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Abstract: Trait anxiety relates to the steady propensity to experience and report negative emotions
and thoughts such as fear and worries across different situations, along with a stable perception of
the environment as characterized by threatening stimuli. Previous studies have tried to investigate
neuroanatomical features related to anxiety mostly using univariate analyses and thus giving rise
to contrasting results. The aim of this study is to build a predictive model of individual differences
in trait anxiety from brain morphometric features, by taking advantage of a combined data fusion
machine learning approach to allow generalization to new cases. Additionally, we aimed to perform a
network analysis to test the hypothesis that anxiety-related networks have a central role in modulating
other networks not strictly associated with anxiety. Finally, we wanted to test the hypothesis that trait
anxiety was associated with specific cognitive emotion regulation strategies, and whether anxiety
may decrease with ageing. Structural brain images of 158 participants were first decomposed into
independent covarying gray and white matter networks with a data fusion unsupervised machine
learning approach (Parallel ICA). Then, supervised machine learning (decision tree) and backward
regression were used to extract and test the generalizability of a predictive model of trait anxiety. Two
covarying gray and white matter independent networks successfully predicted trait anxiety. The first
network included mainly parietal and temporal regions such as the postcentral gyrus, the precuneus,
and the middle and superior temporal gyrus, while the second network included frontal and parietal
regions such as the superior and middle temporal gyrus, the anterior cingulate, and the precuneus.
We also found that trait anxiety was positively associated with catastrophizing, rumination, other- and
self-blame, and negatively associated with positive refocusing and reappraisal. Moreover, trait anxiety
was negatively associated with age. This paper provides new insights regarding the prediction of
individual differences in trait anxiety from brain and psychological features and can pave the way
for future diagnostic predictive models of anxiety.

Keywords: trait anxiety; machine learning; independent component analysis; structural networks;
decision tree; emotion regulation

1. Introduction

Anxiety refers to a condition of intense apprehension, tension, and worry comple-
mented by the activation of the autonomic nervous system that causes a set of typical
physiological reactions including increased heart rate and blood pressure, sweating, nau-
sea, dizziness, hyperventilation, and muscle tension [1]. Considering that 45.82 million
diagnoses of anxiety disorders were reported globally in 2019 [2], it is clear that there is
an urgency to understand anxiety in order to improve diagnostic prediction and available
treatment possibilities [3–5].

According to a long tradition tracing back to the conceptual elaborations and theories
of Freud [6], Cattel, and Scheier [7], anxiety can be considered both a state, namely a
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transient emotion characterized by negative feelings (such as apprehension and tension)
and physiological arousal, and a trait, namely when it refers to a more-stable individual’s
predisposition to constantly perceive such negative feelings [8,9]. State anxiety and trait
anxiety have been object of neuroimaging investigations in order to identify their structural
and functional brain correlates. State anxiety has been investigated through the observation
of brain responses during the exposure of anxiety-eliciting stimuli in animals and humans,
leading to the definition of a neurobiological model that views anxiety as the result of an
interaction between emotional reactivity and emotional regulation processes, in which an
initial evaluation is carried out by a set of limbic structures and a successive evaluation is
carried out by cortical areas [10]. The limbic core includes the amygdala, the insula, and
interconnected structures such as the periaqueductal gray (PAG) and the hypothalamus.
The cortical areas that participate to the successive evaluation include the anterior cingulate
cortex (ACC) and the lateral prefrontal cortex. The ACC, along with the lateral prefrontal
cortex, have been suggested to mediate the top-down control over threat-related stimuli.
For what concerns trait anxiety, neuroimaging studies have shown that it is associated
with a variation in gray matter volume of the hypothalamus, the left thalamus [11], the
amygdala, the inferior temporal gyrus, the parahippocampal gyrus, the inferior frontal
cortex [12] with abnormalities in the thickness of the ACC, the orbitofrontal cortex (OFC),
the insula, and the temporal cortex [13]. Recent advances on this topic were made by
Saviola and colleagues [5] who suggested that trait anxiety, being a more stable personality
feature, predominantly impacts on anatomical features such as gray matter concentration.
This study indeed showed a relation between trait anxiety and portions of the precuneus,
the cuneus, the middle temporal gyrus and the cerebellum, suggesting a structural covari-
ance with the default mode network (DMN). Nevertheless, some functional alterations
have been associated with trait anxiety as well. A study by Modi and colleagues [14]
reported a reduced functional connectivity of the DMN in subjects with high trait anxiety.
Concurrently, studies have also suggested the presence of alterations in the functional
integrity of other macro-networks, such as the executive control network (ECN) [15–17]
and the salience network [17–19] in anxiety disorders.

Beside functional and gray matter alterations, white matter variations have also been
reported in relation to trait anxiety. For example, some studies have found an association
between trait anxiety and the structural integrity of an amygdala-ventromedial prefrontal
cortex pathway [20], the uncinate fasciculus [21,22], and tracts in the left temporal lobe [23].

According to the neurobiological model of anxiety described above, structural alter-
ations associated with trait anxiety can be related to a higher reactivity to anxiety-eliciting
stimuli, whereas functional alterations of cortical areas have been interpreted as the neural
correlate of emotion regulation deficits in anxious individuals [24].

