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Abstract: Uncoordinated driving behavior is one of the main reasons for bottlenecks on freeways.
This paper presents a novel cyber-physical framework for optimal coordination of connected and
automated vehicles (CAVs) on multi-lane freeways. We consider that all vehicles are connected
to a cloud-based computing framework, where a traffic coordination system optimizes the target
trajectories of individual vehicles for smooth and safe lane changing or merging. In the proposed
framework, the vehicles are coordinated into groups or platoons, and their trajectories are successively
optimized in a receding horizon control (RHC) approach. Optimization of the traffic coordination
system aims to provide sufficient gaps when a lane change is necessary while minimizing the
speed deviation and acceleration of all vehicles. The coordination information is then provided to
individual vehicles equipped with local controllers, and each vehicle decides its control acceleration
to follow the target trajectories while ensuring a safe distance. Our proposed method guarantees
fast optimization and can be used in real-time. The proposed coordination system was evaluated
using microscopic traffic simulations and benchmarked with the traditional driving (human-based)
system. The results show significant improvement in fuel economy, average velocity, and travel time
for various traffic volumes.

Keywords: cyber-physical framework; connected and automated vehicles; successive optimization;
vehicle coordination; vehicle platoon

1. Introduction

Over the past few decades, the primary issues in road transportation systems around
the world have been traffic congestion, fuel consumption, greenhouse gas (GHG) emis-
sions, and accidents due to an increase in the number of vehicles and in travel demand [1].
Furthermore, traditional human driving remains to be one of the major causes of traffic bot-
tlenecks, since humans have difficulty accurately anticipating future road traffic conditions
and frequently perform acceleration and braking, or instant lane changes. Schrank et al. [2]
reported that traffic congestion caused American drivers to spend 8.8 billion extra hours
on the road, consuming extra 3.3 billion gallons of fuel, in 2017. Particularly, field studies
showed that stop-and-go travel produces 14% more emissions than vehicles traveling at
a constant speed [3]. It is evident that effective measures should be taken to reduce the
burden of uncontrolled traffic issues for better mobility, fuel economy, and the environ-
ment. Therefore, the concept of a coordinated traffic system is currently receiving great
interest due to its potential to address a number of issues caused by human drivers, such
as stop-and-go driving, travel delays, and traffic accidents [4,5].

The recent developments in connected and automated vehicle (CAV) technologies
enable real-time data access and sharing with other vehicles and infrastructure via vehicle-
vehicle (V2V), infra-vehicle (I2V), and vehicle-infra (V2I) communications [6,7]. When such
necessary information is available, such as states (position, velocity, and acceleration) of
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other vehicles, destination, and speed limit, it is possible to precisely control the movement
and trajectories of individual vehicles to enhance traffic flow efficiency, fuel economy,
and driving safety via a connected vehicle environment (CVE) [8,9]. The CVE offers
opportunities for effectively realizing better-coordinated traffic in a road network but
presents difficulties due to the need to utilize a large amount of data. Additionally, it is
feasible to coordinate vehicles utilizing a cloud-based centralized or decentralized controller
to enhance traffic flow performance and safety [10,11]. A traffic coordination system can
improve traffic flow rate and capacity by making intelligent decisions using guidance
information from the global controller. Moreover, the coordination can be repeated to ensure
seamless operation even if the vehicle does not execute the command or if unexpected
disruptions happen [12]. As a result, it can accurately modify the whole system, which
would be very challenging for a human driver to achieve.

A number of studies have developed vehicle coordination systems for CAVs using
centralized or decentralized controllers to achieve safe and efficient control of traffic. Some
studies developed automated vehicle intersection control systems based on reservation al-
gorithms [13–15], whereas some works utilized signal phase and timing (SPAT) information
in advance via I2V communication to control the movement of automated vehicles [16–18].
Some works proposed optimization of traffic signal phases using the state information
(e.g., location and speed) of autonomous vehicles [19–21], and some studies developed co-
ordinated intersection control systems for autonomous vehicles under CVE without using
traffic signals [22–24]. Some works reported coordinated merging control systems for safe
and smooth merging of automated vehicles using ramp metering [25–27], whereas some
other works developed coordinated merging control schemes for efficient merging of CAVs
into roundabouts [28–30]. These works [13–30] mainly focused on vehicle coordination
systems for signalized intersections or merging roads.

