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Abstract: With advances in the Internet of Things, patients in intensive care units are constantly
monitored to expedite emergencies. Due to the COVID-19 pandemic, non-face-to-face monitoring has
been required for the safety of patients and medical staff. A control center monitors the vital signs of
patients in ICUs. However, some medical devices, such as ventilators and infusion pumps, operate
in a standalone fashion without communication capabilities, requiring medical staff to check them
manually. One promising solution is to use a robotic system with a camera. We propose a real-time
optical digit recognition embedded system called ROMI. ROMI is a mobile robot that monitors
patients by recognizing digits displayed on LCD screens of medical devices in real time. ROMI
consists of three main functions for recognizing digits: digit localization, digit classification, and digit
annotation. We developed ROMI by using Matlab Simulink, and the maximum digit recognition
performance was 0.989 mAP on alexnet. The developed system was deployed on NVIDIA GPU
embedded platforms: Jetson Nano, Jetson Xavier NX, and Jetson AGX Xavier. We also created a
benchmark by evaluating the runtime performance by considering ten pre-trained CNN models and
three NVIDIA GPU platforms. We expect that ROMI will support medical staff with non-face-to-face
monitoring in ICUs, enabling more effective and prompt patient care.

Keywords: optical digit recognition; real-time monitoring; medical devices; embedded systems;
intensive care units

1. Introduction

Critical care is the process of medical care for patients with potentially life-threatening
injuries and illnesses [1]. Critical care usually takes place in intensive care units (ICUs).
A specially trained team continuously monitors the vital signs of patients and provides
immediate critical care when the patients are at risk [2]. In other words, they are responsible
for recognizing early signs of deterioration in patients and responding appropriately to
prevent subsequent events and reduce patient mortality [3].

Subtle changes in vital signs, such as respiratory rate, blood pressure, heart rate, body
temperature, and oxygen saturation, are early warning signs of clinical deterioration [4].
A noninvasive hemodynamic monitoring device is commonly used to monitor the vital
signs of patients in ICUs [5]. Modern hemodynamic monitoring devices, such as the
IntelliVue and IntelliBridge systems from Philips, have built-in connectivity capabilities
that allow for seamless real-time data transfer to hospitals’ electronic medical record (EMR)
systems [6]. However, only one-third of hospitals have interfaces to connect bedside
devices, such as infusion pumps, ventilators, and hemodynamic machines, to the EMR
system, thus necessitating manual inspections by medical staff [7]. This is because the
functional interoperability of medical devices and their integration with the EMR system are
limited [8]. For example, the Philips IntelliBridge system is developed for data integration
and collects data according to the standard data protocol Health Level 7 (HL7) [9]. However,
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the system was developed for data exchange among Philips products and is not compatible
with devices from other manufacturers [10]. In addition, it is difficult to use the system in
many hospitals due to additional costs, such as the product price, installation, operation,
and maintenance.

With the development of Internet of Things (IoT) technology, the IoT is expected
to improve the quality of medical services, patient safety, management efficiency, and
patient-centered medical services [11]. The basic concept of the IoT is to connect anything or
everything that can be connected to the internet [12]. The IoT has demonstrated its potential
to deliver quality healthcare, improve patient safety, reduce healthcare costs, and improve
healthcare access in remote locations by connecting various medical devices, sensors,
and healthcare professionals [13]. For example, VitalPAD was developed to improve the
efficiency of clinical decision making, communication, and patient safety by combining
information from multiple monitoring and treatment devices in a mobile application [14].
HEAL was proposed to automatically and unobtrusively monitor events and activities in
an ICU room by using multimodal distributed cameras [15]. SensableCare is an alert system
that delivers a timely alert to a nurse via a mobile device when it detects that a patient has
moved out of bed [16].

During the COVID-19 pandemic, we experienced a serious threat to public health
worldwide. Medical staff are in direct contact with patients on the front line and are exposed
to risks such as infection, lack of sleep, and overwork [17]. Developing countries, including
Bangladesh, faced unprecedented challenges, such as medical staff and equipment short-
ages, lack of personal protective equipment, fear of infection, and social exclusion [18]. A
lesson from the COVID-19 outbreak was that the virus can spread rapidly between patients
and medical personnel, increasing the risk of cross-contamination [19]. IoT-based remote
control of medical devices in ICUs [20] or remote monitoring of COVID-19 patients [21]
can be an effective solution for responding to future infectious diseases in non-face-to-face
forms.

Robots could be a promising alternative in epidemic outbreaks, such as that of COVID-
19. Almost every industry faced many difficulties during the COVID-19 pandemic, but the
acceptability and opportunities of robotic systems have increased [22]. Robotic systems
could be used for many different purposes, such as diagnosis, screening, disinfection,
surgery, and telehealth during COVID-19. The primary role of medical robots in clinical set-
tings is to prevent the spread of infection among frontline medical personnel by minimizing
human-to-human contact and isolating direct exposure to disease [23,24].

To effectively monitor patients in ICUs and similar facilities, such as quarantine centers,
we propose a real-time optical digit recognition embedded system for monitoring patients
in intensive care units (ROMI). ROMI is embedded in a mobile robot and serves to monitor
patients in ICUs based on robotics and IoT concepts, as shown in Figure 1a. For example, a
mobile robot approaches a medical device, controls a robot arm equipped with a camera,
recognizes the digits on the display, and transmits the recognized data to a control center
in real time to monitor patients in ICUs.
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Figure 1. A real-time optical digit recognition embedded system for monitoring patients in ICUs. (a)
A concept of ROMI for monitoring patients in ICUs. (b) Hardware prototype of ROMI. (c) System
configuration of ROMI in Matlab Simulink.

The core algorithm of ROMI is optical characteristic recognition (OCR). OCR is used
in various applications, such as converting handwriting into editable text, identifying
vehicle license plates, and converting scanned/printed documents or natural scene images
into text [25]. Several algorithms were developed over a long time, such as open OCR
algorithms—tesseract OCR [26], easyOCR [27], and keras-OCR [28]. These algorithms
are good open-source APIs that are freely available. However, there is no such thing as a
perfect OCR algorithm, especially in real-world conditions. To the best of our knowledge,
not all OCR algorithms are perfect, as they need to be slightly modified according to new
conditions to ensure the algorithm’s performance.

Due to the challenges in recognizing digits in the real world, it is necessary to sup-
plement the algorithm through initial calibration and data collection for each medical
device. In this work, we propose a general process for developing a real-time digit recogni-
tion model with transfer learning and applying it to embedded systems by using Matlab
Simulink as a proof-of-concept study. We evaluated the recognition performance to select
the best model out of ten pre-trained convolutional neural network (CNN) models. We
also investigated the runtime performance according to the NVIDIA Jetson GPU platforms.
This work makes the following contributions:

• We propose a real-time digit recognition embedded system called ROMI. ROMI
consists of three subsystems, i.e., digit localization, digit classification, and digit
annotation. The subsystems of ROMI were developed by using Matlab Simulink.
In this work, we demonstrate the entire process for developing ROMI—from data
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acquisition and model development to embedded system deployment—as a proof-of-
concept study.