However, previous studies suffered from some limitations. First, they have used
mass-univariate statistical techniques that treat each voxel in isolation without taking into
account statistical dependencies among voxels [25–28]. Also, individual differences were
not taken into consideration, as only the average of individuals has been considered (e.g.,
high vs. low trait groups) [26,29]. In some cases, region of interest (ROI) analyses have
been performed instead of whole-brain approaches, thus limiting results to a small set of a
priori-defined regions [25,26,28]. Lastly, results from previous studies present limitations
with respect to the sample considered, as they were not tested for their generalization
to new unobserved cases. Predicting new cases is a benchmark for using neuroscientific
results in a future translational perspective [29].

In recent times, affective neuroscience has taken advantage from the application of
multi-variate machine learning approaches (also named multi-voxel pattern analysis in the
context of neuroscientific research) which allow researchers to test how distributed patterns
across multiple voxels relate to experimental variables [29]. Compared to traditional
univariate analyses, machine learning approaches have the benefit of being multivariate
in nature as they perform a joint analysis of multiple voxels, while univariate approaches
carry out separate analyses for each individual voxel; moreover, the generalization of
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results is not assumed, but empirically tested [29,30]. Based on the considerations stated
above, the main purpose of this paper is to provide new fresh evidence on the neural bases
of trait anxiety by using a combination of unsupervised and supervised machine learning
approaches applied to gray and white matter features in a data fusion perspective. The
aim is not only to explore the neural bases of anxiety, but also to extract a neural model to
predict trait anxiety. As such, this model can pave the way for the creation of a potential
biomarker to predict new cases [29,31].

The unsupervised machine learning approach used in this context consisted in the
application of Parallel ICA [32,33], which is a modified independent component analysis
(ICA) approach that is able to combine two modalities (gray and white matter) at the same
time, assessing the relationship among them and decomposing the brain into naturally
grouping gray and white matter networks with lower dimensionality [34]. This approach
is also coherent with a network perspective in neuroscience [35], being built upon the
notion that emotional processes are distributed across a subset of regions constituting a
network. In our study, we decided to use gray and white matter because they can be
informative and also subject to similar genetic influences [36]. Pathological processes are
indeed not limited to gray matter, but they also extend to white matter [25,36]. Of note,
white matter studies are usually based on diffusion tensor imaging (DTI), a technique that
assesses the integrity of white matter fibers through the fractional anisotropy index, which
measures the displacement of water molecules on the micron scale [37,38]. However, DTI
is highly sensitive to noise and, because of this, the region-of-interest-driven protocols are
often poorly reproducible [39]. The fact of considering the pure white matter concentration
(similarly to gray matter) from a classical T1 image has the advantage to evaluate distributed
white matter alterations without the constraints imposed by specific tracts.

After decomposing the brain into meaningful circuits, we aimed to use decision tree
tegression [40], a supervised machine learning approach, to build and test a predictive
model of trait anxiety based on morphometric features. Moreover, we aimed to use network
analysis to better characterize the role of the brain network predicting trait anxiety in the
context of the other brain networks decomposed by Parallel ICA. Previous clinical and
experimental observations [41] have reported that anxiety interferes with highly anxious
individuals’ cognitive abilities, leading to increased negative thinking, augmented memory,
and attentive performances for anxiety-related stimuli, and even to potentiated motor
reflexes [42,43]. We expected to find that anxiety-related networks have a central role in
modulating other networks not primarily related with anxiety. For this reason, we predicted
that the anxiety-related networks have a high degree (the measure of the total number of
links/edges that the node has) and expected influence over the other brain networks.

In the present study, we are also interested in testing the hypothesis that the usage
of specific cognitive emotion regulation strategies could be associated with trait anxiety.
Cognitive emotion regulation strategies refer to strategies that are used to alter “individual’s
thoughts after having experienced a negative event” [44]. The literature has extensively
reported an association between anxiety disorders and maladaptive cognitive strategies
such as rumination [45–48] and catastrophizing; however, the role of the other strategies
in predicting anxiety still needs further investigation. In this respect, we used the scales
of the cognitive emotion regulation questionnaire (CERQ) [49] to identify the role of four
maladaptive strategies (self-blame, rumination, catastrophizing, and other-blame) and
five adaptive strategies (acceptance, positive refocusing, refocus on planning, putting into
perspectives, and positive reappraisal). We expected to find the negative strategies to be
highly associated with trait anxiety, especially rumination and catastrophizing, as they
characterize the pathological forms of anxiety [49]. We also expected some of the positive
strategies identified by the CERQ, such as reappraisal and refocusing, to be negatively
related to trait anxiety. Previous studies have suggested that individuals with high anxiety
do not rely on positive emotion regulation strategies [50].

Additionally, we were also interested in testing the hypothesis that trait anxiety may
change with ageing. Previous research has reported mild evidence that generalized anxiety
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may decrease with age [51–53]. Beside generalized anxiety, we predicted similar results
(negative relationship) for trait anxiety.

2. Materials and Methods
2.1. Participants

Behavioral and structural MRI data from 160 participants (M = 104, F = 56, age
range = 20–80, mean age range = 39.28) were selected from the Leipzig mind-body-brain
interactions (LEMON) protocol [54] included in the general MPI-Leipzig mind-brain-body
dataset (OpenNeuro Dataset, https://openneuro.org (accessed on 1 December 2021), acces-
sion number ds000221 [55]), which consisted of structural, functional and behavioral data
of 318 subjects. Participants of the MPI-Leipzig mind-brain-body dataset were selected
according to specific criteria, which included medical eligibility for magnetic resonance
sessions and absence of past or present psychiatric and neurological disorders. Additional
exclusion criteria were applied during our subject’s selection, such as the intake of medica-
tion, positivity to the drug screening, present or past diagnosis of mental disorders apart
from those related to anxiety, present or past alcohol abuse, and left handedness.