On the other hand, some works proposed cooperative lane-changing methods for
CAVs. For example, Hu et al. [31] and Awal et al. [32] proposed local lane-change
coordination of autonomous vehicles, which is limited to local modifications of the traffic.
Atagoziyev et al. [33] developed a traffic coordination system for the changing of lanes by
autonomous vehicles before reaching a critical position. In each scenario, only one vehicle
has the intention to change lanes; the surrounding connective vehicles cooperate together to
adjust the formation until the central lane-change vehicle can do so safely; this single-vehicle
lane-change process continues sequentially if more than one vehicle intends to change lanes.
Li et al. [34] proposed a two-stage multi-vehicle motion planning (MVMP) algorithm for
cooperative lane changes of CAVs. After re-configuring a CAV platoon into a sufficiently
sparse configuration, all lane changes are carried out simultaneously without attempts to
avoid collisions. An and Jung [35] proposed a cooperative lane change protocol considering
the impact of V2V communication delay. Although the aforementioned techniques [31–35]
can enhance individual driving abilities, they are still inadequate to guarantee smooth lane
changes for connected vehicles in congested situations.

In this paper, we develop a novel cyber-physical vehicle coordination system for
efficient lane changing or merging of CAVs on multi-lane freeways. To reduce commu-
nication volume and computing burden, the vehicles are coordinated into small groups
(or platoons), and their trajectories are successively optimized using a receding horizon
control (RHC) approach. We assume that the information of CAVs is communicated to a
cloud-based computing framework, where an optimization problem is solved to determine
target trajectories (speeds and position) of individual vehicles with the goal of providing
sufficient gaps during a lane change while minimizing the speed deviation and acceleration
of the vehicles. Then, the coordination information is provided to individual vehicles,
and the local controller of each vehicle determines its control acceleration to follow the
desired trajectories while ensuring driving safety. We have carefully chosen the sizes of
vehicle groups, and step and horizon sizes. The model needs less than one second to
obtain the optimal solution, and periodically coordinates the vehicles every few seconds to
enable the local controller to smoothly control the vehicle in smaller steps toward the tar-
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get. Therefore, our proposed traffic coordination system guarantees fast optimization and
can be implemented in real time. We evaluated the performance of the proposed system
using microscopic traffic simulations in view of actual traffic behaviors on a real multi-lane
road. It was found that our proposed system significantly improves fuel economy, average
velocity, and travel time of vehicles for various traffic volumes compared to traditional
human driving.

The paper is organized as follows. Section 2 describes the real traffic scenario and
the fundamental idea of our proposed cloud-based vehicle coordination system. Section 3
formulates the optimization problem, including the vehicle driving system and the objective
function. Section 4 presents the key simulation results. Finally, Section 5 provides the
concluding remarks and future research directions.

2. Vehicle Coordination System
2.1. Real Scenario

In this paper, we consider a real-world traffic scenario on a real road stretch called
Persiaran Kewajipan in Subang Jaya, Malaysia (as shown in Figure 1) to demonstrate the
necessity and evaluate the effectiveness of the proposed cloud-based vehicle coordination
system. The road segment is multi-lane, and traffic from two roads merges and diverts to
both sides over a short distance, causing severe congestion every day. More than half of
the vehicles perform multiple lane changes within common sections of about 300 m before
diverting onto two distinct routes, and they often struggle to find a safe gap to execute
a lane change in such a congested situation. Traffic congestion worsens when a vehicle
cannot change lanes efficiently, slows down, or stops other vehicles, causing disruptions in
the surrounding traffic and endangering others. It is possible to prevent this sort of traffic
congestion by efficiently coordinating all vehicles for timely arrival and lane changes.

Figure 1. The study route in Subang Jaya, Malaysia: an actual traffic scenario in which vehicles from
two roads merge and divert in two ways over a short distance, causing massive congestion every day.

2.2. Fundamental Idea

Figure 2 illustrates the fundamental idea of our proposed traffic coordination system
in a cyber-physical framework. It is assumed that every vehicle on the study route is
a next-generation CAV that is connected to a cloud or edge computing system, which
can perform two-way communications and coordinate vehicles globally with negligible
delay. The vehicles transmit their necessary information, such as the current state (position,
velocity, and acceleration), the target destination, and other information to the cloud, and
the coordination system computes the optimal trajectory of each vehicle. Since it is time-
consuming to optimize a large number of vehicles in the cloud due to communication
volume and computational burden, for online implementation, the vehicles are coordinated
into small groups, and their trajectories are successively optimized. Specifically, vehicles
in each group are simultaneously optimized considering the safety constraint imposed by
vehicles in the preceding group, and the optimization is repeated in a receding-horizon
approach. To maintain maximum traffic performance, the traffic coordination system
optimizes vehicle speed and position based on the lane change or merging desires of all
relevant vehicles. Based on the coordination information, individual vehicles decide on
their acceleration by ensuring smooth and safe lane changes or merging on the freeway.
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Figure 2. The fundamental idea of our proposed cyber-physical optimal traffic coordinating system.
The vehicles are coordinated into groups, and their trajectories are successively optimized.