• Not all OCR algorithms are perfect under real-world conditions. Implementing
deep learning (DL) models in the real world requires calibration, which involves
collecting new training datasets and training/fine-tuning the models. We used data
augmentation on a small training dataset to easily and quickly calibrate DL models in
the initial setup.

• We retrained ten pre-trained CNN models to develop a digit recognition model
with transfer learning. We then selected the best DL model, i.e., alexnet, through a
comprehensive recognition performance evaluation.

• We created a benchmark for ROMI by deploying ten trained DL models on three
NVIDIA graphics processing unit (GPU) embedded platforms to analyze the runtime
performance.

The rest of this paper is organized as follows. Section 2 discusses OCR-related research.
Section 3 describes the digit dataset, subsystems of ROMI, and embedded hardware plat-
forms, respectively. Section 4 shows the evaluation results for the digit recognition and
runtime performance on the NVIDIA GPU platforms. Section 5 discusses the limitations of
this work and future work. Finally, this paper concludes in Section 6.

2. Related Work

This section addresses OCR research for seven-segment display digit recognition
applications. We also discuss the significance of the OCR technique in ICUs for integrating
ICU data into EMRs.

OCR research has been studied for a long time. However, when using OCR in real life,
it performs worse than expected. Tesseract OCR is a popular OCR model developed by
Google, but it has trouble reading seven-segment displays correctly and only reads plain
text on pages well [29]. Discontinuities in digit representation on a seven-segment display
degrade the performance of tesseract OCR and require appropriate pre-processing [30].

Pre-processing has a significant effect on OCR performance, especially for images
obtained from digital cameras [31]. Therefore, many OCR-related studies focus on pre-
processing techniques. For example, Kulkarni et al. [32] used pre-processing methods, such
as tilt correction, background elimination, and noise filtering, to make clear digit images.
Tsiktsiris et al. [33] proposed an adaptive thresholding method for making binarized images
according to pixel intensity. The adaptive thresholding method effectively removed artifacts
caused by shadows and unwanted reflections from the screen. The HSV color-slicing
technique was also used to separate digits from the background by using predefined HSV
parameters [34]. Finnegan et al. [35] proposed pre-processing methods, such as maximally
stable extremal regions (MSERs), to find the digit regions, and they used rule-based filtering
and blob clustering to get rid of the noise around them. Wannachai et al. [36] proposed
image processing methods, such as image transformation (rotation and cropping), noise
canceling, and a post-processing method (adaptive bound criteria), to improve the accuracy
of digit recognition.

To the best of our knowledge, there is no perfect OCR for resolving these artifacts
in real-world conditions. The best way to mitigate this issue is to calibrate the OCR in
a pre-processing step before using it based on new data. In our system, pre-processing
settings, including dataset generation for training DL models, can be easily modified based
on the input image properties, making it applicable to many medical devices.

Advances in IoT have enabled a patient-centric approach by monitoring vital signs to
more accurately assess patient health and take predictive actions [37]. However, integrating
data from medical devices into EMRs is challenging because many medical devices are
not originally designed for network connectivity. In addition, some devices with com-
munication capabilities often use proprietary protocols rather than standard protocols,
making data unavailable to end users [38]. As part of an effort to monitor various medical
data, an integrated system using an open embedded system was developed. For example,
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Medical Device Dongle (MDD) [39] was developed to enable interoperable medical device
connectivity by using a standard protocol. MDD uses RS-232 or USB for data exchange.
CodeBlue [40] is an ad hoc sensor network infrastructure for tracking patient status and
location in emergency medical care. CodeBlue collects vital signs, such as oxygen saturation
(SpO2) and electrocardiogram (ECG) data, via a MICA2 mote equipped with an RS232 data
port. OpenICE [41] is an open-source software project for providing interoperability by
connecting multiple medical devices. OpenICE uses Beagle-Bone single-board computers
to connect medical devices directly and allow them to communicate through a serial port.
AlarmNet [42] is designed for long-term monitoring of older adults and monitoring of
physiological sensors, such as ECG, pulse, and blood pressure sensors, via MicaZ and Telos
Sky motes with RS232 data ports. MEDiSN [43] was developed to provide effective care
during disaster events. MEDiSN uses a mote called miTags [44] and collects physiological
signals, such as pulse oximetry and pulse rate.

These approaches commonly use serial communication to read data from medical
devices with auxiliary devices, such as a mote, a dongle, and an open embedded system.
However, data access is only possible when the medical device provides its own data
protocol. In addition, some medical devices do not have communication capabilities. More
than one hundred medical devices are installed in large hospitals [45], making it physically
impossible to use auxiliary devices for each device. To alleviate these limitations, we opt for
a vision-based approach for monitoring multiple ICU medical devices by using a robotic
system equipped with a camera. Several similar studies have been conducted due to the
COVID-19 pandemic. For example, VentConnect [46] was designed to remotely monitor
ventilators. VentConnect uses a display interface converter instead of a camera to transmit
the ventilator screens directly to a server. This method is restricted to medical devices with
display outputs. PACMAN [47] was designed to monitor the oxygen saturation and pulse
rate in COVID-19 patients by reading digits on a pulse oximeter. However, only the pulse
oximeter was trained for the OCR model of PACMAN. Thus, model calibration, such as
image pre-processing, data collection, and model re-training, is required to apply to various
medical devices.

We summarized the related studies on medical data monitoring and integration, as
shown in Table 1.

Table 1. Related work on monitoring and integrating medical data.

Method Target Medical Device Solution/Approach Problem/Challenge

CodeBlue [40] A ventilator and ECG MICA2 motes Limited data logging

OpenICE [41] Bedside medical devices BeagleBone single-board
computers Limited data logging

AlarmNet [42] Heart rate, pulse oximetry, ECG,
body movement MicaZ and Telos Sky motes Limited data logging

MEDiSN [43] Various vital signs, such as pulse
oximetry and pulse rate miTag motes Limited data logging

VentConnect [46] Ventilators Capture device via a display
interface converter Ventilator only

PACMAN [47] Pulse oximeter Digit OCR of images taken with
smartphone cameras

Pulse oximeter only and model
calibration

ROMI (Ours) Multiple ICU medical devices Medical device digit OCR using a
robotic system Model calibration

3. Methods

ROMI was designed to monitor patients in ICUs, as shown in Figure 1a. The main
objective of ROMI is to recognize digits on medical device displays. ROMI detects regions
of interest (ROIs) in captured images, classifies the digits in those regions, and attaches
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bounding boxes with digit class labels to the images. ROMI consists of three main subsys-
tems for these functions: digit localization, digit classification, and digit annotation. This
section describes the process of designing each subsystem of ROMI.