The data collection was authorized by the ethics committee of the University of Leipzig
(154/13-ff) [54].

Two subjects were excluded for artifacts leading to a final sample of 158 subjects
(104 males and 56 females; Mean age range = 39.28; SD = 20.26).

2.2. Questionnaires

The German version of the State-Trait Anxiety Inventory (STAI-G-X2) [8,9] was used
to predict anxiety traits and consisted of 20 items, with a 4-point Likert scale ranging from 1
(almost never) to 4 (nearly always). Participants obtained a mean score of 36/±8.47. STAI-T
assesses the stable propensity of individuals to perceive stressful situations as threatening
and to respond to them with an increase in anxiety-related symptomatology [8].

The cognitive emotion regulation questionnaire (CERQ) [44,56] was taken into con-
sideration to assess the usage of emotion regulation strategies. The CERQ included nine
scales, which measured adaptive (acceptance, positive refocusing, refocusing on planning,
positive reappraisal, and putting into perspective) and maladaptive (self-blame, rumina-
tion, catastrophising, and other-blame) emotion regulation strategies, rated on a 5-point
Likert scale ranging from 0 (almost never) to 5 (almost always).

2.3. MRI Data

Quantitative T1-weighted images were acquired at the day clinic for cognitive neurol-
ogy of the University Clinic Leipzig and the Max Planck Institute for Human and Cognitive
and Brain Sciences (MPI CBS) in Leipzig, Germany. Magnetic resonance imaging (MRI)
was performed on a 3T Siemens MAGNETOM Verio scanner (Siemens Healthcare GmbH,
Erlangen, Germany) with a 32-channel head coil. The original LEMON protocol comprised
fMRI scan and diffusion-weighted imaging (DWI) scan [54], but for the purposes of our re-
search, we only took into consideration the T1-weighted images. The MP2RAGE sequence
consisted of the following parameters: sagittal acquisition orientation, one 3D volume with
176 slices, TR = 5000 ms, TE = 2.92 ms, TI1 = 700 ms, TI2 = 2500 ms, FA1 = 4◦, FA2 = 5◦,
pre-scan normalization, echo spacing = 6.9 ms, bandwidth = 240 Hz/pixel, FOV = 256 mm,
voxel size = 1 mm isotropic, GRAPPA acceleration factor 3, slice order = interleaved, dura-
tion = 8 min 22 s.

2.4. Preprocessing

T1-weighted images were pre-processed through SPM12 (Statistical Parametric Map-
ping, https://www.fil.ion.ucl.ac.uk/ (accessed on 10 December 2021)) [57] and CAT12
toolbox (Computational Anatomy Toolbox for SPM, http://www.neuro.uni-jena.de/cat/
(accessed on 10 December 2021)) [58]. First, we manually re-oriented all the images placing
the anterior commissure as the origin. After that, we computed the segmentation into
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gray matter, white matter and cerebrospinal fluid. The registration was computed through
Diffeomorphic Anatomical Registration using Exponential Lie algebra tools for SPM12
(DARTEL) [59]. Finally, we performed the normalization to the MNI space with a spatial
Gaussian smoothing of 10. During the procedure, data from two subjects encountered
processing errors, and this led to the elimination of two participants. As a result, the final
sample resulted in 158 subjects.

2.5. Data Fusion Unsupervised Machine Learning to Decompose the Brain into
Independent Networks

For the network decomposition, Parallel ICA was applied to structural data using the Fu-
sion ICA Toolbox (FIT, http://mialab.mrn.org/software/fit (accessed on 1 January 2022)) [60]
in the MATLAB 2021b environment (https://it.mathworks.com/products/matlab.html
(accessed on 1 January 2022)) [61].

The number of components was estimated for both modalities with information the-
oretic criteria [62]. To assess the consistency of each modality, ICASSO [63,64] was run
ten times and the Infomax algorithm was selected. The resulting output consists in a
matrix with the number of subjects (rows) and the loading coefficients for each com-
ponent (columns). Loading coefficients represent how each component is expressed
for every subject. As a final step, we converted the independent components into Ta-
lairach coordinates in order to explicit the brain areas comprising them. Areas with
both positive and negative values, if present, were considered and plotted in Surf Ice
(https://www.nitrc.org/projects/surfice/ (accessed on 1 January 2022)), using a different
template for gray and white matter.

2.6. Supervised Machine Learning to Predict Anxiety Traits

The loading coefficients of each network, for each participant, were then entered into
a supervised machine learning system to predict anxiety scores. To avoid redundancy
and collinearity problems in the features considered, only the gray matter coefficients of
every circuit were considered. A decision tree regression model was used in JASP [65].
A decision tree is a supervised machine learning algorithm that uses a decision tree as
a model in order to obtain predictive estimates for the variables that take continuous or
ordered discrete values [40]. The algorithm finds the optimal decision tree calculating the
error between the predicted value and the actual value at each split point. The split point
errors across the variables are then compared and the lowest prediction error is taken for
the tree generation [66]. In the construction of the tree, each gray matter component was
evaluated in the overall prediction process, with the calculation of the impurity reductions
over the nodes. The hold-out method was used to test the prediction value of the model
with the following split: 80% of observations were used to train the model, and 20% were
left out to test the model (in other words, 127 observations were used for training the
model and 31 observations for testing the model in its ability to predict new unobserved
cases). The algorithmic settings were as follow: minimum observations for split were
set to 20; minimum observations in terminal to 7; max iterations depth to 30; complexity
parameter equal to 0.01. Predictors were scaled. Furthermore, the loading coefficients
were entered into a backward regression in JASP. This was conducted to provide eventual
converging evidence of the circuits predicting trait anxiety. Figure 1 shows a simplified
representation of the combined unsupervised and supervised machine learning approach
that was employed.

