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Abstract: Vibration‑based damage detection methods are a subcategory of Structural Health Mon‑
itoring (SHM) methods that rely on the fact that structural damage will affect the dynamic charac‑
teristic of a structure. The presented methodology uses Finite Element Models coupled with a meta‑
heuristic optimization algorithm in order to locate the damage in a structure. The search domains
of the optimization algorithm are the variables that control a parametric area, which is inserted into
the FE model. During the optimization procedure, this area changes location, stiffness, and mass
to simulate the effect of the physical damage. The final output is a damaged FE model which can
approximate the dynamic response of the damaged structure and indicate the damaged area. For
the current implementation of this Damage Detection Framework, the Particle Swarm Optimization
algorithm is used. As an effective metric of the comparison between the FE model and the experi‑
mental structure, Transmittance Functions (TF) are used that require output only acceleration signals.
As with most model‑based methods, a common concern is the modeling error and how this can be
surpassed. For this reason, the Dynamic Time Wrapping (DTW) algorithm is applied. When dam‑
age occurs in a structure it creates some differences between the Transmittance Functions (TF) of the
healthy and the damaged state. With the use of DTW, the damaged pattern is recreated around the
TF of the FE model, while creating the same differences and, thus, minimizing the modeling error.
The effectiveness of the proposed methodology is tested on a small truss structure that consists of
Carbon‑Fiber Reinforced Polymer (CFRP) filament wound beams and aluminum connectors, where
four cases are examined with the damage to be located on the composite material.

Keywords: damage detection; damage localization; vibration‑based; metaheuristic algorithms; dy‑
namic time wrapping

1. Introduction
Damage detection and localization in structural systems is a high‑priority task during

inspection in many branches of civil and mechanical engineering. In this field, but also in
the general field of Structural Health Monitoring (SHM), the research community is em‑
bracing technological advancements. One example is the application of Machine Learning
(ML) for SHM systems [1–4], which rely on experimentally measured data or artificially
collected data to properly train the ML model for classification. Other methods have also
presented promising results, such as the eigen perturbation methodologies [5–7].

Recently, a Damage Detection Framework was presented [8] that is using vibration
measurements in conjunction with Finite Element Models. The current work is advanc‑
ing the same framework by addressing the issue of modeling errors between the physical
structure and the FE model, which can be a serious concern in complex structures. The
Damage Detection Framework is based on the model updating technique using optimiza‑
tion algorithms that fall into the category of computational intelligence and take advan‑
tage of the available computational power of modern computers. Several works can be
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found in the literature on this subject [9–13], using a large number of different optimiza‑
tion algorithms such as Genetic Algorithms [14], Covariance Matrix Adaptation Evolution
Strategy (CMA‑ES) evolutionary algorithms [15], and Artificial Bee Colony (ABC) [16], but
also other algorithms such as the Particle SwarmOptimization (PSO) [17] and the Bat algo‑
rithm [18]. A common practice among these past works is the use of simplified FE models,
using beam elements, with the methods applied on truss‑like structures. On the other
hand, few of the past researchers have incorporated more detailed FE models also using
plate elements [19–21]. Additionally, two review articles [22,23] can give a broader view to
the reader on the specific subject. A common characteristic among these works is the num‑
ber of parameters of the optimization procedure where the stiffness and/or mass of every
element (or group of elements) is set as a parameter to be updated. This leads to updating
the global stiffness and/or mass matrix of the structure, where the difference between the
updated and the original matrix reveals the affected damaged areas. If the same proce‑
dure was applied to detailed FE models, it could lead to an increase in the computational
cost. This would be the result of the increase of the optimization parameters (updating the
properties of each element or group of elements) and, in parallel, the computational cost
of the FE model would be higher than the simplified FE model.

Whether a model‑based methodology is using simplified or detailed FE models, the
accuracy and applicability of those methods are highly correlated with the percentage of
modeling error with the corresponding structure. The major novelty of the current proce‑
dure is the minimization of the effect of the modeling error by recreating the pattern of the
damaged experimental measurements of the structure based on the dynamic response of
the FE model. While this methodology is embedded and tested inside the current Dam‑
age Detection Framework, it would be possible for other model‑based methodologies to
embed and benefit from it as well.