ROMI is a robotic system consisting of a mobile robot, NVIDIA Jetson GPU platforms,
and a robot arm equipped with a camera, as shown in Figure 1b. We used a Logitech
StreamCam camera, which was mounted on a robot arm. The Logitech StreamCam could
stream and record in full HD 1080p resolution at 60 frames per second (FPS). ROMI
used VGA resolution (640 × 480) at 30 FPS considering the operating speed in embedded
systems. The robot arm was a myCobot 280 Raspberry Pi from Elephant Robotics [48]. The
robot arm was a six-axis robot and had a light weight of 850 g. The payload was 250 g, and
the arm span was 280 mm. We used three NVIDIA GPU embedded platforms: NVIDIA
Jetson Nano, NVIDIA Jetson Xavier NX, and NVIDIA AGX Xavier. The mobile robot was
the myAGV product from Elephant Robotics [49]. The size, weight, and battery life were 311
mm × 236 mm × 130 mm, 3.6 kg, and 1 to 1.5 h, respectively. The SLAM Lidar sensor was
also built in for real-time mapping and scanning, obstacle avoidance, and automatic path
planning. Both the mobile robot and the robot arm could be programmatically controlled.
In this work, we focused on developing a digit recognition embedded system. In future
work, we will add the control blocks for the mobile robot and robot arm.

We built ROM by using Matlab Simulink, as shown in Figure 1c. Matlab Simulink is an
effective development tool because it provides a graphical programming environment for
modeling, simulating, and implementing models directly in embedded systems. The ROMI
code created using Matlab Simulink is a key building block for real-time digit recognition,
and we opened the code on a personal GitHub site (https://github.com/SanghoonJ/ROMI-
digit-recognition.git (accessed on 1 January 2023.)).

3.1. Proof-of-Concept Study

There are many types of medical devices for treating critical patients in ICUs, as
shown in Figure 2a. Hemodynamic monitors, ventilators, hemodialysis machines, and
infusion pumps are examples of typical medical devices used on critically ill patients. The
ultimate objective of ROMI is to monitor medical devices in ICUs. Most medical devices
consist of liquid crystal display (LCD)-type displays with different font styles, colors, and
backgrounds. In our experience, we have empirically confirmed many errors in simply
applying open OCR algorithms to the real world. For practical use in real-world medical
applications, fine-tuning and calibration of the OCR algorithm are required for each medical
device.

A proof-of-concept study is usually an early-stage test to determine the feasibility of
an idea. Figure 2b shows an Arduino system equipped with an LCD instead of medical
devices. We aimed to recognize the digits displayed on the Arduino as a proof-of-concept
study. We programmed the Arduino system with an LCD display to display ten random
digits every 10 s on the screen, just like on a medical device. We note that this work
focused on developing the general process of a digit recognition embedded system as a
proof-of-concept study. A study on digit recognition for actual medical devices in ICUs
will be conducted in future work, as it is beyond the scope of this study.

Figure 2c shows the overall flow diagram of the development of ROMI from data
acquisition to embedded system deployment. ROMI was designed to improve the efficiency
of initial calibration by developing DL models with a small training dataset of ten snapshot
images. We first collected ten snapshot images and constructed a training dataset. Then,
we trained a machine learning (ML) model by using the training dataset. The trained
ML model was used for the automatic labeling of video data. After manually verifying
the automatic labeling, we constructed a test dataset, i.e., a semi-automated approach.
ROMI used a DL model as a classifier for digit recognition. A data augmentation technique
was used to generate the large amount of data required for DL model training, i.e., an
augmented training dataset. We trained DL models by using the augmented training
dataset. Finally, we evaluated the recognition performance of the trained DL models by

https://github.com/SanghoonJ/ROMI-digit-recognition.git
https://github.com/SanghoonJ/ROMI-digit-recognition.git
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using a test dataset. We also deployed the models on the NVIDIA Jetson GPU platforms
and evaluated the runtime performance.

3.1.1. Raw Digit Data

We collected two sets of raw data for developing and evaluating ROMI: a training
dataset and a test dataset. We constructed two separate datasets by using image data
as the training dataset and video data as the test dataset, as shown in Figure 2c. First,
we used only ten captured images for the training dataset to reduce the effort of initial
data collection and calibration. Since collecting a large amount of training data for deep
learning is time-consuming and laborious, we used a method, i.e., data augmentation, to
effectively train the deep DL model of ROMI with a small amount of training data. Second,
we recorded the LCD screen for about 2 min, and the video data were used for the test
dataset. The reason for configuring the test dataset with video data was to evaluate the
digit recognition performance in real time.

(a)

(c)

(b)

Arduino with LCD module Arduino with LCD module 

10 snapshots

Recording
(10 random digits generation)

Auto Labeling & Manual Validation Test 

Dataset

Develop ML for Labeling

ML Model (SVM)

NVIDIA Jetson GPU Platforms

Augmented training dataset

Digit Dataset

•Sec. 3.1.1., 3.1.2.

ROMI Subsystems

•Sec. 3.2., 3.3., 3.4.

Deployment to 
Embedded system

•Sec. 3.5.

Recognition performance evaluation

Data augmentation

Runtime performance evaluation

Jetson Nano Xavier NX AGX Xavier

Training dataset

DL Models

Transfer Learning using CNN models

Figure 2. A real-time optical digit recognition embedded system. (a) Medical devices in ICUs. (b) A
proof-of-concept device. (c) Flow diagram of the development of ROMI.

3.1.2. Dataset Labeling

In this section, we describe the pre-processing of the raw data and the labeling of
the data to construct a training dataset and test dataset for ROMI. The labeling task was
essential, but tedious and time-consuming. Fortunately, Matlab provided image labeler
(imageLabler) and video labeler (videoLabler) apps to make labeling easier and more efficient.
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Both apps provided custom automation algorithms for labeling. We applied different
automation algorithms separately for the training and test datasets using the image labeler
imageLabler and video labeler videoLabler, respectively.

For the training dataset, we used an automation algorithm (one-class detection) on
the image files to create a dataset consisting of data and labels by using the image labeler
imageLabler. Here, the automation algorithm was configured to detect only one class, i.e.,
digits. Drawing and modifying ROI regions was time-consuming, but the automation
algorithm helped make the labeling task more efficient. After labeling the data with ’Digit’
by using the automated algorithm, we manually marked the ten sub-labels from ’Digit 0’
to ’Digit 9’.