http://mialab.mrn.org/software/fit
https://it.mathworks.com/products/matlab.html
https://www.nitrc.org/projects/surfice/
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Figure 1. Combined data fusion machine learning approach. First unsupervised machine learning
Parallel ICA (pICA) was used to combine the two modalities (gray and white matter) and to de-
compose the brain into the covarying gray-white matter independent networks. Then supervised
machine learning decision tree (DT) was used to predict anxiety traits scores.

2.7. Network Analysis

To further explore the role of the anxiety-predicting components found in the previous
steps, a network analysis was run.

Network analysis allows for a visual inspection of the interactions between a large
numbers of variables, represented by the nodes. The nodes are connected to each other
through the edges, and are placed according to the Fruchterman–Reingold algorithm [67]
that organizes the network following the nodes’ strength of connection so that closer
nodes have a stronger relationship [65]. To enhance the accuracy and the interpretability
of the network, we chose EBICglasso [68,69] as estimator, with γ hyperparameter of 0.5,
favoring the selection of models with fewer edges. The selected model evaluates the partial
correlation between the variables, controlling for the effects of all the other measured
variables in the network, meaning that if two nodes are connected together, the correlation
between them cannot be explained by the other variables in the network [70].

Among the parameters computed by network analysis, we considered centrality
measures, which specify the relevance of each node in the system. Such measures are
betweenness, closeness and strength: betweenness provides information about the impor-
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tance of a node in the average pathway between other pairs of nodes, closeness informs
about the relationship of one node with all the others (with higher values indicating shorter
distance between a specific node with the others), strength quantifies how strongly a node
is connected to the other nodes, taking into account the sum of the weighted numbers, and
strength of all connections of a specific node with all the others [70]. The evaluation of
these measures allows for an interpretation of the nodes’ roles at the network level.

2.8. Questionnaire Analysis

A backward regression with STAI and CERQ scores was performed in order to under-
stand which cognitive emotion regulation strategy predicts trait anxiety. Moreover, to find
out whether anxiety decreases with age, a correlation was made between STAI and age.
Both backward regression and correlation were performed inside JASP.

3. Results
3.1. Networks Decomposition

The information theoretic criteria estimated 13 independent covarying gray (IC-GM)
and white (IC-WM) matter networks (see Supplementary Material). The positive values
of these networks indicate increased gray/white matter concentration, whereas negative
values indicate decreased concentration. The meaning of the covariation between a gray and
a white matter component refers to a similar pattern of gray/white matter concentration.

3.2. A Predictive Model for Trait Anxiety

Decision tree regression returned a R2 of 0.271, MSE 0.596, RMSE 0.772, MAE 0.654,
MAPE 1365.78%. A list of the gray matter components, ordered according to the relative
importance (feature importance), can be found in Table 1.

Table 1. Relative importance of the components in the decision tree Regression analysis.

Component Relative Importance

ICGM11 13.467
ICGM4 11.155
ICGM5 10.620
ICGM1 9.230
ICGM2 8.916
ICGM8 7.700
ICGM9 7.466
ICGM13 6.628
ICGM3 6.533
ICGM7 6.072
ICGM12 5.650
ICGM10 5.382
ICGM6 1.183

Higher values of Relative Importance indicate higher influence of the component in the decision tree.

Additional backward regression on the same ICs loading coefficients returned a similar
significant model (R = 0.270, R2 = 0.073, Adjusted R2 = 0.055, RMSE = 8.282, p = 0.008). This
model includes IC-GM 5 (p = 0.042) and IC-GM 11 (p = 0.022) as surviving predictors. This
analysis further confirmed the results from decision tree regression, with the only exception
of IC-GM4 which was not included in the backward regression results.

Following the converging evidence provided by the decision trees (that measures
the generalizability of the model to new unobserved cases) and the backward regression
(that measures the robustness of the results limited to the considered sample), we focused
our attention on the two networks confirmed by both analyses: IC-GM5 (that covaries
with IC-WM4) and IC-GM11 (that covaries with IC-WM8). See Table 2 for the anatomical
denominations of each network’s areas, and Figures 2 and 3 for a visual representation
of them.
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Table 2. Brain areas for each independent component, according to the Talairach daemon.