The presented methodology can be applied to complex structures consisting of mul‑
tiple parts and different materials. It has the advantage of a fixed number of optimization
parameters; thus, only the computational cost of the FE model itself affects the perfor‑
mance between different structures. However, this computational cost must always be
taken into consideration as detailed FE models in exceptionally large structures can have
an impact, which can be addressed by applying appropriate model reduction methods.
The framework embeds a metaheuristic algorithm, whereby for the current implementa‑
tion the Particle Swarm Optimization (PSO) algorithm [24] was selected. The search space
of the optimization algorithm consists of six parameters in total that control a paramet‑
ric damaged area which is inserted into the FE model. Four parameters control the exact
location, along with two parameters that control the material properties of the specific
damaged area. During the optimization, this area changes location, stiffness, and mass to
simulate the effect of the real damage in a physical structure. As a result, only a submatrix
of the stiffness and mass matrices is changing. A similar approach that locally alters the
material properties has been also demonstrated [25] on a Carbon Fiber Reinforced Poly‑
mer (CFRP) composite plate using Genetic Algorithms (GA). As will be presented in the
following sections, this implementation can be applied in detailed FE models that might
contain beam, shell, and solid elements as well.

The metric of comparison between the structure and the FE model plays a pivotal
role in the accuracy and applicability of the methods in use. In the current work, the
Transmittance Function (TF) [26] is used, which is a sensitive metric regarding structural
damages [27]. The TF has the advantage of requiring only output experimental data.

The modeling error between the physical structure and the FE model can sometimes
be a serious concern in model‑based methods. In order to minimize this error and develop
an optimal FE model for the structure, the Covariance Matrix Adaptation Evolution Strat‑
egy (CMA‑ES) algorithm [28–30] was selected, that has been applied successfully at linear
and non‑linear FE updating problems [31,32] in the past.

Even after themodel updating procedure, there is a possibility that themodeling error
still exists in a higher percentage than it is acceptable for the current application. This is



Sensors 2023, 23, 591 3 of 23

most probable when the examined structure is complex and might include multiple parts,
materials, and joints. To surpass the effect of the modeling error as much as possible, the
Dynamic Time Wrapping (DTW) algorithm is applied. The DTW is a popular algorithm
that was first introduced for speech recognition [33], and it has found many applications
such as for clustering and classification of electrocardiograms (ECG) [34], online signature
recognition [35], and process monitoring [36]. Although with a different implementation,
the DTW has been also applied in fault diagnostics and monitoring [37–39]. In the current
work, the DTW is applied in order to recreate the pattern of the experimental damaged
structure around the FE model. The recreated pattern is a Transmittance Function (TF)
curve. The difference between the TF curves obtained from DTW and the FE model is
the same as the one obtained from the healthy and damaged structure in an experiment.
As such, the new curve is used on the framework as a damaged TF, which minimizes
the error of the FE model. Other researchers in the past have also noted that these types of
SHMsystems do not need to locate and/or quantify the damagewith extreme accuracy [40].
Thus, the inserted damaged area on the FE model needs to simply contain the damage of
the physical structure and indicate the affected area.

The proposed methodology relies upon and advances the previously presented Dam‑
age Detection Framework [8] and, as such, has the following advantages. First, it is a
model‑based damage detection method using vibration measurements with output‑only
information. Second, it can be applied to detailed FE models of any shape, and structures
with multiple parts and different materials. Third, with a properly configured optimiza‑
tion algorithm, only a fixed number of six optimization parameters are needed to locate
the damage using a detailed FE model. Finally, fourth, with the use of the DTW, the effect
of the modeling error, which could otherwise cause inaccurate results or even prevent the
applicability of the methodology, is now minimized by recreating the damaged pattern.

This work is presented as follows. Section 2 describes the implementation of themeta‑
heuristic optimization algorithms for this SHMmethod. Section 3 includes the background
of the proposedmethodology, and the use of Transmittance Functions, which is an efficient
output‑only metric. Furthermore, it includes the use of the Dynamic TimeWrapping algo‑
rithm to recreate the damage pattern and disregard the initial modeling error. In order to
validate the proposed methodology, Section 4 presents the application on an experimen‑
tal truss structure consisting of CFRP beams where four damage cases were created. The
results show the robustness of the proposed Damage Detection Framework and the capa‑
bilities of locating damage in the structure. Finally, the conclusions are summarized in
Section 5.

