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Abstract: In terms of electric vehicles (EVs), electric kickboards are crucial elements of smart trans-
portation networks for short-distance travel that is risk-free, economical, and environmentally friendly.
Forecasting the daily demand can improve the local service provider’s access to information and
help them manage their short-term supply more effectively. This study developed the forecasting
model using real-time data and weather information from Jeju Island, South Korea. Cluster analysis
under the rental pattern of the electric kickboard is a component of the forecasting processes. We
cannot achieve noticeable results at first because of the low amount of training data. We require a lot
of data to produce a solid prediction result. For the sake of the subsequent experimental procedure,
we created synthetic time-series data using a generative adversarial networks (GAN) approach and
combined the synthetic data with the original data. The outcomes have shown how the GAN-based
synthetic data generation approach has the potential to enhance prediction accuracy. We employ
an ensemble model to improve prediction results that cannot be achieved using a single regressor
model. It is a weighted combination of several base regression models to one meta-regressor. To
anticipate the daily demand in this study, we create an ensemble model by merging three separate
base machine learning algorithms, namely CatBoost, Random Forest (RF), and Extreme Gradient
Boosting (XGBoost). The effectiveness of the suggested strategies was assessed using some evaluation
indicators. The forecasting outcomes demonstrate that mixing synthetic data with original data
improves the robustness of daily demand forecasting and outperforms other models by generating
more agreeable values for suggested assessment measures. The outcomes further show that applying
ensemble techniques can reasonably increase the forecasting model’s accuracy for daily electric
kickboard demand.

Keywords: deep learning; machine learning; demand prediction; generative adversarial networks;
regression; ensemble method; electric vehicles

1. Introduction

A viable alternative that could help achieve the aims of sustainable urban transporta-
tion is EVs. Because they do not release polluting gas into the air, EVs are considered
eco-friendly. Due to rapid economic and social development, climate change, environmen-
tal degradation, and other challenges have drawn continued attention from governments
and academics worldwide [1]. Today, many nations see it as a key mission to achieve
sustainable transportation to meet future energy requirements. Using EVs significantly im-
proves energy security and lowers greenhouse gas and other pollutant emissions. Imports
meet about 97% of South Korea’s primary energy needs due to a lack of native resources.

An evolutionary force in contemporary transportation is shared mobility. Bike sharing,
electric kickboards, and electric bicycles are available options. Travelers and students like
to avail of a comfortable transportation system. Unfortunately, the drive for private cars
has produced some negative environmental side effects, including lengthy delays and
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congestion. Traffic congestion grows along with population density. In response to this
obstacle, shared mobility has come to be recognized as the key paradigm for reducing
traffic jams, lowering emissions, and improving accessibility for commuters and students.
Making sense of the current data statistically can help manage ride-sharing operations.
Finding patterns and drawing lessons from the current data are necessary for demand
prediction using various data. Weather information and geographic coordinates may be
included in this data for better understanding [2].

To meet the demand for education and travel-centric areas, businesses specializing in
electric kickboards have been established in recent years. The high demand penetration
may have some significant adverse effects on the new business systems because of the high
demand penetration, which includes inconsistent service and fewer number of kickboards
in the specific region; most of the kickboards are distributed in a scattered manner. The
widespread usage of electric kickboards encourages the implementation of daily demand
in a particular industry, which can help the company function safely.

A rapidly developing nation such as South Korea places more emphasis on local
market sustainability. Numerous fundamental business presumptions, such as turnover,
total revenues, income, capital consumption, etc., are supported by demand prediction. The
accuracy of the models can be improved by external factors that can affect demand, such
as weather and locational data. A type of time-based data that may be used to visualize
various media is time series modeling. However, because conventional statistical methods
continue to dominate it, time series analysis has yet to reach its peak. Previous data are
investigated, examined, and organized during forecasting to predict the future. However,
most extant publications use just one machine-learning model for short-term forecasting
techniques. The benefits of mixing many machine learning models, known as ensemble
learning, have yet to be thoroughly researched for challenges relating to shared mobility,
such as predicting the demand for electric kickboards. This research proposes a brand-new
ensemble learning-based method for anticipating daily demand for electric kickboards.