Independent Component IC-GM 5 Positive Values

Area Brodmann Area Volume (cc) MNI (x, y, z)

Postcentral Gyrus 1, 2, 3, 5, 40, 43 5.5/10.9 (−45, −30, 40)/(43, −27, 42)
Precentral Gyrus 4, 6, 43 1.6/4.9 (−52, −21, 37)/(49, −22, 39)

Superior Temporal Gyrus 13, 22, 39 4.7/3.0 (−43, −57, 22)/(43, −54, 22)
Sub-Gyral 10, 40 4.6/4.1 (−37, −31, 39)/(39, −33, 46)

Inferior Parietal Lobule 2, 7, 39, 40 9.3/8.8 (−40, −31, 42)/(39, −33, 40)
Middle Temporal Gyrus 21, 22, 37, 39 10.9/0.6 (−40, −60, 22)/(40, −58, 22)

Supramarginal Gyrus 40 2.9/3.3 (−40, −57, 25)/(45, −57, 25)
Precuneus 7, 19, 31 7.2/2.9 (−45, −51, 34)/(25, −63, 40)

Superior Parietal Lobule 5, 7 1.7/1.4 (−33, −73, 43)/(25, −64, 45)
Cingulate Gyrus 31 2.7/2.6 (−45, −46, 36)/(75, −45, 36)
Angular Gyrus 39 2.0/0.5 (−43, −66, 31)/(46, −61, 33)

Middle Occipital Gyrus 19, 37 1.9/0.1 (−42, −72, 3)/(51, −58, −75)
Cuneus 19 0.4/0.0 (−28, −82, 31)/(0, 0, 0)

Anterior Cingulate 24 0.4/0.1 (0, 28, 21)/(3, 30, 18)

Independent component IC-GM 5 negative values

Area Brodmann Area Volume (cc) MNI (x, y, z)

Superior Temporal Gyrus 22, 38 5.4/4.0 (−43, 13, −33)/(37, 18, −31)
Middle Temporal Gyrus 21, 38 3.3/0.2 (−43, 10, −36)/(63, −3, −4)

Independent component IC-WM 4 positive values

Area Brodmann Area Volume (cc) MNI (x, y, z)

Angular Gyrus 39 1.2/1.0 (−31, −61, 36)/(37, 58, 36)
Sub-Gyral 37, 40 14.0/12.0 (−30, −58, 33)/(34, −55, 36)
Precuneus 7, 19, 31, 39 9.2/9.8 (−31, −64, 39)/(19, −55, 45)

Superior Parietal Lobule 7 1.6/1.2 (−31, −64, 43)/(27, −54, 45)
Inferior Parietal Lobule 7, 39, 40 2.9/4.5 (−34, −61, 39)/(37, −55, 39)
Supramarginal Gyrus 40 1.1/2.7 (−36, −54, 34)/(37, −52, 36)

Middle Temporal Gyrus 19, 20, 21, 22, 37 9.0/5.8 (−49, −48, −1)/(36, −66, 27)
Superior Temporal Gyrus 13, 22, 39 1.4/1.3 (−42, −55, 7)/(48, −49, 13)

Cingulate Gyrus 31 1.9/1.7 (−18, −46, 28)/(18, −48, 28)
Postcentral Gyrus 2 1.1/2.1 (−51,−22, 25)/(55, −22, 31)

Independent component IC-WM 4 negative values

Area Brodmann Area Volume (cc) MNI (x, y, z)

Sub-Gyral 6 4.0/0.5 (−15, −4, 58)/(16, −24, 60)
Medial Frontal Gyrus 6, 8, 32 3.7/1.0 (−15, −7, 55)/(13, −24, 57)

Cingulate Gyrus 24, 31 1.3/0.1 (−15, −7, 49)/(18, 1, 49)
Superior Frontal Gyrus 6 1.5/0.2 (−13, 9, 55)/(16, 10, 55)

Superior Temporal Gyrus 22, 41, 42 1.8/1.0 (−40, −27, 7)/(55, −6, −4)

Independent component IC-GM-11 positive values

Area Brodmann Area Volume (cc) MNI (x, y, z)

Superior Frontal Gyrus 6, 8, 9 4.9/9.0 (−3, 7, 61)/(1, 10, 57)
Medial Frontal Gyrus 6, 8, 9, 10, 11, 25, 32 12.6/12.9 (−1, −1, 61)/(3, −3, 61)
Middle Frontal Gyrus 6, 8, 9, 47 7.7/4.8 (−40, 4, 42)/(19, −13, 64)

Cingulate Gyrus 23, 24, 31, 32 9.8/8.8 (−3, 24, 40)/(4, 21, 43)
Precuneus 7, 31 4.5/4.0 (0, −55, 36)/(3, −52, 36)

Paracentral Lobule 4, 5, 6, 31 3.4/2.4 (0, −15, 49)/(3, −12, 49)
Anterior Cingulate 10, 24, 25, 32 3.1/2.7 (−1, 36, 28)/(4, 36, 28)
Precentral Gyrus 6, 9 1.3/0.4 (−40, 1, 39)/(16, −19, 67)

Insula 13, 47 1.7/0.9 (−34, 19, 6)/(36, 22, 6)
Inferior Frontal Gyrus 9, 13, 45, 46, 47 4.0/3.0 (−37, 22, 6)/(36, 25, 3)

Posterior Cingulate 23, 29, 30, 31 1.0/1.2 (−1, −54, 22)/(4, −54, 22)
Sub-Gyral 6, 8 1.7/1.5 (−34, 25, 0)/(19, −10, 61)
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Table 2. Cont.