The followingwork is an advancement of theDamageDetection Framework [8], which
was presented in the past by the authors. Therefore, the reader is encouraged to also refer
to this previous work.

2. Metaheuristic Algorithms
As a model‑based detection method, the first step is to develop an optimal Finite El‑

ement Model with an accurate dynamic response for the examined structure. Many algo‑
rithms can tackle this model updating procedure in order to develop an accurate FEmodel,
and in the current work the Covariance Matrix Adaptation Evolution Strategy (CMA‑ES)
algorithm is used.

The proposed Damage Detection Framework, on the other hand, was embeddedwith
the Particle Swarm Optimization (PSO) algorithm, which has been found more suitable
for this task. Other optimization algorithms could also be used for this task, although the
selection should be made with caution. For example, both CMA‑ES and PSO can perform
in the presented damage–detection framework in a simple single‑part model. However,
in a more complex model consisting of multiple parts andmultiple materials, the CMA‑ES
could not perform as intended due to its internal selection and sampling mechanism.
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2.1. Covariance Matrix Adaptation Evolution Strategy (CMA‑ES)
The CMA‑ES [28–30] is a general‑purpose, population‑based, stochastic, derivative‑

free algorithm. A brief explanation of CMA‑ES’s main steps can be found in Algorithm 1.

Algorithm 1. Main steps of CMA‑ES algorithm.

1. Initialize distribution parameters
2. While termination criterion is not met do
3.   Sample population from the multivariate normal distribution
4.   Evaluate the objective function for each parameter set
5.   Update the multivariate normal distribution based on a percentage (50% in this case)

of the best parameter sets.
6. End
7. The optimal solution is found for the parameter set that corresponds to the minimum

objective function

The FEModel can be described by the set of parameters θ ∈ R, where g(θ) is themodel
prediction for the set of parameters θ, while y corresponds to the dynamic experimental
measurements. The objective functions, which will be minimized, can be formulated as
the sum of the normalized sum of square errors J:

J(θ) =
1
n

n

∑
i=1

∑m
j=1

(
gij(θ)− yij

)2

∑m
j=1

(
yij

)2 (1)

The Transmittance Function will act as a metric of comparison between the physical
structure and the FE model.

As such, g(θ), y are the FE models and experimental Transmittance Functions, with
the subscript j to denote the frequency step and i denoting the index of the Transmittance
curve, while n is the total number of Transmittance Functions andm is the total number of
frequency steps.

2.2. Particle Swarm Optimization (PSO) Algorithm
One of the main parts of the Damage Detection Framework is the Particle Swarm Op‑

timization (PSO) algorithm. This algorithm is used in order to find the best set of variables
of the damaged area in the FE model. The PSO is a population‑based algorithm that be‑
longs to the subarea of Swarm Intelligence in the Computational Intelligence category, and
was introduced by Kennedy and Eberhart [24,41].

The variant of the PSO that is being used in the current manuscript is the initial ver‑
sion [24], while adding the Inertia Weight [42] into the equation that controls the velocities
of each particle. Additionally, two subversions can be found in the literature; the GBEST
and LBEST [41]. Each particle has a specific velocity, where a portion of its velocity is at‑
tributed to the best solutions of the other particles in the swarm. In the GBEST version,
the velocity is influenced by the best solution found by all other particles, while in the
LBEST version each particle’s velocity is influenced by the best solution from a number of
its nearest particles (called its neighborhood). The LBEST version was chosen in this work.

The initial swarm (population), Pop = {p1, p2, . . . , pn}, is sampled randomly and con‑
sists of n number of particles,pi ∈ Rk for i = 1, 2, .., n, where k is the number of parameters
to be optimized. Each particle pi has a position, xt

i , and velocity vector, vt
i , at the given

time step t.
The velocities and positions of each particle are updated in every cycle based on the

following rules:

vt+1
i = w · vt

i︸ ︷︷ ︸
Inertia

+ c1 · R1(i, i) · (pbestt
i − xt

i )︸ ︷︷ ︸
Cognitive

+ c2 · R2(i, i) · (lbestt
i − xt

i )︸ ︷︷ ︸
Social

(2)
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xt+1
i = xt

i + vt+1
i (3)

where w is the inertia weight and c1, c2 the acceleration coefficient, which are all defined
prior to the start of the algorithm. R1, R2 are two k× k diagonalmatriceswith diagonal ele‑
ments sampled at each iteration from a uniform random distribution with values from 0 to
1. Furthermore, pbest is a vector containing the best parameter values of the corresponding
particle and lbest is a vector containing the best parameter values from the neighborhood
particles. The neighborhood N is a fraction of the total number of particles n.