At the beginning of the start-up business module, it is impossible to grow the business
significantly, so the data generated by a start-up company should be fewer data compared
with existing businesses that have been running their business for 5–10 years in the industry
market. Generating synthetic data that are indistinguishable from real data and can
be utilized for research and investigation is one approach to resolving the problem of
data scarcity. The GAN technique is the most innovative way to deal with this small
training data size issue to accomplish considerable prediction results. In some recent work
published by the authors, they solved issues such as the data scarcity problem [3,4] and
imbalanced data issues solved by a hybrid-GAN approach [5], and the effectiveness of
generating synthetic data to improve the accuracy of prediction models has been shown in
the articles [6,7]. In this study, we concentrated on creating synthetic time-series data using
improved conditional tabular generative adversarial networks (CTGAN), which addressed
the following research section.

The summary of the contribution follows:

• This paper mainly emphasizes synthetic time-series data generation techniques using
conditional generative adversarial networks for improving the forecasting accuracy of
electric kickboards.

• The proposed conditional tabular-GAN (CTGAN) model improved the generation of
synthetic time-series data that are further combined with original data to enhance the
prediction accuracy.

• An ensemble method was employed to capture uncertainty in forecasting with a single
regressor model that is compared on the same dataset with the same preprocessing
under the same experimental condition.

• The importance of the suggested ensemble forecasting model, a comparison with sin-
gle models and alternative ensemble approaches, and the superiority of the produced
forecasting model’s stability are discussed.
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The paper’s organization is divided into five sections: The related study, cutting-
edge methods for creating various time-series synthetic data, and their implications for
prediction are also covered in Section 2. Section 3 provides a summary of the suggested
methodology. Analysis and explanation of the experimental demand forecast are in Sec-
tion 4. We have discussed the present work’s concept and the proposed framework’s
predictive performance in Section 5. The conclusion and additional recommendations for
future works are described in Section 6.

2. Related Works

Forecasting demand for an electric vehicle company is crucial since an electric vehicle-
based company planning process is based on the data to be produced. Accurate demand
forecasting is needed to fulfill the rising demand. The work completed to forecast daily
demand for electric mobility in several fields will be covered in this section along with
numerous exemplary studies. Researchers have invested much time and effort in advanc-
ing time-series analysis models and forecasting accuracy over the years. To forecast the
observed historical data, researchers have put tremendous effort into solving time-series
prediction issues. The anticipation of demand for electric mobility has drawn greater atten-
tion. They are comparable in terms of data processing, how rental systems are designed to
solve problems, and how electric vehicle availability issues vary by location. Therefore, one
forecasting technique might be useful for resolving these issues. This section will discuss
the associated works with demand forecasting for electric mobility.

The focus is on studies that have predicted the demand for electric vehicles (EVs) at
charging stations, parking lots, or traffic situations. The places are pre-labeled and consist
of parking lots, charging stations, and traffic situations. Additionally, most publications
focus on the impact of prediction passenger demand. Only a few studies, meanwhile, have
focused on predicting daily mobility needs. Problems, including a weak billing infras-
tructure, have also emerged to meet the expanding demand in the EV sector. Effective
commercial EV bill demand forecasting enables investment planning and resource allo-
cation for long-term infrastructure bills while ensuring the dependability and stability of
short-term network utilities. As a result, we point out a research hole in the daily demand
for electric kickboards. Specifically, the technique first determines the important location
according to the rent pattern and then foretells the daily requirement for electric kickboards
in that location.

Shared electric dockless scooters, often known as e-scooters, provide a convenient
mode of transportation for quick trips and are especially well-suited for fostering multi-
modal interactions [8]. Recent exponential growth was seen in these services, and their rate
of adoption was higher than that of other shared modes such as bike and auto sharing [9].
Similar research was also put out [10], employing trip trajectory data from an e-scooter
service company and spatial inventory data on the infrastructure to integrate e-scooters
into Austin, Texas’s urban infrastructure. They discovered that it uses more than eleven
million location points from roughly 80,000 e-scooter rides over the course of a year or 1.4%
of all e-scooter trips in the city during the same time period. According to the technique
results, a typical e-scooter trip distance is divided between sidewalks (18%), bike lanes
(11%), and streets (33%).