Independent component IC-WM 8 positive values

Area Brodmann Area Volume (cc) MNI (x, y, z)

Sub-Gyral 8, 40 17.3/22.3 (−34, 34, 21)/(34, 34, 21)
Middle Frontal Gyrus 6, 8, 9, 10, 11, 46 7.7/11.5 (−36, 19, 33)/(37, 34, 24)
Medial Frontal Gyrus 6, 8, 9, 10 6.1/5.1 (−16, 30, 31)/(22, 34, 21)

Anterior Cingulate 10, 24, 32 3.9/4.7 (−16, 33, 28)/(22, 37, 18)
Cingulate Gyrus 24, 31, 32 2.7/2.2 (−13, 27, 31)/(18, 22, 34)

Superior Frontal Gyrus 6, 9, 10 2.6/2.7 (−18, 42, 24)/(28, 43, 12)
Cuneus 17, 18 0.7/1.3 (−16, −93, 6)/(21, −91, 1)

Precuneus 7, 31 2.3/0.4 (−16, −63, 37)/(12, −58, 34)
Middle Occipital Gyrus 18, 19 0.0/1.2 (0, 0, 0)/(25, −8.5, −1)

Note. Positive values are related to an increased gray or white matter concentration, while negative areas are
related to a decreased concentration. White matter regions have to be interpreted as regions of white matter tracts
that pass nearby and across the resulted named areas.
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3.3. Network Analysis

Network analysis allowed us to evaluate the function of the anxiety-related compo-
nents in the overall brain organization, checking their role in a wider systemic perspective.
Figure 4 reports a visual representation of all the gray and white matter independent
components (nodes) and their reciprocal connections (edges) at a systemic level.

Specific values for centrality measures are reported in Table 3. Regarding the centrality
parameters, providing insight into the relative importance of a node with respect to the
others [70], IC-GM5 and IC-GM11 show high levels of degree and expected influence and a
small level of betweenness, while IC-WM8 shows a modest level of betweenness and degree
but a moderate level of expected influence. IC-WM4 shows a higher number of connections
with respect to IC-WM8, with a high level of strength and betweenness. Considering
the centrality measures cited above and the network plot, it appears that network 1 (IC-
GM5/IC-WM4) and network 2 (IC-GM11/IC-WM8) constitute two important hubs, along
with network IC-GM3/IC-WM13, which also shows a great number of strong connections
and a high expected influence.
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Table 3. Centrality measures for all the components in the network analysis.

Variable Betweenness Strength Expected Influence

ICGM1 −0.506 0.327 −0.610
ICGM2 −0.732 −0.666 0.951
ICGM3 2.939 1.792 −1.853
ICGM4 −0.732 −1.237 0.305
ICGM5 0.265 1.267 1.068
ICGM6 −0.211 0.370 1.521
ICGM7 −0.732 −1.299 0.234
ICGM8 −0.732 −0.450 0.058
ICGM9 0.696 0.122 −1.423
ICGM10 −0.732 −0.881 −0.083
ICGM11 0.084 0.912 0.795
ICGM12 1.579 0.663 −0.955
ICGM13 0.129 0.625 −1.834
ICWM1 0.288 −0.394 −0.412
ICWM2 −0.732 −1.217 0.328
ICWM3 −0.211 −0.786 −0.347
ICWM4 2.214 1.855 0.818
ICWM5 −0.732 −0.748 −0.234
ICWM6 −0.732 −0.849 0.743
ICWM7 −0.732 0.703 0.267
ICWM8 0.718 1.003 0.383
ICWM9 −0.732 −1.321 0.209

ICWM10 −0.732 0.104 1.822
ICWM11 −0.732 −1.102 −0.039
ICWM12 −0.188 −0.247 0.373
ICWM13 0.990 1.454 −2.086

Centrality measures reflect the importance of the nodes/components. The components of interest in our analysis
are highlighted in bold.



Sensors 2023, 23, 610 12 of 20

3.4. Behavioural Analysis

Backward regression returned a significant model including six different emotion
regulation cognitive strategies predicting anxiety traits (R = 0.578, R2 = 0.334, Adjusted
R2 = 0.307, RMSE = 7.092). All the involved strategies reported a p-value < 0.05.

Catastrophizing, self-blame, other-blame, and rumination positively predicted trait
anxiety scores, while positive refocusing and positive reappraisal were negatively associ-
ated to trait anxiety. Additional details are outlined in Table 4.

Table 4. Model summary for STAI-T and CERQ subscales.

Coefficients

Model Unstandardized Standard Error Standardized t p

(Intercept) 32.503 2.034 15.981 <0.001
Catastrophizing 0.761 0.303 0.195 2.513 0.013

Positive
Refocusing −0.481 0.223 −0.158 −2.157 0.033

Self-Blame 0.689 0.280 0.179 2.458 0.015
Other-Blame 0.973 0.337 0.216 2.891 0.004

Positive
Reappraisal −0.659 0.232 −0.216 −2.840 0.005

Rumination 0.570 0.249 0.184 2.292 0.023
Note. The following covariates were considered but not included: Acceptance, Refocus On Planning, Putting
Into Perspectives.

A negative significant correlation was also found between STAI and age (Pearson’s
r = −0.250, p-value = 0.002). To further explore possible differences between young and
old participants, we divided the subjects into two groups, according to the age: group 1
ranging from 20 to 49 years old (mean STAI = 37.5) and group 2 ranging from 50 to 80 years
old (mean STAI = 33.2). A t-test implemented in JASP confirmed the significance in trait
anxiety differences between the two groups (p-value = 0.002).