Considering Equation (2), the Inertia term carries the particle into its previous direc‑
tion, the Cognitive Part is the force that pulls the particle towards its personal best position,
and the Social Part is the force that drags the particle towards the best position known from
its neighborhood particles [43].

The objective function, G, is discussed in the following Section 3. Algorithm 2 sum‑
marizes the main steps of the Particle Swarm Optimization algorithm.

Algorithm 2. Main steps of the PSO Algorithm.

1. Set w, c1, c2, n and variable bounds
2. Randomly generate the initial swarm while enforcing the variable bounds
3. While termination criterion is not met do
4. for each particle i do
5.   Evaluate the objective functions
6.   if G(pt

i ) < G(pbesti) then pbesti ← pt
i

7.   lbestt
i = min(pbestt

neighbors)

8.   Update velocity, Equation (2)
9.   Update position, Equation (3), while enforcing the variable bounds
10. End for
11. End while
12. The optimal solution is found as the parameter set that corresponds to the minimum

objective function

3. Damage Detection Framework
The main parts of the Damage Detection Framework are similar to the framework

which was presented by the authors in the past [8]. A short description of these parts is
included in Sections 3.1–3.3 while the reader is encouraged to also refer to the previous
work.

Themodeling error can play a pivotal role in themodel‑based damage detectionmeth‑
ods. As the modeling error rises, most of the model‑based methods become less accurate
and, after one point, even not applicable, including [8]. In Section 3.4 a newmethod is pro‑
posed, as an extension of the previous method [8], to minimize the effect of the modeling
error for the purpose of damage detection, making the method applicable even in cases
where the model cannot be corrected further.

3.1. Description of the Damage Detection Framework
The relationship between a healthy structure, S , and the corresponding Optimal FE

Model,M, could be written in a general form as:

M = S + e1 (4)

When a damage occurs at the structure, Equation (4) can be transformed as:

Mdam = Sdam + e2 ⇒ M+ dM = S + dS + e2 (5)

where Sdam and Mdam represent the damaged structure and a corresponding damaged
FE Model. Additionally, parameters e1, e2 are the error between the structure and the FE
Model. The error two parameters are not equal as the damaged FEModel may not be able
to reach the same accuracy as the healthy FE Model. This is due to the possible creation of
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nonlinear behavior of the damaged area in the physical structure where the newly created
damaged FE Model is only linear.

The overall goal of the Damage Detection Framework is to find the dM, which is
highly correlated with dS . The term dS represents the change of the structure, or else the
damage. The term dM is the change that the Optimal FE Model,M, must make in order
to approximate the Sdam. In the current work, dM includes the location of the damaged
area. While an approximation of the material mechanical parameters for this damaged
area is included in the dM as well, they must not be interpreted as a quantification of the
damage. This approximation is limited to providing an insight into the type of damage,
e.g., loss of stiffness in case of a crack. Exact quantification of the damaged properties is
not possible, mainly due to the modeling errors.

In other words, the framework searches for local changes in the material properties in
different locations of the FEModel while trying to approximate the dynamic experimental
measurements of the damaged structure.

The Optimal Finite Element Model (M) of the examined structure can be described
by the equation of motion [44]:

M
..
x +C

.
x +Kx = F (6)

where F is the external excitation and
..
x,

.
x, x represent the acceleration, velocity, and dis‑

placement vectors. M, C, K are the mass, damping, and stiffness matrix, accordingly, and
so the model can be fully described byM(M,C,K). Assuming that damage in a structure
will affect the mass and stiffness matrices, the major target is to find the appropriate dM
and dK that results in the corresponding dM, and, therefore, theMdam that approximates
the damaged structure Sdam.