To make the labeling task on the test dataset more efficient, we developed an ML
model, i.e., a support vector machine (SVM), by using the training dataset. We trained
the SVM model by using the histogram of oriented gradients (HOG) features [50] and
implemented it by using the fitcecoc function in Matlab. We performed automatic labeling
on the test data by using the trained SVM model. Note that we used the SVM model as
an ancillary aid in labeling, so we did not evaluate its classification performance. After
performing automatic labeling, all datasets used in this work were manually validated, i.e.,
this was a semi-automated approach.

For the test dataset, we used an automation algorithm (ten classes detection) on the
video files to create a dataset consisting of data and labels by using the video labeler
videoLabler. Then, we manually checked the test dataset consisting of data and labels. In
addition, as part of data cleaning, the dataset was excluded while the digits changed on the
LCD screen.

3.2. Digit Localization (ROMI Subsystem 1)

Digit localization is the first subsystem of ROMI. Depending on the medical device,
appropriate pre-processing is required for system performance. Digit localization has two
pre-processing steps: the image segmenter and color thresholder. The image segmenter
allows the user to select a desired area on the LCD screen for digit recognition. The color
thresholder creates a binary image picture to make an identifiable binary image.

3.2.1. Image Segmenter

A large number of monitoring areas increases the computational burden. The first task
is to select a region of interest (ROI) on the display of a medical device. In this case, the
ROI is a user-defined ROI designating a region where the user wants to recognize a digit
number. The user ROI ROIuser is defined as a 1×4 matrix [vPos, hPos, vSize, hSize]. vPos,
hPos, vSize, and hSize indicate the vertical position, horizontal position, vertical size, and
horizontal size, respectively, from the top left corner of the image frame.

A binary ROI mask BW is computed by using the poly2mask function in Matlab, which
sets pixels inside the polygon to 1 and pixels outside the polygon to 0. Then, by using the
binary ROI mask, BW is used in the input image Img, and we transform the non-interest
region to zero, as described in Equation (1).

Img(¬BW) = 0 (1)

3.2.2. Color Thresholder

We used a color thresholder app in Matlab to make a clear binary image. The color
thresholder app divided a color image by thresholding the color channels based on different
color spaces. We used the hue, saturation, and value (HSV) color space, converted the
binary segmentation mask to gray, and, finally, convert it into a binary image.

We performed additional pre-processing to make clear digit images, such as in morpho-
logical image processing. There are many methods for morphological image processing [51].
Morphology is a set of image processing operations based on shape. The basic operations
are Dilation ⊕ and Erosion 	, and they perform opposite roles. Dilation ⊕makes objects in
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an image more visible by adding pixels to the boundaries of the objects and filling small
holes in the image. For example, lines appear thicker, and filled shapes appear larger.
Erosion 	, on the other hand, removes floating pixels, thin lines, and small holes, leaving
only real objects. For example, noise around objects disappears, lines become thinner, and
shapes become smaller.

To make a clear digit image Iclear, we first conduct Erosion 	 to remove background
noise, then perform Dilation ⊕ twice to thicken the number lines, as described in Equa-
tion (2).

Iclear
i×j = ((Iori 	 SE)⊕ SE)⊕ SE (2)

where Iori and SE indicate an original image and a structuring element, respectively.
The structural element SE is a matrix used to identify pixels in an image and define a
neighborhood for processing each pixel. Here, we use a square structuring element whose
width is 2 pixels.

As a rule of thumb, pre-processing of an input image is very important for digit
localization, i.e., the generation of ROI regions for digits in the image. Poorly designed
pre-processing leads to digit localization errors. For example, digit localization divides a
single digit into two ROIs or treats multiple digits as a single ROI. Therefore, pre-processing
should be appropriately adjusted according to the character of the image to be sensed.

3.2.3. Blob Analysis

A blob is defined by connected pixels. The blob analysis in Matlab calculates statistics
for labeled regions of a binary image and returns quantities such as the area, centroid, and
bounding box. The area is the number of pixels in a labeled region, and the centroid is the
center coordinate of each region. The bounding box returns an M× 4 matrix, where M
represents the number of blobs. Each row of the matrix consists of a four-element vector [x,
y, width, height] in pixel coordinates.

We implemented the blob analysis function by using a blob analysis block in Matlab
Simulink, and the output value of the block was also used in the next step to determine the
final ROIs.

3.2.4. ROI Detection

From the blob analysis block, we could get many bounding boxes where objects were
expected. We could filter out unnecessary bounding boxes by using object information
from the training dataset. Anchor boxes are a predefined set of bounding boxes with a
specific height and width. Using anchor boxes significantly reduces computational cost
because sliding windows compute separate predictions for every potential position. An
ROI detection block captures the scale and aspect ratio of objects in an image, as shown in
Figure 3. The block then filters out unnecessary bounding boxes that do not fit a predefined
size of anchor boxes.
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Figure 3. An ROI detection block in digit localization.

3.3. Digit Classification (ROMI Subsystem 2)

Digit recognition crops a binary image from each ROI and classifies the number. The
number of digits can be zero or several, depending on the image. To enable digit recognition
on multiple digit variables, we use thed For iterator subsystem block in Matlab Simulink.
The iterative subsystem was run as many times as the number of digit variables on the
LCD display. Figure 4 shows a classifier block in digit classification. Depending on the
number of ROIs ROI_N, the classifier block performed the classification task iteratively.
In the classifier block, the pre-processing cropped the input image to the ROI size in the
Binary2bin block and then resized the cropped image to fit the input size of the deep
learning model in the Resize block. The DL model predicted labels and predictive scores
for the ROIs and sent them to the output. The ResultAnnotation block created a recognized
image by annotating the original image with ROIs and labels.
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Figure 4. Classifier block in digit classification.

A binary image cropped by ROIs went through three pre-processing steps before being
used as an input image for the deep learning model, as follows.

3.3.1. Zero Padding

The first step for deep learning was to make the image a square image. The input image
of the deep learning model was of square shape, but the digit image was of rectangular
shape. Converting a digit image into an input image for the deep learning model stretched
or shrank the original image with a size i× j× 3. To better preserve the shape of the original
image, we used the zero-padding technique to generate a square image. Zero padding
filled the sides, top, and bottom with zero values by X and Y.

X = b(max([i, j])− i)/2c (3)

Y = b(max([i, j])− j)/2c (4)

3.3.2. Complemented Binary Image

We transformed the original image Iorigin
X×Y×3 into a gray-color image Igray

X×Y×1 and con-

verted it into a binary image Ibinary
X×Y×1. We then used the complement of the binary image

to make a complemented image. In the complement of the binary image, 0 became 1, and
1 became 0, i.e., black and white were inverted. We computed the complement of the
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binary image by using the imcomplement Matlab function. The complemented binary image
Icom
X×Y×1 was generated by using Equation (5).

Icom
X×Y×1 = |Ibinary

X×Y×1 −Mone
X×Y×1| (5)

where Mone
X×Y×1 is a matrix of size X by Y, with all matrix values as elements of 1. The

complemented binary image Icom
X×Y×1 could be obtained by using the absolute value of the

difference between the values of the Ibinary
X×Y×1 matrix and the Mone

X×Y×1 matrix.