3. Formulation of Optimization Problem

We consider a two-lane freeway where most vehicles require changing lanes, in
accordance with the real-world scenario. The coordination method divides all vehicles
into groups based on their sequences on the road at regular intervals and successively
optimizes each group. Since the optimization is the same for each group of vehicles, we
demonstrate the coordination process for one of these groups. In Figure 3a, a scenario with
three vehicles is depicted; vehicle q1 (in the right lane) needs coordination with vehicles
p1 and p2 (in the left lane) for a smooth lane change. Vehicle q1 requests a lane change
but cannot change lanes due to the small gap between vehicles p1 and q1. An example of
anticipated solutions is shown in Figure 3b. After receiving the request, vehicles p1 and
p2 adjust their relative distance to allow vehicle q1 to change lanes. However, depending
on the relative positions and speeds of the vehicles, the expected solutions may differ.
Considering traffic performance, a standard rule-based or hierarchical solution may not be
effective. Therefore, optimal solutions are desired for all vehicles described below.

(a)

(b)

Figure 3. (a) A typical scenario for cooperative lane change request, and (b) the expected scenario
after coordination.

3.1. Vehicle Driving System

During a trip, a vehicle may change lanes, merge onto a different road, or both,
depending on the traffic flow in the lanes and the direction it travels. The state dynamics
of any vehicle n ∈ N = {p1, p2, . . . , q1, q2, . . .} in either lane (left or right) in discrete time,
with a time step t of the interval ∆t, can be expressed as

sn(t + 1) = Asn(t) + Bun(t), (1)

A =

 1 ∆t 0
0 1 0
0 0 1

, and B =

 1
2 ∆t2 0
∆t 0
0 1

, (2)
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where sn(t) = [xn(t), vn(t), ζn(t)]T ∈ R3 denotes the state of vehicle n in terms of position
xn(t), velocity vn(t), and current lane ζn(t), respectively; and un(t) = [an(t), λn(t)]T ∈ R2

is the control vector including acceleration, an(t) ∈ R, and the decision about lane changing,
λn(t) ∈ {−1, 0, 1}, respectively. In this case, λn(t) = −1 or 1 represents a lane change to
the left or right, and λn(t) = 0 indicates no lane change. Note that the decision to change
lanes is constrained by factors related to driving conditions.

Instantaneous acceleration (an(t)) of vehicle n relative to the preceding vehicle n− 1
is calculated using a dynamic microscopic car-following model fCF called the intelligent
driver model (IDM) [36]:

an(t) = fCF(sn(t), sn−1(t)),

= a

[
1−

(
vn(t)

vd
n

)4

−
(

d∗(vn(t), ∆vn(t))
∆xn(t)

)2
]

,

d∗(vn(t), ∆vn(t)) = R0 + vn(t)T +
vn(t), ∆vn(t)
2
√

amaxamin
,

(3)

where the parameters vd
n , R0, T, amax, and amin denote the desired speed, minimum gap

between vehicles, safe headway time while following the preceding vehicle, maximum
acceleration, and comfortable deceleration, respectively; and ∆xn(t) = xn−1(t)− xn(t)− l
(where l is the length of the preceding vehicle) and ∆vn(t) = vn−1(t)− vn(t) are the current
distance of the preceding vehicle and the speed difference, respectively. In the framework,
the control input at the t-th step is updated as ∀t ∈ [t∆t, (t + 1)∆t], an(t) ≡ an(t∆t).