A multi-step ride-hailing demand prediction model was developed by Wang et al. [11]
using a convolutional neural network (CNN). In this article, the authors show that CNN is
30% faster in the training and prediction process than another deep learning (DL) model,
long short-term memory (LSTM). To increase the prediction performance, the author sepa-
rated the Chinese metropolis Chengdu into smaller zones and afterward added background
information, such as weather data. In order to tackle short-term passenger demand fore-
casting, [12] this study suggests a unique DL method called the fusion convolutional long
short-term memory network (FCL-Net). The authors suggested that exogenous, geograph-
ical, and temporal dependencies made forecasting models more difficult. In Hangzhou,
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China, data were gathered for the experiment’s short-term passenger demand forecasting
under an on-demand ride service platform.

The hybrid model was proposed [13] using the autoregressive integrated moving
average (ARIMA) to obtain higher forecasting accuracy. In the article [14], the hybrid model
was superior to the individual ML models in terms of error metrics for predicting short-term
traffic flow. The prediction of traffic states is a significant issue with significant consequences
for contemporary traffic management. Using a neural network, a local traffic status estimate
and prediction method are provided [15]. To explain endogenous links between variables
in the taxi market under the two-sided market equilibrium, a model was created [16]. The
waiting time of passengers and the cost of a cab impact accurate passenger demand on the
demand side. The authors [17] propose using real-time taxicab data to estimate passenger
demand and taxicab supply across urban regions. The authors’ [18] primary goal is to
show that maximum predictability can be attained by utilizing appropriate measures when
choosing prediction algorithms. They used two sets of real-world data from Uber and
yellow cab rides in New York City. In the experiment, they first measured the demand
uncertainty at the building block level using entropy and the temporal correlation of
human mobility. Second, the outcomes of the three prediction algorithms were contrasted.
Regarding prediction accuracy and calculation time comparison, the Markov predictor
performs well.

On-demand transportation service platforms can link waiting for passengers with
available registered vehicles efficiently because of the quickly developing internet tech-
nology. The demand service market is dependent on customers and their actual riding
experiences in the various modes, just like the electric mobility service. The waiting time
and fare of the customers had an impact on accurate passenger demand on the demand
side. On the other hand, the predicted seeking time on the supply side altered the rider’s
behavior or where to park the electric kickboard and reduced the rent. Xu et al. [19]
proposed a taxi demand service based on a neural network for the prediction demand
of taxis in a specific area. Amini et al. [20] introduce electric vehicle charging demand
forecasting depending on historical driving data. By fusing CNN and RNN, numerous
spatiotemporal prediction methods were used to describe the predicted trip demand’s
temporal and spatial correlation [21–23].

A model was put forth to increase the effectiveness of the taxi service or bike-sharing
systems by forecasting the demand for pick-up or drop-off the next time by merging the
spatiotemporal neural network with the LSTM model [24]. Using a neural network-based
approach enables short-term multi-zone passenger demand prediction. The Didi Chuxing,
Chengdu, China, car-calling demand data and the New York City taxi demand data were
the sources of the information used for the experiment [25].

A variety of ensemble approaches were used in a recent study on demand prediction
to anticipate the charging time for EVs [26]. Eddine et al. [27] suggested a new deep
learning method for charging demand predicting for EVs that achieved good prediction
results by experimenting with two datasets. The location chosen for the study was based
on how frequently cars were utilized. A complete charging demand prediction model is
established [28], taking into account the charging factors of electric vehicles, and the travel
behavior of electric vehicles under various spatiotemporal distributions in the Second Ring
Road area of Chengdu is simulated by Monte Carlo. The study is divided into functional
areas based on the urban point-of-interest data crawled by Python. The simulation results
demonstrate the effectiveness of the suggested strategy for predicting charging demand in
various contexts and circumstances.