3.3.3. Resizing

We used the DL models, i.e., ten pre-trained CNN models, for the image classifier in
ROMI. Depending on the size n of the pre-trained CNN models, we needed to adjust the
input size of the image. We carried out the resizing function by using the imresize Matlab
function with the input size n. It returned a resized image Ires

n×n×1 of size n× n× 1 from the
complemented binary image Icom

X×Y×1 with size X×Y× 1.
In addition, the pre-trained CNN model took RGB images as input images. Since

the previously pre-processed image was one-dimensional image data, it needed to be
converted into a three-dimensional image once more. We concatenated three identical
one-dimensional images Ires

n×n×1 to create a three-dimensional RGB image Irgb
n×n×3, as shown

in Equation (6).
Irgb
n×n×3 = [Ires

n×n×1|Ires
n×n×1|Ires

n×n×1] (6)

3.3.4. Image Classifier

To develop a DL model for digit recognition in ROMI, we use pre-trained CNN
models in Matlab. Most of the pre-trained CNN models were trained using a subset of
the ImageNet database and showed remarkable performance in the ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC) [52]. We used a transfer learning approach to
re-train a pre-trained network that was already trained on a large dataset for our new
dataset.

Among the pre-trained CNN models available in Matlab, we selected ten pre-trained
CNN models for a DL classifier in ROMI as candidates by considering the depth, size,
and parameters to be applied to the NVIDIA GPU embedded platforms. The selected DL
models and model information are shown in Table 2.

Table 2. Network information of the ten pre-trained CNN models [53].

Network Depth Size [MB] Parameters
(Millions) Input Size

squeeznet 18 5.2 1.24 227 × 227 × 3
shufflenet 50 5.4 1.4 224 × 224 × 3
mobilenetv2 53 13 3.5 224 × 224 × 3
googlenet 22 27 7.0 224 × 224 × 3
resnet18 18 44 11.7 224 × 224 × 3
inceptionv3 48 89 23.9 299 × 299 × 3
resnet50 50 96 25.6 224 × 224 × 3
resnet101 101 167 44.6 224 × 224 × 3
inceptionresnetv2 164 209 55.9 299 × 299 × 3
alexnet 8 227 61.0 227 × 227 × 3

The original pre-trained CNN models were trained to classify 1000 object categories,
such as keyboards, coffee mugs, pencils, and many animals.

To develop the DL model in ROMI, we first found a learnable (fully connected or
convolutional) layer in a pre-trained CNN model and added a new classification layer with
ten classes from the digit 0 to 9. Then, we retrained the pre-trained CNN model by using
our new training dataset.
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We trained the model with the stochastic gradient descent with momentum (SGDM)
optimizer. The parameters of the training deep learning neural network were set to 32 for
the mini-batch size, 0.0003 for the initial learning rate, 3 for the validation frequency, and
100 for the maximum epoch.

3.4. Digit Annotation (ROMI Subsystem 3)

The last subsystem block in ROMI displayed the user ROI, digit recognition results,
and frames per second (FPS), as shown in Figure 5. The user ROI was the region that the
user wanted to recognize and was displayed as a solid black line. The image containing
the result recognized by the digit classification was used as the input image for the digit
annotation. If the image had no digits in it, i.e., the ROI was empty, the original image was
used. The FPS value was used to evaluate the speed of digit recognition and estimate the
computational performance by measuring the time from the beginning of the digit detector
to the end of the digit recognizer, i.e., FPS.

Figure 5. Digit annotation block in ROMI.

3.5. Deployment on Embedded Hardware Platforms

The final step in developing the ROMI system was deploying the system on the target
embedded platforms. We used three NVIDIA GPU embedded platforms: Jetson Nano,
Jetson Xavier, and Jetson AGX Xavier. Matlab Simulink blocks and modules related to deep
learning were optimized with the NVIDIA CUDA Deep Neural Network library (cuDNN)
by optimizing the computation-intensive parts of deep learning networks. The Matlab
GPU Coder then generated the GPU code, thus accelerating the computing performance
on the target GPU embedded platforms.

We briefly introduce three NVIDIA GPU embedded platforms, as shown in Table 3.
NVIDIA Jetson Nano is a compact, entry-level embedded platform commonly used for
education or simple applications for applying simple deep learning models. NVIDIA
Jetson Xavier NX is widely used in various Artificial Intelligence of Things (AIoT) systems
that require adequate computing power, such as commercial robots, medical devices, and
smart cameras. NVIDIA Jetson AGX is an embedded system that delivers the highest AI
performance and is used in applications that require high-performance computing power,
such as AI-powered autonomous machines.
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Table 3. NVIDIA GPU embedded platforms [54].

DL Model Jetson Nano Jetson Xavier NX Jetson AGX Xavier

GPU 128-core Maxwell
384-core NVIDIA

Volta™ GPU with 48
Tensor Cores

NVIDIA Volta
architecture with 512
NVIDIA CUDA cores
and 64 Tensor cores

AI Performance 472 GFLOPs 21 TOPs 32 TOPs

CPU Quad-core ARM A57 @
1.43 GHz

6-core NVIDIA Carmel
ARM®v8.2 64-bit CPU

6 MB L2 + 4 MB L3

8-core NVIDIA Carmel
Armv8.2 64-bit CPU
8 MB L2 + 4 MB L3

Memory 4 GB 64-bit LPDDR4
25.6 GB/s @ 1.43 GHz

8 GB 128-bit LPDDR4x
59.7 GB/s

32 GB 256-bit LPDDR4x
136.5 GB/s

Storage microSD 16 GB eMMC 5.1 32 GB eMMC 5.1

Power 5 W|10 W 10 W|15 W|20 W 310 W|15 W|30 W
GFLOPs: GPU floating-point operations per second; TOPs: tera-operations per second.

4. Evaluations

This section first defines the performance metrics used to evaluate the system perfor-
mance for ROMI. We then assess the system performance in terms of digit recognition and
runtime.

4.1. Evaluation Setup

In this section, we describe two performance metrics. The first metric evaluates the
recognition performance while considering both digit localization and classification. The
second metric evaluates the operating speed, i.e., runtime performance, on the NVIDIA
GPU embedded platforms.

4.1.1. Evaluation Metric for Digit Recognition

Before describing the evaluation metrics, we clarify the terms object recognition and
object detection to reduce the confusion about word usage. Object recognition is similar to
object detection and is sometimes used interchangeably with it. However, object recognition
is used to classify multiple classes, whereas object detection is used to detect a small class,
such as in human and vehicle detection. In this work, we use the term digit recognition
because we have ten classes from 0 to 9.