The lane change decision of vehicle n depends on the states of some vehicles in the
current and target lanes, which can be represented using a well-known lane change model
fLC called minimizing overall braking induced by lane change (MOBIL) [37]:

λn(t) = fLC(sn(t), sn−1(t), sn+1(t), s̄n−1(t), s̄n+1(t)),

=

 ζ̃n(t)− ζn(t), if
{

˜̄an+1(t) ≥ −bsafe and,
∆an(t) + ρ∆an+1(t) ≥ τ,

0, otherwise,

(4)

where s̄n−1(t) and s̄n+1(t), respectively, are the states of the relative preceding and following
vehicles in the target lane; ζ̃n(t) ∈ {ζn(t) + 1, ζn(t)− 1} denotes a lane change from the
current lane ζn(t) to the target lane; ˜̄an+1(t) represents an unsafe lane change of vehicle n
that may cause aggressive braking of the relative following vehicle ān+1 in the target lane;
−bsafe is the safe braking limit; ∆an(t) and ∆an+1(t), respectively, denote an increase in
the acceleration of vehicle n and a collective increase in the acceleration of the following
vehicles in the current and target lanes due to a lane change action; ρ is the politeness factor;
and τ is the threshold.

The parameters, ˜̄an+1(t), ∆an(t), and ∆an+1(t), are calculated using (3) as

˜̄an+1(t) = fCF(s̄n+1(t), sn(t)), ∆an(t) = ãn(t)− an(t),

where ãn(t) = fCF(sn(t), s̄n−1(t)), and

∆an+1(t) = (ãn+1(t)− an+1(t)) + ( ˜̄an+1(t)− ān+1(t),

where ãn+1 = fCF(sn+1(t), sn−1(t)), an+1(t) = fCF(sn+1(t), sn(t)), and

ān+1 = fCF(s̄n+1(t), s̄n−1(t).

Based on these parameters, vehicle n decides whether to perform a safe lane change
or stay at its current lane according to (4). If λn(t) = 0, vehicle n remains in the current
lane ζn(t).
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3.2. Objective Function

For fuel economy, comfort, and safe driving, sudden acceleration or braking is not ben-
eficial [38]. The proposed cyber-physical traffic coordination system receives information
on the states of vehicles within a group or platoon and computes the optimal trajectory for
any vehicle n using a receding horizon control (RHC) approach. Specifically, we formulate
an optimization problem that minimizes an objective function by providing a sufficient
gap for smooth and safe lane changing or merging while keeping the speed deviation and
acceleration at the optimum level. Some constraints are defined in the optimization that
consider driving comfort and regulations related to a road network, such as the speed
limit. Moreover, to avoid collisions or aggressive braking, a safe distance between any
preceding vehicle n− 1 and its following vehicle n is necessary, which is dynamically given
by the nonlinear constraint as an(t) ≤ fCF(sn(t), sn−1(t)). This constraint, which blends
the optimal action with the naturalistic car-following behavior, ensures a safe gap under
any circumstances.

To implement the traffic coordination system, the optimization problem is solved by
minimizing an objective function at each time t as

J(sn(t), an(t)) =
H

∑
t

{
∑

n∈N

(
w1(vn(t)− vd

n)
2 + w2a2

n(t)
)

+ ∑
p∈P

∑
q∈Q

w3θpq(t)e−α(xp(t)−xq(t))2
}

, (5)

subject to

vmin ≤ vn(t) ≤ vmax,
amin ≤ an(t) ≤ amax,
an(t) ≤ fCF(sn(t), sn−1(t)),

θpq(t) =
{

0, if δp(t) + δq(t) = 0,
1, otherwise.

where H is the time horizon; N is the set of vehicles in the partial optimization group;
P and Q are the numbers of vehicles in the left and right lanes, θpq ∈ {0, 1} is a binary
variable to enable the third cost term in the objective function and depends on δp, δq ∈ {0, 1},
which denotes the need for the vehicles to change lanes (i.e., 1 indicates a lane change is
necessary and vice versa); α is a positive constant; xp and xq are the positions of vehicles
in the left and right lanes; and w1, w2, and w3 are the weighting factors corresponding to
the velocity, acceleration, and safe lane change terms, respectively. The first term of the
objective function implies a penalty when the current velocity vn(t) of vehicle n deviates
from vd

n , the second term is the cost of acceleration along the freeway, and the third term
represents a penalty for an unsafe lane change at the target time t due to an insufficient gap.