Data scarcity is considered one of the most significant challenging issues in machine
learning. Developing a demand prediction model needs a good chunk of data for training
a machine learning model. Real-time data always have a drawback, which is small data.
Little research has been developed for generating synthetic data for improving prediction
performance. Predicting the consequences of energy production and consumption becomes
increasingly important with the growing share of renewable sources in electricity generation.
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Due to privacy issues, the historical data that the models are based on is constrained. GAN
has been used to create synthetic new data and is a promising approach for producing
realistic synthetic time-series data. The authors [29] created synthetic data for predicting
wind power series using the GAN model. Solutions include generating realistic time series
with the aid of generative models, augmenting real-world financial data taken from the US
stock market, and demonstrating the value of daily market prediction findings [30]. In this
study [31], pairing the actual data with created synthetic data using the GAN model could
lower the prediction error of electricity consumption. To close the gap in the production of
synthetic data in a data center that will impact forecasting in the energy industry, time-series
data augmentation based on GANs is used [32].

3. Methodology

A brief explanation of the information and methodology is provided in this section.
This study aims to improve forecasting precision for the daily demand for electric kick-
boards among local service providers. In this study, we create a new ensemble forecasting
model that combines the advantages of individual forecasting models to produce forecasts
with improved accuracy and stability. This study suggests a new method for predicting
daily demand for an electric kickboard startup business in the province of Jeju Island. We
have built a system for developing synthetic data to address the data scarcity issue, which
could be helpful in our research. The dataset for real-world electric kickboards is used to
implement the framework. Initially, we faced problems achieving noticeable results be-
cause we needed more training data. We require a lot of data to produce a solid prediction
result. We employed the GAN-based approach for generating synthetic time-series data.
The original data have been preprocessed before being sent to the proposed GAN model,
which will create synthetic data to improve the prediction model’s performance. We have
used conditional synthetic data generation for those rent stations where the actual rent is
lower on the side. That model will generate synthetic data only for those conditional rent
stations. This study also examines the capability of predictive regression ensemble models
by contrasting the ensembles and considering the single reference models to estimate the
demand. Figure 1 shows the proposed framework’s overall layout. We considered current
information from the regional business in South Korea’s Jeju province.

The subsequent step is preprocessing, when we prepare the data for our experiment
by combining the data from many sources into a single final data set. Then, we determine
whether or not there is a null value. The prediction’s importance and utility were considered
when choosing the data features. We used a customized version of the k-means clustering
module. The data distribution has led to the selection of four clusters. We first trained the
model using the original data to obtain the prediction result. The GAN model was then
trained to produce synthetic data using the input from the original data. Then, we blended
the original and synthetic data using the original date distribution. Before training a final
model with these chosen settings on the entire training set, cross-validation (CV) finds the
settings that produce the least amount of error. This function uses cross-validation to train
and assess the performance of each estimator in the model library. Models were developed
and evaluated using 10-fold cross-validation. All of the estimators in the model library
are trained and evaluated using cross-validation using the compare_model function in
PyCaret. This function produces a scoring grid with typical cross-validated scores as its
result. We create an ensemble regressor technique that uses machine learning models with
the best hyperparameters as the base model and evaluation metrics to assess the accuracy
of the prediction made using the suggested framework.
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Figure 1. Proposed methodology overview of the study.

3.1. Data Analysis

The experiment’s data collection is briefly described in this section. We used data
from a local electric kickboard service provider on Jeju Island. The dataset collected the
rent details from 16 April 2019 to 11 June 2021, including the spatial and temporal data
events. Additionally, meteorological data were imported via the Korea Meteorological
Administration. We considered external factors that affect how kickboard services are
used, such as average daily temperature, rainfall, and the separation of weekends and
weekdays. The dataset contains original real-time electric mobility data (CSV), temporal
data (CSV), and spatial data (CSV) obtained by the local company. Several processes
were involved in preprocessing the complete data. To ensure data consistency, we have
also eliminated the rows with missing data, decreased inconsistent values, and removed
duplicate data. The data are meticulously examined before the experiment, and the date
format conversion is completed before using the final data. Saturday and Sunday are
regarded as holidays in the later preprocessing on the day when weekdays and weekends
are filtered. Using the preprocessed data, we use the k-means clustering algorithm to
identify several clusters on Jeju Island. The features were chosen based on how useful
and significant they were for forecasting daily demand. After feature selection, a total
of 13 features were utilized. Figure 2 shows the rental locations of electric kickboards,
where the x-axis depicts the latitude as xpos, and the y-axis indicates the longitude as ypos.
The parameters or coordinates latitude and longitude are used to pinpoint the position of
any site.
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Figure 2. Distribution of rental locations between Jeju City and Seogwipo City.