Object recognition is used as a term to describe both object localization and object
classification. Object localization is finding the presence of objects in an image and drawing
their location with a bounding box. Object classification is identifying the class within each
bounding box of an image. That is, object recognition aims not only to localize spatially,
but also to accurately classify objects within an image. The outputs of object recognition
are one or more bounding boxes with a class label attached to each bounding box.

Average precision (AP) and mean average precision (mAP) are popular performance
metrics for measuring the accuracy of object detectors [55,56]. When evaluating recognition
performance, two metrics should be considered together: localization and classification of
digits in an image. For example, we need to assess whether a predicted class is the true
class and how close the predicted bounding box is to the ground-truth bounding box. A
single performance metric considering the two metrics is AP for a single class and mAP for
multiple classes. In this work, we used mAP as a performance metric for digit recognition.
To calculate mAP, we need to understand a few of the following metrics.

The first step in calculating mAP is to find the degree of overlap between the ground-
truth and predicted bounding boxes. The most common overlap criterion is the intersection
over union (IoU).
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IoU is a number that quantifies the ratio between the intersection and union areas
of the predicted bounding box BBoxpre and the ground-truth bounding box BBoxgro, as
depicted in Equation (7).

IoU =
Area(BBoxpre ∩ BBoxgro)

Area(BBoxpre ∪ BBoxgro)
(7)

The IoU quantifies the closeness between the predicted bounding box and the ground-
truth bounding box. If the two bounding boxes completely overlap, the value of IoU is 1,
which means that the prediction is perfect. On the other hand, if the two bounding boxes
do not overlap, the value of IoU is 0.

Based on the IoU and confidence threshold τ, the prediction result Result (Positive or
Negative) is determined, as depicted in Equation (8).

Result(IoU) =

{
Positive, IoU ≥ τ,

Negative, IoU < τ.
(8)

Using the ground-truth bounding box (true or false) and the prediction results (positive
or negative), we can calculate the following four basic metrics: true positive (TP), false
positive (FP), false negative (FN), and true negative (TN).

• TP: The model predicts that the predicted bounding box is where the ground-truth
box is (positive), and the prediction is correct (true).

• FP: The model predicts that the predicted bounding box is where the ground-truth
box is (positive), and the prediction is wrong (false).

• FN: The model predicts that the predicted bounding box is not where the ground-truth
box is (negative), and the prediction is wrong (false).

• TN: The model predicts that the predicted bounding box is not where the ground-truth
box is (negative), and the prediction is correct (true).

Based on these four basic metrics for each labeled class, we can calculate two perfor-
mance metrics: precision and recall.

Precision tells how accurate the model is, i.e., how many correct predictions are in the
total predictions, as depicted in Equation (9).

Precision =
TP

TP + FP
(9)

Recall tells how many correct predictions are in the total ground truth, as depicted in
Equation (10).

Recall =
TP

TP + FP
(10)

By changing the values of the confidence threshold τ, a precision–recall curve can
be obtained. The precision–recall curve shows the tradeoff between the precision and the
recall for different thresholds τ. An ideal model shows high precision and high recall in
both performance metrics.

The AP summarizes the precision–recall curve into a single value between 0 and 1.
The AP is high when both the precision and the recall are high. If at least one of them is
low in the confidence threshold τ, the AP is also low. The AP is calculated by measuring
the area under the precision–recall curve, as depicted in Equation (11).

AP =
∫ 1

r=0
p(r) dr (11)
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where p(r) represents the precision values across the recall values r from 0 to 1. In ac-
tual calculations for the AP, approximation or interpolation methods are usually used to
calculate the precision p at the confidence threshold τ, as depicted in Equation (12).

AP =
τ=n−1

∑
τ=0

[r(τ)− r(τ + 1)] ∗ p(τ) (12)

where n is the number of confidence thresholds τ. After calculating the AP value for each
class, the mean average precision mAP is calculated by averaging AP across all classes, as
depicted in Equation (13).

mAP =
1
C

C

∑
k=1

AP(k) (13)

where C and k indicate the total numbers of classes and indexes, respectively. In summary,
the mAP quantifies the performance in object localization and object classification for object
recognition in ROMI as a single metric.

4.1.2. Evaluation Metric for Runtime Performance

For the evaluation of the runtime performance, we measured the execution speed on
the embedded platforms by using the performance metric of FPS. FPS is a common metric
for measuring graphic performance, such as in animation [57], object detection [58], and
rendering [59].

We used the mean FPS (mFPS) as the metric for runtime evaluation, as depicted in
Equation (14).

mFPS =
n

∑
k=1

FPS(k) (14)

where n is the number of samples. An image file with a larger size is computationally
expensive, so FPS decreases. We can improve FPS by simply reducing the image size, but
there is a tradeoff between speed and accuracy.

This work measured the runtime performance (mFPS) in digit recognition on an LCD
display. We captured the display with a Logitech StreamCam camera with VGA resolution
(640 × 480 pixels). Note that current work focused on developing a digit recognition
embedded system with VGA resolution and analyzing the FPS on various NVIDIA GPU
platforms as a proof-of-concept study.

4.2. Digit Recognition Performance Evaluation

This section evaluates the digit recognition performance to select the best DL model in
ROMI. We used ten pre-trained CNN models and retrained the models with a new dataset,
i.e., we used transfer learning. We also evaluated the recognition performance through
data augmentation.

4.2.1. Data Augmentation for Training the DL Model

Deep learning requires large amounts of training data to train a model. However,
collecting a training dataset takes much time and effort. To alleviate these difficulties, we
used a data augmentation technique to regenerate samples from the original training data.
Data augmentation is a technique for creating better deep learning models by increasing the
size and quality of training data [60,61]. Data transformations, such as flipping, cropping,
scaling, and rotating, were used to manipulate the training data in data augmentation. We
regenerated the training data by using a Matlab function for image data augmentation
imageDataAugmenter. This work only used a scaling factor (from 0.9 to 1), since ROMI
could get closer to medical devices and capture frontal images on LCD displays.

In addition, DL models require relatively more data than ML models do, so a sufficient
training dataset is essential for training DL models. To reduce the training data acquisition
effort, we propose a simple data generation method that creates training datasets with a
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sufficient size by replicating the original training dataset. The original training dataset
consisted of ten images for each digit. We expanded the training dataset and made an
augmented training dataset through data augmentation. For example, the original training
dataset was duplicated 10 to 100 times, and the duplicated dataset was used in image data
augmentation (imageDataAugmenter) to generate new training data. That is, data augmen-
tation randomly perturbed the original training dataset, resulting in a slightly different
training dataset. We used the dataset that showed the best recognition performance for
each model as the augmented training dataset candidate.

Table 4 shows the results from data augmentation in the DL models. Our approach was
to effectively augment the training dataset for the DL models with a small dataset consisting
of ten images per digit. The results showed that data augmentation effectively improved
the recognition performance in all ten DL models. The digit recognition performance (mAP)
was improved from a minimum of 1% to a maximum of 38% with data augmentation. The
best DL model for digit recognition was alexnet, with the mAP value of 0.989.