Note that the weights w1 and w2 balance the squares of the speed deviation and
acceleration costs into a single value in this composite single objective optimization. Usually,
the square of speed deviation can be very large compared to the square of acceleration
(with their typical ranges). Hence, to emphasize the influence of both in (5), w1 needs to
be smaller than w2 (depending on the maximum values of each cost term). However, we
further tuned w1 and w2 based on trials and performance observations, which is a common
practice in similar single-objective optimization tasks. On the other hand, w3 is set to a high
value to ensure that the safety cost is dominant when a lane change gap is necessary. The
objective function J is minimized by selecting the proper speed for each vehicle n, subject to
the aforementioned constraints. We assume that the states and destinations (target lane) of
all vehicles are available to the cloud-based computing framework, where the optimization
problem is solved for successive groups of vehicles, and the optimized target speeds and
positions are subsequently communicated to individual vehicles. After obtaining the
coordination information, the lane change of each vehicle is implemented using (4). In such
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a manner, the controller drives the vehicles safely until the next coordination phase, and
the optimization is repeated in the cloud for the new group of vehicles.

In this paper, the optimization aims to periodically coordinate vehicles to create
sufficient gaps for lane-changing vehicles, which is possible with a larger step size, since
the actual vehicle control is performed with a short step size to ensure safety and smooth
maneuvering. For any optimization scheme, the problem size increases with the number of
vehicles involved and the horizon length, resulting in a costly optimal solution that is often
impractical to apply in real-time. Here, we focus on the total computational costs with the
necessary communication volume to keep it manageable for the implementation of the
cyber-physical framework. We consider small vehicle groups to reduce the computational
burden of coordinating them successively. However, with a long horizon, the interaction
between the consecutive small groups becomes complicated due to many lane-change
actions of vehicles on the divided road ahead over a short distance. With some sensitivity
observations, we have manually tuned the vehicle group size, time step size, and horizon
length and come to the settings considered in this paper. Note that the horizon length
needs to be tuned similarly for different group sizes and road contexts.

4. Simulation Results

To demonstrate the effectiveness of the proposed traffic coordination system, we
developed a multi-lane simulation framework in MATLAB (which has been demonstrated
to be mathematically reliable and utilized to model numerous real-world situations) based
on the real study route and solved a nonlinear optimization problem (described in (5))
in discrete time. The arrival of vehicles in the simulator was decided randomly using a
probability distribution to produce realistic traffic flows. In the simulation, all vehicles
were considered to be of the same size and length. The simulation parameters were chosen
as vd

n = 23 m/s, R0 = 2 m, T = 1.5 s, l = 5 m, vn ∈ [0, 25] m/s, an ∈ [−2.5, 1.5] m/s2,
bsafe = 5 m/s2, ρ = 0, τ = 0.25, w1 = 0.1, w2 = 1, w3 = 0.3, and α = 0.001. We set a
suitable prediction horizon of H = 5 s with 10 steps and the step size of ∆t = 0.5 s. Note
that ρ varies among drivers depending on the driving contexts and behavior. For realistic
behavior in the discretionary lane change, the typical values of ρ can be between 0.2 to 0.5;
however, in our context, it is a mandatory lane change, and thus, ρ was set to 0; i.e., a lane
change was executed only when the safety criteria were satisfied.

The simulation framework is depicted in Figure 4, whereby roadways 1 and 2 share
a portion between 0 and 500 m, where vehicles may change lanes depending on their
destinations. In traditional driving systems, vehicles that need to change lanes slow
down and wait for the appropriate time to do so when approaching the merging junction.
Consequently, the vehicles in the opposite lane may also slow down to make space for the
awaiting vehicles to change lanes, which may reduce the overall traffic flow performance in
the network. Moreover, finding safe gaps to perform lane changes in a congested situation
is challenging. In the proposed traffic coordination system, vehicles between −100 and
600 m are divided into multiple groups and optimized every 5 s. Note that here we consider
a suitable optimization horizon; since traffic flow experiences substantial variations, a long
horizon would not be helpful.

Figure 4. Multi-lane road network used for simulation and evaluation of the proposed traffic
coordination system.
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Figure 5 shows the trajectory of each vehicle in dense traffic for both traditional and
coordinated driving systems while traveling about 600 m on the studied multi-lane freeway.
In the traditional driving system (Figure 5a), some vehicles are unable to change lanes in
time, slowing them down and blocking others, causing long queues and traffic congestion,
whereas in the proposed coordination system (Figure 5b), vehicles can smoothly change
lanes without interrupting surrounding traffic. The velocity profiles of the vehicles for the
traditional driving system and the proposed coordination system are shown in Figure 6a,b,
respectively. In the traditional driving system, some vehicles quickly slow down and/or
come to a complete stop before lane changes. In the proposed coordination system, however,
vehicles can smoothly change lanes by slowing down from the peak speed to a level of
about 14 m/s. Figure 7 depicts the acceleration profiles of these vehicles. Compared to
the traditional driving system, the proposed coordination system performs significantly
less deceleration of about −0.4 m/s2 during lane changes. The aggressive braking in
traditional driving reduces traffic performance and driving safety. In contrast, smooth
braking in coordinated driving promotes improved kinetic energy usage, which lowers
vehicle fuel consumption.