The regional data were divided into four clusters according to the rental location data
distribution. First, we divided Jeju Island into Jeju City and the Seogwipo City region. Jeju
city is further divided into three clusters. To cluster the data in accordance with the rent
pattern, we used k-means clustering as shown in Figure 3, four clusters with the names
sector 0 through sector 3 have been chosen as a result of the data distribution, where xpos
represent latitude over the x-axis and ypos represent longitude over the y-axis. Other
selected features are temperature, insulation, humidity, day, month, year, weekend, rain,
and holiday. Figure 3 displays the variation in dot size based on the total number of rentals
at each Jeju Island rental station over the data collection. Figure 4 depicts sector-wise rent
demand by the passenger. Electric kickboard rentals are most popular in sector 1, while the
demand for kickboards is lowest in sector 0. The y-axis lists the total rent for each sector,
and the x-axis lists the various sector numbers.

Figure 3. Visualization graph for sectors divided using the clustering method.
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Figure 4. Sector wise rent demand graph.

3.2. Generative Adversarial Networks

In 2014, Goodfellow et al. [33] created generative adversarial networks, which is a
kind of neural network utilized in unsupervised learning methods. Image, tabular, and
time-series data fields have been expanded using the GAN technique. In this study, we used
GAN to create synthetic time-series data and enhance the performance of the regression
model. GANs are composed of two neural network models that are in competition with one
another for superior prediction accuracy. The discriminator and generator are the names of
the two neural networks. A deconvolutional neural network serves as the discriminator,
and a convolutional neural network serves as the generator. The generator aims to produce
outputs that may be mistaken for real data. The discriminator aims to distinguish between
the real and artificial data it receives.

Equation (1) illustrates a mathematical function regarding the cross-entropy minmax
game between these two networks.

min
G

max
D

R(D, G) = Ex∼Pdata(x)[logD(x)]︸ ︷︷ ︸+Erz∼Prz(rz)[log(1− D(G(rz)))]︸ ︷︷ ︸ (1)

Data are generated by generator G using inputs of real data x and random noise
variable rz. The produced data returned by this process, G(rz), should match the actual
data distribution. D(x) represents the probability that discriminator D would identify and
classify x as actual data, where E denotes the expectation. D(G(rz)) is the probability that
D will classify the data as having been generated by G. The objectives of the generator and
discriminator are in opposition. By making D(G(rz)) approach 0, which shows that D can
precisely identify fake data from real data, D seeks to enhance this error while G seeks to
reduce it. Figure 5 depicts the GAN’s basic architecture.

Figure 5. GAN architecture.
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3.3. Conditional Generative Adversarial Networks

When in terms of time-series tabular data, the algorithms can only produce data with
the same distribution as the real data if there are concurrently discrete and continuous
variables in the actual data. In 2019, Xu et al. [34] suggested the CTGAN model, an
upgrade above TGAN, to address this issue. The goals of CTGAN are very similar to
those of TGAN [35]. CTGAN is different because it is more ambitious. It seeks to preserve
the joint distribution of all columns rather than merely the correlation between any two
columns in the synthetic data. Learning the true distribution of data is one of the conditional
generator’s most crucial jobs. Given a constraint on a certain discrete value, the generator’s
goal is to change the input to the original distribution as Equation (2).

P(row) = ∑
k∈C∗i

PG(row | Ci = k)P(Ci = k) (2)

where i stands for a particular discrete attribute, while k represents values from the discrete
column Ci.