4. Discussion

The aim of the present study was to build a predictive model of individual differences
in trait anxiety from gray and white matter features. Additionally, we were interested in
testing the hypothesis that specific emotion regulation strategies could predict trait anxiety.
Regarding the first point, a combined data fusion machine learning approach was used
for the first time in this context. First, unsupervised machine learning (Parallel ICA) was
used to decompose the brain into 13 different independent covarying gray-white matter
networks. Then, a supervised machine learning (Decision tree regression) was used to
build a predictive neural model of trait anxiety. Of note, this is the first study that combines
unsupervised and supervised machine learning algorithms to understand trait anxiety.
By combining UML and SML, we took advantages of both approaches. On one hand,
UML such as pICA can provide a more biologically plausible way to decompose the brain
into meaningful circuits that can outperform atlas-based parcellations, or a priori selected
regions of interest. On the other hand, SML methods, such as a decision tree, can be used
to build a predictive model of anxiety based on neural features (extracted via pICA). As
such, Decision trees can be a valuable alternative to standard frequentist approaches in
which generalization is assumed, but not empirically tested. Last but not least, we used
a data fusion approach to take into account both gray and white matter contribution to a
predictive model of trait anxiety.

By applying this combination of UML and SML, we found two networks that predicted
trait anxiety: network1 (IC-GM5/IC-WM4) and network 2 (IC-GM11/IC-WM8). In the
following sections these networks are discussed in detail.
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4.1. A Parieto-Temporal Network Predicting Trait Anxiety

Network 1 included regions such as the postcentral and the precentral gyrus, the
inferior parietal lobule, the precuneus, the cingulate gyrus, the middle temporal gyrus, and
the anterior cingulate cortex.

Interestingly, some regions of this parieto-temporal network belong to the default
mode network [71].

DMN is active during self-referential processing, future planning, external and internal
cues evaluation, and emotion regulation [16,72], usually decreasing its activity during
attentional or stimulus-dependent tasks [73]. Furthermore, the DMN has been found to be
severely altered in anxiety disorders, possibly implying a disrupted interaction between
focused attention and the subject’s emotional state [5,71,74]. Specific regions of the DMN,
such as part of the anterior cingulate cortex, have been proposed to be implicated in
emotion regulation strategies such as extinction and cognitive regulation, probably through
the interaction with other networks (i.e., fronto-parietal) [16,75,76]. Thus, alterations in the
functioning of this network may indicate an excessive allocation of attentional resources
towards the external environment, as a way of detecting potential threats, with a deficit in
the self-oriented processes [73,77].

Among the regions found in our results, the postcentral gyrus and the precentral gyrus
have both been associated with state anxiety [5,78], while the inferior parietal lobe has been
suggested to modulate sustained anxiety [79].

Moreover, recent evidence seems to suggest a role of the precuneus for rumination and
anxiety [5] as well as for maintaining the sense of self and conscious information processing
along with agency [80,81].

Network 1 also included white matter fibers passing through the medial frontal,
postcentral, cingulate, and superior frontal gyrus. The middle longitudinal fasciculus
connects the precuneus and the superior parietal lobule with the dorsolateral temporal pole
and the superior temporal gyrus [81], feasibly being involved in precuneus information
transmission. On the other hand, postcentral gyrus white matter abnormalities have been
found in patients with generalized anxiety disorder [82].

The cingulum bundle is a huge white matter tract that connects frontal, parietal, and
medio-temporal regions, comprising both long and short association fibers, transmitting
principally to the cingulate gyrus, which is associated with multiple functions such as
emotion, reward, conflict, and error detection [83]. Several studies have found an altered
FA of the cingulum in disorders such as schizophrenia, depression, autism, obsessive-
compulsive disorder, post-traumatic stress disorder, and panic disorder [84,85]. Cingulate
cortex is also a central node of the DMN, and a recent study [86] indeed found a correlation
between the mean FA value of the cingulum and the level of functional connectivity
between regions belonging to the DMN (precuneus/posterior cingulate cortex and medial
frontal cortex).

Finally, negative values (decreased concentration) were mainly related to the middle
and superior temporal gyrus, which have been found to have a reduced volume in patients
with different anxiety disorders [87–90], suggesting a potential role of these regions in the
development or maintenance of anxiety [91].

4.2. A Fronto-Parietal Network Predicting Trait Anxiety

Network 2 included regions such as the superior, the medial and the middle frontal
gyrus, the cingulate gyrus, the precuneus, and the insula.

Some portions of the middle cingulate gyrus and the precuneus are implicated in
executive control functions, being part of the executive control network (also known as
fronto-parietal network).

The ECN is involved in voluntary action control and cognitive conflict resolution, and
research suggests that trait anxiety can be related to defects in the ECN functioning [92].

Individuals with high trait anxiety tend to show a decreased functional connectivity
between some regions of the executive control network and regions implicated in con-
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flicts detection, suggesting an impairment in cognitive processes that require attentional
control [93].

Considering the other regions found in our results, the superior frontal gyrus has been
involved in a variety of roles, according to its functional subdivisions. In particular, it is
partially involved in some of the DMN functions, being connected to the mid and anterior
cingulate cortex. It is also connected to the middle and inferior frontal gyri, which are
involved in the executive control network, and to the precentral gyrus, the thalamus, and
the frontal operculum, which are nodes of the motor control network [94].

The anterior cingulate cortex has been suggested to be a core structure for both
cognitive and emotional processing [95] and gray matter alterations in the right anterior
cingulate gyrus have been reported in different anxiety disorders [96].

Similarly, the insula has been found to be volumetrically altered in different anxiety dis-
orders [97,98], being associated with unpleasant emotions and regulation of arousal [75,76].
Moreover, the insula has been found to be more active in anxiety-prone subjects during
emotion processing [99].

White matter fibers of network 2 included the middle and the medial frontal gyrus,
the cingulate gyrus, and the superior frontal gyrus.