The difference in themass and stiffnessmatrices is found by inserting a damaged area
into the FEmodel and changing its material mechanical properties. The task of finding the
location and properties of this area is assigned at the PSO algorithm. The search domain
of the optimization algorithm includes six parameters in total. The first two represent the
percentage change of the Elastic Modulus and Density,{pE, pD ∈ R : (0, UB]}whereUB is
the selected upper bound. The final Elastic Modulus and Density of the damaged area are
calculated using Equations (7) and (8):

→
Edam = pE ·

→
E part (7)

Ddam = pD · Dpart (8)

where the subscript dam indicates the material properties (modulus, density) of the dam‑
aged area and part is the material properties of the part in which the area is inserted. The
Elastic Modulus is expressed as a vector in case the material is not a standard isotropic
and might have moduli at other directions (such as a Carbon‑Fiber Reinforced Composite
material).

The exact location of the damaged area which is inserted into the FE model is con‑
trolled by the remaining four parameters. The vector L(P, X, Y, Z) describes the location of
the inserted area, where P,{P ∈ R : [0, 1]}, represents the part of the FE Model in a multi‑
part structure and X, Y, Z,{X, Y, Z ∈ R : [0, 1]}, corresponds to the local coordinates ex‑
pressed as a fraction of the total dimensions of the specific part chosen by P. As such, the
search space of the PSO consists of these six parameters (pE, pD, P, X, Y, Z). It is worth not‑
ing that the final material parameters of the damaged area do not quantify the real damage
as their value is also affected by the size of the inserted area and, most importantly, by the
modeling error. The inserted damaged area can be created in any 3D model, with either
2D shell elements or 3D solid elements.

The import, manipulation and export of the FEModelwere implemented inMATLAB.
For the evaluation of the dynamic response of the FE model, the commercial solver MSC
NASTRAN was selected.



Sensors 2023, 23, 591 7 of 23

3.2. Transmittance Function
The Transmittance Function (TF) [26] is expressed as the ratio of the Cross‑Spectral

(CSD),Srs, over the Auto‑Spectral Density (PSD),Srr, between two vibration response sig‑
nals calculated from Equation (9).

Trs(ω) =
Srs(ω)

Srr(ω)
=

..
xr(ω)

..
x∗s (ω)

..
xr(ω)

..
x∗r (ω)

(9)

where
..
x(ω) is the Fourier transform of the acceleration signal with ω as the frequency.

Furthermore,
..
x∗(ω) is the complex conjugate of

..
x(ω) and subscripts r, s denote the degrees

of freedom of the structure. The TF has been found to be a sensitive method for Structural
Health Monitoring purposes [26,45], while requiring only output measurements.

If w is the number of all the acceleration sensors which are placed on the structure, as‑
suming triaxial accelerometers, the complete TF matrices can be formulated by calculating
all the possible TF combinations (axis‑specific):

TX =


1 TX

12 · · · TX
1w

TX
21 1 TX

2w
...

. . .
...

TX
w1 TX

w2 · · · 1


w×w

TY =


1 TY

12 · · · TY
1w

TY
21 1 TY

2w
...

. . .
...

TY
w1 TY

w2 · · · 1


w×w

TZ =


1 TZ

12 · · · TZ
1w

TZ
21 1 TZ

2w
...

. . .
...

TZ
w1 TZ

w2 · · · 1


w×w

(10)

From the matrices of Equation (10) only the unique combinations are used from the
Damage Detection Framework and, as such, only the upper triangular part of the T matri‑
ces is taken into consideration.

The TF is an output‑only metric between two response signals, Equation (9), and, as
such, there is no obligation to record the input excitation during testing in the structure.
On the part of the FEmodel, while an excitation needs to be provided as input, an artificial
excitation can also be used as it will not affect its TFs.

3.3. Objective Function
The objective function is formulated between the TFs of the experimental structure

and the FE model, using the Pearson Correlation coefficient. It is a measure of the linear
correlation between two data sets that take values between−1 and 1. Considering two sets
of data A, B, with equal length, N, and µ, σ as the mean value and standard deviation of
each set, the Pearson Correlation coefficient can be calculated with Equation (11).

Pearson Correlation Coe f f icient : ρ(A, B) =
1

N − 1

N

∑
i=1

(
Ai − µA

σA

)(
Bi − µB

σB

)
(11)

A value of ρ = 1 indicates that there is a perfect linear correlation between the two
data sets, ρ = −1 indicates a negative linear correlation, while ρ = 0 indicates that there is
a nonlinear relationship but without providing any further details.