Synthetic data generated using the improved CTGAN model’s configuration are
shown in Table 1. The residuals determine the size of the output samples, in this case,
generatordim. These residuals will increase when more numbers are added to the list: one
for each number. This has the same effect as deepening the generator. The size of the output
samples for each linear discriminator layer is also represented by discriminatordim. As for
the quantity of training iterations the model will experience, we have chosen 600 epochs
for more appropriate training. A larger epoch number will generally lead to longer training
times but better synthetic data.

Table 1. Synthetic data generated using the improved CTGAN model’s configuration are
shown below.

Model Generator_dim Discriminator_dim Batch_size Epochs Generator_lr Discriminator_lr Optimizer

Improved
CTGAN [1024, 1024] [1024, 1024] 600 600 0.0001 0.00033 Adam

3.4. Ensemble Learning Model

With the ensemble method, learning tasks are accomplished by assembling and com-
bining a number of weak learners. The primary learners are trained using the two well-
known techniques, bagging and boosting. Bagging reduces variance, which enhances the
generalization of the model. To increase the model’s accuracy, boosting uses a variety of
machine learning (ML) approaches to turn a number of weak learners into strong learn-
ers. The ensemble approach is chosen because it is adaptable and has high computational
throughput for large-scale dataset prediction operations. Due to their benefits, the ensemble
approach has drawn a lot of interest in recent years. Voting regressors are ensemble models
that combine many base models’ predictions into a single, final forecast. The ensemble’s
base estimators average predicted target value serves as the final forecast. Using a mean
and weighted average is the most straightforward way to group regression ensembles.
To increase the predicted accuracy of the chosen models, the regression ensemble models
build a collection of models. The predictive regression ensemble models have the ability to
estimate demand by contrasting the individual models and considering the meta-model.

Using the ensemble approach, a model is created to predict the daily demand for
electric kickboards. This strategy’s fundamental tenet is to combine basic models to produce
a composite prediction model. To create the ensemble model [36], we used the CatBoost,
RF, and XGBoost machine learning algorithms to predict the daily demand for electric
kickboards.
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3.4.1. CatBoost

Prokhorenkova et al. [37] developed the gradient boosting decision tree (GBDT)
technique into categorical boosting (CatBoost). It utilizes category features efficiently
and with the least amount of information loss. It is distinct from other gradient boosting
techniques and starts using ordered boosting, which is a successfully adapted method. This
method can handle category features and does well with small datasets. This procedure,
frequently carried out during preprocessing, mainly entails replacing the original category
features with numerical values.

It has recently been used in various industries, including finance, and in different data
sources, including time-series data. Although CatBoost may not be the greatest learner for
homogeneous data, it is an excellent answer for heterogeneous data issues. In CatBoost, a
new binary feature is added in place of the original variable for each category. It chooses the
tree structure using random permutations to determine leaf values and prevent overfitting
by conventional gradient-boosting methods.

3.4.2. Random Forest

Using random forests (RF), ref. [38] is a common ensemble method. It is frequently
applied to classification and regression issues. During training, the RF algorithm aggregates
decision trees and produces the mean forecast for each tree (regression). The model
generates a massive forest of arbitrary, uncorrelated decision trees to find the best possible
solution in RF. By only choosing a portion of the feature space at each split, RF makes
an effort to overcome the correlation problem. The RF method functions effectively on
enormous data sets for various applications and has the highest accuracy of the known
algorithms. Without destroying any of them, it can handle a huge variety of input variables.
A straight inside estimation of the generalization error is produced as the forest expands.
Numerous separate decision trees are used in the RF technique, each formed from a different
subset (bootstrap sample) of the training data. In the tree-building process, the best split
for each node is chosen by randomly choosing candidate variables.

3.4.3. Extreme Gradient Boosting

The “boosting” idea, which combines the prediction of numerous weak learners with
additive training methods to create a strong learner, is the foundation of the extreme
gradient boosting (XGBoost) technique, which was put forth by Chen et al. [39] in 2016.
This freshly created algorithm has found widespread use in many different industries.
XGBoost uses a regularized technique, formalization, to prevent overfitting and achieve
better performance. The integrated framework employs a random sampling strategy to
lower variance and improve the final model’s predictive capability.