In addition, we evaluated the recognition performance when we trained the DL models
with public digit datasets that were freely available on the internet. We used two open
digit datasets [62]: the Digits dataset and the Modified National Institute of Standards and
Technology database (MNIST) dataset. The Digits dataset consisted of a total of 10,000
synthetic grayscale images of handwritten digits, with 1000 images for each digit from digit
0 to digit 9. The MNIST dataset consisted of more data than the Digits dataset. It consisted
of a total of 70,000 handwritten digits and 7000 images for each digit from digit 0 to digit 9.
When we used the two open digit datasets and trained the ten DL models, the recognition
performance was poor, since they were basically handwritten digit datasets and were not
effective for our application, i.e., seven-segment digit recognition. The MNIST dataset had
seven times as many datasets as the Digits dataset and performsd relatively better.

Table 4. Recognition performance (mAP) evaluation for training DL models depending on the
dataset.

DL Model Ten Images
without DA

Ten Images
with DA (Ours)

Digits Dataset
(Open Dataset)

MNIST Dataset
(Open Dataset)

squeeznet 0.790 0.976 0.073 0.397
shufflenet 0.530 0.885 0.013 0.158
mobilenetv2 0.579 0.958 0.010 0.264
googlenet 0.964 0.988 0.153 0.535
resnet18 0.540 0.888 0.097 0.104
inceptionv3 0.754 0.956 0.011 0.072
resnet50 0.680 0.932 0.015 0.133
resnet101 0.830 0.963 0.011 0.198
inceptionresnetv2 0.329 0.781 0.014 0.010
alexnet 0.984 0.989 0.138 0.489

DA: data augmentation.

4.2.2. Trained DL Model Analysis

We retrained the ten pre-trained CNN models with our new digit dataset with ten
classes, i.e., we used transfer learning. We used ten pre-trained CNN models that performed
well in ILSVRC. Originally, they were trained by using the ImageNet dataset consisting of
14 million images with 1000 classes [52].

In the performance evaluation for digit recognition, relatively simple and trained
CNN models, such as squeezenet, googlenet, and alexnet, showed excellent performance
with mAP values of 0.976 or higher. Because the problem of digit recognition is simple, a
relatively simple DL model seems to be suitable and shows good recognition performance.

Table 5 shows the recognition performance for each digit among the ten DL models in
detail. The overall digit recognition was good in the ten DL models, but we confirmed that
the recognition performance was relatively poor in digit 6, digit 8, and digit 9. The reason
may have been that the digits with circles were similar in shape, and the poor DL models
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could not tell the difference between the top and bottom of the image. The alexnet model
showed the best recognition performance among the ten DL models, with a minimum of
0.991 for the AP and a maximum of 0.993 for the AP for the ten digits from 0 to 9.

We further compared the recognition performance when using the ten trained DL
models and an open OCR algorithm, i.e., the tesseract OCR. The Matlab function ocr works
based on the tesseract engine, and we could use the trained tesseract OCR model by setting
the language to ’seven-segment’. The trained tesseract OCR model showed 0.518 for the
mAP, which was not as good as the other DL models. Figure 6 summarizes the recognition
performance of the eleven trained OCR models. One of the reasons for the low performance
of the tesseract OCR model is that the model was not trained with our dataset. There may
have been a difference between the dataset used by the tesseract OCR and our dataset.
Note that retraining or fine-tuning of the tesseract OCR was not within the scope of this
work. The tesseract OCR model did not work on the Matlab Simulink platform, so it was
excluded from the OCR model of ROMI.

Table 5. Recognition performance (mAP) evaluation for evaluating the trained DL models.

OCR Model Digit 0 Digit 1 Digit 2 Digit 3 Digit 4 Digit 5 Digit 6 Digit 7 Digit 8 Digit 9 Total

squeeznet 0.985 0.989 0.988 0.992 0.991 0.935 0.992 0.991 0.982 0.914 0.976
shufflenet 0.775 0.990 0.633 0.910 0.991 0.898 0.918 0.874 0.952 0.908 0.885
mobilenetv2 0.985 0.990 0.987 0.990 0.990 0.980 0.822 0.976 0.911 0.947 0.958
googlenet 0.986 0.990 0.989 0.992 0.991 0.991 0.993 0.992 0.984 0.977 0.988
resnet18 0.985 0.990 0.989 0.893 0.991 0.988 0.693 0.985 0.739 0.627 0.888
inceptionv3 0.984 0.990 0.967 0.973 0.988 0.922 0.944 0.991 0.934 0.869 0.956
resnet50 0.968 0.990 0.984 0.977 0.990 0.973 0.869 0.992 0.939 0.634 0.932
resnet101 0.986 0.990 0.981 0.898 0.974 0.991 0.992 0.992 0.842 0.984 0.963
inceptionresnetv2 0.944 0.987 0.504 0.988 0.858 0.890 0.528 0.949 0.556 0.606 0.781
alexnet 0.986 0.990 0.989 0.992 0.991 0.991 0.993 0.992 0.984 0.985 0.989
tesseract (Open OCR) 0.129 0.978 0.445 0.252 0.006 0.700 0.902 0.484 0.490 0.795 0.518
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Figure 6. Recognition performance evaluation results for the trained DL models.

4.3. Runtime Performance Evaluation

We deployed the trained models on various embedded platforms by using the cuDNN
GPU coder. This work used three NVIDIA GPU platforms: NVIDIA Jetson Nano, NVIDIA
Jetson Xavier NX, and NVIDIA AGX Xavier. We then evaluated the runtime performance
(mFPS) given two considerations: three NVIDIA GPU platforms and ten pre-trained CNN
model architectures.
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4.3.1. NVIDIA Jetson GPU Platforms

We deployed trained DL models on NVIDIA Jetson GPU platforms: Jetson Nano,
Xavier NX, and AGX Xavier. The executable code of ROMI was generated by using Matlab
GPU Coder. Matlab GPU Coder generated the executable code by using the NVIDIA CUDA
deep neural network library (cuDNN) for NVIDIA GPUs. The generated code allowed the
Matlab function blocks to run fast on NVIDIA GPUs.

Table 6 shows the runtime performance of the ten DL models depending on three
different NVIDIA GPU platforms. The results show that the runtime performance of the ten
DL models improved with better GPU platforms. In the benchmarks of the NVIDIA GPUs,
the AI performance was 472 GFLOPs on the Jetson Nano, 21 TOPs on the Xavier NX, and 32
TOPs on the AGX Xavier, respectively. In addition, lightweight model architectures, such
as squeeznet and shufflenet, showed fast runtime performance. On the other hand, heavy
model architectures, such resnet101 and inceptionresnetv2, had slow runtime performance.

