented a multi-station
switching device, and optimized the original mass and centroid measurement equipment
by combining the principle of high precision measurement. The kinematic model was
established for the mechanical structure of the measurement equipment, and the influence
of the measured object’s pose error on the measurement results was analyzed. Through
theoretical and experimental proofs, the multi-station measurement idea proved that the
measurement accuracy after self-compensation was significantly improved compared with
that before. At the same time, the solution also has the significant advantages of requiring
less product installation, high measurement accuracy, and strong compatibility.

The mass and centroid measurement equipment is theoretically applicable to objects
weighing 3000 kg; since the measured object is not limited to a single outline structure, it
can also be considered to extend its application to other fields besides aircraft.
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