The middle frontal gyrus subserves bottom-up attention processes [100], while su-
perior frontal gyrus white matter fibers might instead facilitate higher order cognitive
processes such as self-referential behaviors linked to the activity of the DMN and executive
control functions, given its connections with the inferior frontal gyrus, the parietal lobule,
the precuneus, and the parahippocampal gyrus [101].

In view of the evidence examined above in Sections 4.1 and 4.2, we can hypothesize
a primary relation of trait anxiety with brain areas which support emotion regulation
and cognitive control, with a plausible presence of some macro-networks impairments, as
suggested by previous studies [5,14].

Because of neuroplastic changes in gray and white matter, it would be interesting
to develop specific trainings or interventions that could directly impact on such emotion
regulation and cognitive control brain areas, in order to attenuate trait anxiety. Indeed,
recently it has been demonstrated that is possible to reduce anxiety symptoms with a
6-week attention bias modification protocol, modifying anterior cingulate cortex gray
matter volume and functional connectivity [102]. The implications of these neuroplastic
changes could thus extend from the creation of specific exposure trainings to the design of
definite noninvasive brain stimulation protocols.

4.3. Network Analysis

To further clarify the role of the components found for anxiety in a broader network
perspective, we performed a network analysis. Betweenness, strength, and expected
influence parameters were considered to evaluate the systemic role of trait anxiety-related
networks. IC-WM4/IC-GM5 and IC-WM8/IC-GM11 networks showed high centrality
parameters such as strength and expected influence. In other words, these networks are
relevant hubs in the brain macro-organization. This notable result may indicate how higher
levels of trait anxiety can modulate brain regions in other networks. It is in fact well-known,
for clinicians and experimentalists, how high levels of anxiety exert a huge influence over
almost all cognitive, perceptual, and motor functions (e.g., increased negative thinking,
perceptual and attentive abilities, memory, startle reflex, etc.) [103].

Notably, white matter components resulted in having a significant importance in the
overall network when considering betweenness and strength parameters.

4.4. Additional Analyses

Confirming but also expanding the results of previous research [104], we found that
catastrophizing, self-blame, other-blame, and rumination cognitive emotion regulation
strategies positively predicted trait anxiety scores, while positive refocusing and positive
reappraisal showed the opposite trend. It has been suggested that cognitive emotion
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regulatory capacities have a role in the progress and maintenance of anxiety and thus it is
important to consider them as critical mediators in the development of different emotional
disorders [104].

Using a specific cognitive emotion regulation strategy when facing a negative event
can indeed facilitate or worsen the mastering of future adverse life experiences. Rumination
especially, which refers to the persistent focus on the feelings and thoughts associated with
negative events and their consequences, can contribute to a difficulty in the production and
implementation of effective solutions to problems, less propensity to engage in other con-
structive activities, and to the tendency to experience less social support [105]. Exaggerated
rumination can lead to catastrophizing as well.

According to our statistical analysis, both self-blame and other-blame resulted in
predicting trait anxiety scores. In the case of self-blaming, this could be related to the
experience of an overstated sense of guilt, while in the case of other-blaming this could be
associated to the sense of guilt chronic avoidance. Both the sense of guilt and the sense of
guilt chronic avoidance may indeed generate anxiety.

Interestingly, in adults, the strategies that mostly relate to anxiety symptoms, through
a positive or negative association, seem to be catastrophizing, positive reappraisal, rumina-
tion, and self-blame [106], while in clinically anxious adolescents positive reappraisal tends
to be less used [107].

These findings indicate that it may be useful to consider possible interventions at the
level of the cognitive emotion regulation strategies, given that maladaptive thoughts and
believes can highly impact symptomatology at the individual level [28,108–110].

Finally, as expected, a negative correlation between trait anxiety and age was found,
suggesting that as age increases, there is a decrease in the reported anxiety. The reasons
behind this could imply a possible reduction in the responsiveness for negative emotions
and an increased emotional control (learned with the experience) [52].

5. Conclusions and Limitations

Our study successfully found a predictive model of trait anxiety from brain gray and
white matter features by using an innovative combination of supervised and unsupervised
machine learning approaches and data fusion.

The results revealed that a parieto-temporal and a fronto-parietal structural network
predict individual differences in trait anxiety. Moreover, additional analyses highlighted the
positive association of trait anxiety with catastrophizing, rumination, other- and self-blame,
a negative correlation instead with positive refocusing and reappraisal, and a negative
trend associated to age.

Our study does not come without limitations. Firstly, we have used only structural
brain features. Future studies may want to explore a fusion between structural and func-
tional MRI (resting state or task-related). Moreover, although we used a larger number of
subjects compared to previous research on this topic, future studies with larger samples are
needed in order to confirm our results.

That said, to our knowledge, this data fusion combined with machine learning ap-
proach has not been applied previously in the context of trait anxiety.

Behavioral analysis gave us an insight on the emotion regulation cognitive strategies
that could generate and maintain anxiety states, specifically catastrophizing, rumination,
self-blame, other-blame, positive reappraisal, and positive refocusing. Lastly, we confirmed
the tendency of reported anxiety to decrease with age.

Our findings could be useful for the development of new diagnostic tools, such as
specific neuroimaging biomarkers, and the use of neurostimulation-based methods for the
treatment of anxiety, also in subclinical subjects, in order to attenuate its symptoms [5,109].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23020610/s1, Figure S1: Brain regions for each independent com-
ponent; Table S1: Brain areas for Network 3 (IC-GM 4/IC-WM 1), according to the Talairach daemon.
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