(a) (b)

Figure 5. Trajectories of the vehicles traveling about 600 m in 200 s on the model multi-lane
freeway. The sub-figures show (a) the traditional driving system and (b) the proposed traffic
coordination system.
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Figure 6. Velocity profiles of the vehicles showing speeding and slowing down characteristics for
(a) the traditional driving system and (b) the proposed traffic coordination system.

Figure 8 compares the simulation results of the traditional driving system and the
proposed traffic coordination system using four important performance measures of traffic
flow, including average travel time, average idling time, average velocity, and average fuel
consumption. The traveling time is the time it takes for a vehicle to drive the study road
segment, and the idling time is the total time it takes for a vehicle to stop and wait at the
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merging junction during lane changing. The average speed is the total speed of all vehicles
divided by the total number of vehicles in the simulation. The average fuel consumption is
the cumulative fuel consumption divided by the number of vehicles in the road segment.
In the paper, the fuel consumption of vehicles is determined based on trajectory data
(instantaneous speed and acceleration) of vehicles using the VT-Micro model [39]. The
model was experimentally developed at Oak Ridge National Laboratory (ORNL) with
nine regular-emitting light-duty vehicles. Using chassis dynamometer data collected at the
ORNL, different polynomial combinations of acceleration and velocity were investigated
using this model. The model is well-accepted and widely used in transportation studies to
determine the fuel consumption of vehicles.
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Figure 7. Acceleration profiles of the vehicles showing the level of aggressiveness for (a) the tradi-
tional driving system and (b) the proposed traffic coordination system.
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Figure 8. Performance comparison (a) average travel time, (b) average idling time, (c) average
velocity, and (d) average fuel consumption of the traditional driving system and the proposed traffic
coordination system for various traffic volumes on the model freeway.
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Figure 8a,b, respectively, show that the average travel time and the idling time in
the proposed traffic coordination system are significantly reduced compared to those in
the traditional driving system for various traffic levels. This is due to the fact that the
coordinated vehicles make early decisions and require minimal waiting time to execute lane
changes. Furthermore, the proposed coordination system considerably increases the aver-
age speed compared to the traditional system (as shown in Figure 8c) because coordinated
vehicles rarely need to slow down or stop before changing lanes or merging, resulting in
smoother flow. Finally, Figure 8d illustrates the comparison of average fuel consumption
for both systems. It is evident that the proposed traffic coordination system outperforms
the traditional driving system for various volumes of traffic. The percentage improvements
in the average travel time, the average velocity, and the average fuel consumption by the
proposed traffic coordination system are given in Table 1.

Table 1. Performance comparison between the proposed traffic coordination system and the tradi-
tional driving system.

Traditional System Coordination System Improvement

Average travel time [s] 55.68 51.20 8.05%
Average velocity [km/h] 53.08 56.02 5.53%
Average fuel consumption [L/km] 0.5984 0.5374 10.19%

5. Conclusions

In this paper, we have developed a novel cyber-physical framework for optimal
coordination of CAVs on multi-lane freeways. Using a receding horizon control (RHC)
approach, the vehicles are coordinated into successive groups for a smooth and safe lane
change or merging. We assume that the information of all vehicles is available to a cloud-
based computing framework, where an optimization problem is solved to calculate the
target speeds and positions of individual vehicles in the groups. Following that, the
coordination information is provided to individual vehicles, and the local controller of
each vehicle determines its control acceleration in order to follow the desired trajectory
while ensuring driving safety. The proposed traffic coordination system was evaluated
considering real-world traffic conditions on a real multi-lane road. The results show that
the proposed framework significantly improves the fuel consumption, average velocity,
and travel time for vehicles in various amounts of traffic. Our proposed method can be
implemented online, as the computing burden is almost negligible.

In future work, we will investigate mixed traffic performances for various penetration
rates of CAVs. The proposed framework can be further extended using distributed model
predictive control (MPC) for individual vehicles.
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