Table 6. Runtime performance (mFPS) evaluation depending on embedded hardware platforms.

DL Model NVIDIA Jetson
Nano

NVIDIA Jetson
Xavier NX

NVIDIA Jetson
AGX Xavier

squeeznet 2.147 5.134 6.782
shufflenet 1.673 4.545 6.208
mobilenetv2 1.376 3.548 5.104
googlenet 0.958 3.196 4.614
resnet18 0.359 3.405 4.969
inceptionv3 0.086 1.392 2.117
resnet50 0.125 2.094 3.158
resnet101 0.067 1.260 2.013
inceptionresnetv2 0.040 0.651 1.011
alexnet 1.364 3.669 4.915

4.3.2. DL Model Deployment

Embedded platforms have limited resources available, so we needed to check the
actual runtime performance of the DL models to reduce system errors or failures. We
used the ten pre-trained CNN models with different architectures. The models were
improved to enhance the classification performance of the ImageNet dataset by modifying
the architecture of the model, such as the layer type, size, width, and depth.

Figure 7 shows the runtime performance of the ten DL models on the three different
NVIDIA GPU platforms. As the number of learnable parameters in a DL model increased,
the size of the model increased proportionally. On the other hand, there were model
architectures where the model size and parameters were large, but the depth was small,
e.g., alexnet. In our observation, the runtime performance was affected by multiple factors,
rather than a single factor. We sorted the products of two factors in descending order,
i.e., parameter×depth and model size×depth, as shown in Figure 7a. The experimental
results show that the runtime performance (mFPS) increased linearly, except for that of
inceptionv3 and googlenet, as shown in Figure 7b. Exceptional cases may arise from the
unique architecture of each model, and we experimentally showed an inverse relationship
between the multiplicative value and mFPS in the general case.
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Figure 7. Runtime performance evaluation considering the DL models and NVIDIA GPU platforms.
(a) Multiplication values for the ten DL models. (b) The mFPS of the NVIDIA GPU platforms with
the ten DL models.

5. Discussion

To improve care for ICU patients, we propose an embedded system called ROMI
that can read digits from LCD screens on medical devices. In this section, we address the
limitations of our system and future work.

There are some limitations in this work. First, a vision-based OCR approach is highly
susceptible to camera artifacts, such as the angle, distance between an object and a camera,
tilt, camera focus, light reflection, and brightness. In this work, we did not consider these
artifacts that affected the quality of the input images. These artifacts can be mitigated
to some extent by using a robotic system consisting of a mobile robot and a robotic arm.
Second, we evaluated the system performance using only the LCD of an Arduino, so the
testing phase was limited. Generating digits from actual medical devices is difficult and
requires reverse engineering to control the device. We used an Arduino device with an LCD
module as a proof-of-concept device. This device allowed the user to output the desired
digits on the LCD. Using the Arduino, we could effectively develop the entire develop-
mental process: data collection, DL model development, and deployment of embedded
systems. Note that we focused on the general developmental process for digit recognition
as a proof-of-concept study.

In future work, we will explore additional techniques, such as DL model quantization
and mobile robot control, to enhance the system performance of ROMI and make it work
automatically. First, runtime performance can be further improved by quantizing DL
models in the target embedded system. DL models consist of many processing layers,
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including convolutional layers. Most pre-trained CNNs use single-precision floating-point
data types, so even small networks require significant amounts of memory and hardware.
Quantization restricts data types to 8-bit scaled integer data types, so the models are
computationally less powerful and require fewer memory resources [63]. We will research
further quantization by using TensorRT, a high-performance inference library in NVIDIA
GPU platforms. Second, ROMI is a mobile robot that moves to medical devices and
recognizes digits on their displays in ICUs. Therefore, it is necessary to develop the basic
control functions for a mobile robot: navigation, localization, and obstacle avoidance [64].
Developing the control of a robot arm is also required to capture the displays well. The
ROMI system was developed with Matlab Simulink. The key functional block, ROMI, for
digit recognition was developed and implemented as a proof-of-concept study. ROMI will
be supplemented by adding robot control blocks to make it practical in ICUs.

6. Conclusions

Monitoring critically ill patients is essential because their conditions might suddenly
worsen, requiring timely and appropriate treatment to save lives. However, due to limited
human resources, there are real limitations in responding appropriately to disasters, such
as COVID-19. In addition, not all medical devices are monitored by ICUs’ control centers
because some medical devices do not have communication capabilities. To address these
practical problems, ROMI is proposed to monitor critically ill patients on behalf of medical
staff in the form of non-face-to-face monitoring.

We used Matlab Simulink to build ROMI for digit recognition. ROMI consists of three
main subsystems: a digit detector, a digit classifier, and digit annotation. We retrained ten
pre-trained CNN models by using the transfer learning technique and selected the model
with the highest performance in our dataset. The best DL model, i.e., alexnet, showed high
performance in digit recognition with 0.989 for the mAP. We also evaluated dependence of
the runtime performance on NVIDIA Jetson GPU platforms: Jetson Nano, Xavier NX, and
AGX Xavier. The evaluation results showed that the runtime performance, i.e., mFPS, was
affected by model complexity in relation to depth, the number of parameters, and the model
size. The runtime performance results will be used to design the ideal hardware-embedded
ROMI system.

As a proof-of-concept study, we built a key function block, ROMI, that recognizes
digits displayed on the LCD screens of medical devices. ROMI is mounted on a robotic
system and helps keep an eye on ICU patients in real time. We hope that ROMI will play
an essential role in effectively helping medical staff and reducing patient mortality.
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Abbreviations
The following abbreviations are used in this manuscript:

ICUs Intensive Care Units
EMR Electronic Medical Record
HL7 Health Level 7
IoT Internet of Things
OCR Optical Characteristic Recognition
CNN Convolutional Neural Network
DL Deep Learning
GPU Graphics Processing Unit
MSER Maximally Stable Extremal Regions
MDD Medical Device Dongle
SpO2 Oxygen saturation
ECG Electrocardiogram
LCD Liquid Crystal Display
ML Machine Learning
SVM Support Vector Machine
HOG Histogram of Oriented Gradients
ROI Region of Interest
HSV Hue, Saturation, and Value
ILSVRC ImageNet Large-Scale Visual Recognition Challenge
SGDM Stochastic Gradient Descent with Momentum
FPS Frames per Second
mFPS Mean Frames per Second
cuDNN NVIDIA CUDA Library
AIoT Artificial Intelligence of Things
GFLOPs GPU Floating-Point Operations Per Second
TOPs Tera-Operations per Second
AP Average Precision
mAP Mean Average Precision
MNIST Modified National Institute of Standards and Technology database
IoU Intersection over Union
TP True Positive
FP False Positive
FN False Negative
TN True Negative
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