4. Results and Discussion

Algorithms for ML were developed utilizing the google collaborative framework. To
read the data and implement the models, several ML packages, including NumPy, pandas,
sklearn [40], seaborn, etc., were imported.

4.1. Accuracy Measurement Metrics

The discrepancies between the actual observations in the test set and the predictions
made by the final model are used to assess a model’s accuracy. R2 and MAPE are the
evaluation measures applied in this work. Every regression study uses R2 as a critical
performance parameter to quantify model prediction. In contrast, a model with a zero R2

generates poor forecasts, and one with a value close to one R2 yields good predictions. A
simple average of absolute percentage errors is known as MAPE. Equations (3) and (4) are
written in the section below.

R2 = 1− ∑m
k=1(yk − ŷk)

2

∑m
k=1(yk − ȳk)

2 (3)
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MAPE =
1
m

m

∑
k=1

∣∣∣∣ (yk − ŷk)

yk

∣∣∣∣ · 100% (4)

where yk is the actual value of the kth sample case, ŷk is the predicated value of kth sample
case, ȳk is the average value, and m is the sample size.

The objective of the current study is to evaluate the efficacy of the suggested model in
estimating the daily demand for electric kickboards using real-time data. The dataset was
divided into training (90%) and testing (10%) for the original data and combined synthetic
and original data. The parameter settings that directly impact the model’s performance
are essential. The choice of appropriate parameter tuning may considerably affect the
predictive model’s performance. Using scikit-learn and a grid search method, the ideal
parameters that lead to the most incredible performance for the methods have been found.
The ideal key parameter for the methods applied in this investigation is shown in Table 2.

Table 2. Parameter settings for model tuning.

Models k-Fold Max-Depth Learning-Rate n-Estimators

Catboost 10 03 0.3 300
RF 10 12 0.2 200

XGBoost 10 10 0.1 100

4.2. Model Performance Comparison

A thorough comparative analysis was completed to compare the proposed model’s
applicability and effectiveness for predicting daily demand for electric kickboards with
other ML models. Various evaluation metrics, such as MAPE and R2, are used to evaluate
the performance of the suggested model. A higher R2 score and a low MAPE score can
be used to describe the model’s performance. Table 3 compares the proposed model
for predicting daily demand for electric kickboards with other single ML models. The
proposed model also incorporates elements from other ML models. In comparison to
previous individual-based models, the suggested ensemble model fits the data the best
and has the lowest errors in terms of MAPE value. It also has the highest R2 value of any
model. As shown in Table 3, the findings indicate that the suggested model outperforms
basic models such as CatBoost, RF, XGBoost, ET, and LGBM.

Table 4 lists the outcomes based on two evaluation indicators (R2 and MAPE). As
seen in Table 4, the ensemble models with the highest R2 and lowest MAPE are compared.
For the test data set, distinct ensemble models were created for this investigation. The
suggested method outperformed all ensemble approaches in a detailed comparison of
findings with the lowest MAPE (21.22) and highest R2 (0.79) values for combined data. The
proposed model has the highest R2 (0.64) and lowest MAPE (24.51) values compared to
the original data. The proposed model is the best algorithm for predicting daily demand
for electric kickboards in all the situations taken into account, according to the thorough
analysis based on evaluation metrics (R2 and MAPE).

Table 3. Performance comparison with different single machine learning models.

Models
Original Data Combined Data (Original + Synthetic)

R2 MAPE R2 MAPE

RF 0.58 29.21 0.67 25.61
CatBoost 0.57 30.73 0.63 27.11
XGBoost 0.58 29.73 0.69 25.15

Extra Tree (ET) 0.51 31.38 0.49 32.14
LGBM 0.44 39.89 0.46 34.12

Proposed Model 0.64 24.51 0.79 21.22
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Table 4. Performance comparison with different ensemble approaches.

Ensemble Models
Original Data Combined Data (Original + Synthetic)

R2 MAPE R2 MAPE

RF + CatBoost + LightGBM 0.62 26.21 0.72 22.93
Stacking (KNN + DT + RF) 0.59 28.73 0.70 24.11

Stacking (KNN + DT + RF + XGBoost) 0.61 28.25 0.69 25.15
Extra Tree + XGBoost + RF 0.62 26.73 0.71 23.14

Proposed Model 0.64 24.51 0.79 21.22

Figure 6 shows a correlation between the actual and predicted demand. Using the test
set illustrates the link between actual and predicted demand. The date is shown by the
x-axis, while the y-axis represents the rent count value. The visual depiction of Figure 6
illustrates how the original data forecast result fell short of expectations. On the other
hand, the prediction accuracy increased when we used the combined data. The outcome
illustrates the suggested model’s improved prediction ability.

Figure 6. Plot of the proposed regression model prediction for test data compared with the original
data and combined synthetic with original data.

5. Discussion

At the beginning of every business, a reliable business model must be built to meet
everyday demand while offering excellent customer service. Businesses need help to
meet demand at the right location, and machine learning can aid by precisely forecasting
the demand for electric kickboards. This study provided an electric kickboard demand
forecasting model that took into account actual rent data, weather data, and condition
data processing together with real-world weather data. These process data also comprise a
cluster analysis to categorize clusters according to rental locations. We need a significant
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amount of data to train a machine-learning model. However, this study initially needs to
improve in terms of small data size because a new business is starting. In order to improve
prediction accuracy, this study suggests using a conditional tabular-GAN (CTGAN) model
to create synthetic time-series data and further blend it with original data. We looked into
whether using synthetic data improved prediction accuracy.

Figure 6 illustrates how models can learn from data behavior when they can make
predictions using combined data that are consistent with the measured values. The re-
gression ensemble methodology is dependable in reaching predetermined predictions
because the increased performance gained during the training stages with combined data is
maintained during the test phases. Additionally, the proposed demand forecasting model
would make it possible for electric mobility service providers to plan future production and
operation. The proposed demand prediction model may also help formulate investment
and operation strategies for flexible electric mobility infrastructures based on the demand
for electric vehicles.

6. Conclusions

The main goal of this study was to predict the daily demand for electric kickboards
based on the historical pattern of rental payments using real-world data from a local Jeju
Island electric kickboard service provider. The collected data were merged into one single
final data for the start of the development. Later, we employed the GAN method for
the data scarcity issue that will generate synthetic data as learned from the original data
distribution. Integrating the produced synthetic data with the actual data will boost the
prediction accuracy of the daily demand for kickboards. The objective of this study was to
forecast the daily demand for kickboards using an ensemble model technique. There were
three ML algorithms used: RF, CatBoost, and XGBoost. The suggested ensemble method’s
prediction performance was evaluated using a variety of measures. The proposed method’s
prediction performance was assessed based on the test dataset. The results demonstrated
that the proposed ensemble model outperformed other chosen ML models. When we
integrated synthetic data with the original data, the performance of the suggested ensemble
approach improved, according to a thorough comparison with the original and combined
data. The original data produced the highest MAPE value (24.51) and the lowest value of
R2 (0.64). The model also produced the highest R2 (0.79) and lowest MAPE (21.22) values
for combined synthetic and original data.

Future research can examine a few potential limitations of this work. To generate
synthetic time-series data, we can utilize a more advanced GAN model, various optimiza-
tion methods, and improved hyperparameter settings for the different ML models. Future
studies that consider these variables may offer fascinating insights into predicting daily
demand. Furthermore, future studies may use other sophisticated machine and deep
learning models.
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ML Machine Learning
DL Deep Learning
CNN Convolutional Neural Network
LSTM Long Short-Term Memory
GAN Generative Adversarial Networks
CTGAN Conditional Tabular GAN
RF Random Forest
XGBoost Extreme Gradient Boosting
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CatBoost Categorical Boosting
GBDT Gradient Boosting Decision Tree
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