In the current minimization problem, the best solution is considered the one with the
best linear correlation between the damaged structure and the FE model. The final objec‑
tive function, G, can be formed with Equation (12) as the mean value of the errors (from
the linear correlation) of the Pearson coefficients between the experimental measurements
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of the damaged structure, TFDEXP, and the FE model, TFFE, where A denotes the total
number of Transmittance Functions used with i = 1, 2, . . . ,A.

Objective Function, G =
1
A

A

∑
i=1

[
1− ρ

(
TDEXP

i , TFE
i

)]
(12)

3.4. Dynamic Time Wrapping (DTW)
Dynamic TimeWrapping (DTW) is an algorithm tomeasure similarities between two

data series (e.g., time‑series) and itwas initially developed for speech recognition [33]. Con‑
sider two time signals, C and Q, with similar features across their duration. Their features
appear in the same sequence, but some of them can be in different moments such as after
a small delay. The DTWwraps the features of each signal in a non‑linear matter across the
time domain iteratively and calculates the wrapping path and its distance. This procedure
stops when the wrapping path with the minimum distance is found. The most commonly
used distance metric for this algorithm is the sum of Euclidian distance between each data
point of the signals.

First, create the distance matrix, Equation (13), between the two signals where each
element is the distance between all elements, Equation (14). Iteratively, using the distance
matrix, the DTW finds the paths for each signal that minimizes the sum of all distances;
see Equation (15).

.D =



d11 · · · d1q
. . .

... dij
...

. . .
dq1 · · · dqq


. (13)

dij = (Ci −Qj)
2 i, j = 1, 2, . . . , q (14)

DTWDistance = ∑ dij i, j = 1, 2, . . . , q (15)

In the present work, the DTW will be used within a different context. The algorithm
will be used to calculate the wrapping path between a TF curve on the healthy state of the
experimental structure and the FEmodel. Basically, the wrapping path is the index of each
of the two arrays that is being altered in order to minimize Equation (15). The path of the
healthy TF curve is the shift of each frequency point in order towrap around the FEmodel’s
TF curve. This shift is calculated on the frequency domain. As such, exactly the same path
can be used on the damaged TF curve of the experimental structure. A damage in an
experimental structure that might affect only a portion of a TF curve. Using this wrapping
path, a new curve will be created which will be the reconstructed damaged TF curve. As
the healthy TF curve will be wrapped around the TF of the model, the same differences
that exist between the healthy and damaged TF will now be created between the recreated
damaged TF and the TF of the FE model. The unaffected parts of the experimental TF will
remain unaffected but shifted in the frequency domain, and the affected parts will follow
the pattern that exists between the two states of the experimental structure. The procedure
is summarized in Algorithm 3.
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Algorithm 3. Main steps to reconstruct the damaged curve using the DTW.

1. Calculate the TFHealthy, TFDamage and TFFEM

2. Apply the DTW between FEM and Healthy
[DTWDistance, PATHHealhty, PATHFEM]← DTW(TFHealthy, TFFEM)

3. Reconstruct the new curves
TFRecHealthy = TFHealthy

(
PATHHealhty

)
TFRecFEM = TFFEM(PATHFEM)

TFRecDamage = TFDamage

(
PATHHealhty

)
This concept is also visualized in Figure 1, where, in the left graph, the TF of the

healthy structure (blue line) is affected by the damage (red dashed line) only at the first
peak, with a difference c, while the rest remains unaffected. The error is also noticeable be‑
tween the TF of the healthy structure and the TF of the FEmodel (orange line). On the right
graph are the wrapped TFs of the FEmodel (dashed orange line) and the healthy structure
(dashed blue line). However, using the wrapping path of the wrapped healthy TF, the
reconstructed damaged TF (dotted red line) now creates the new pattern with the same
difference as the real structure. The new pattern lowers the modeling error and allows the
usage of the FE model within the context of the proposed methodology.

Figure 1. Pattern recreation using DTW wrapping path.

This procedure is made under the assumption that even if an error exists between the
FE model and the healthy structure, similar damage on both the structure and the model
will affect them in the sameway. Thiswill eventually create similar differences between the
states of each one, meaning it will affect the same frequency range with a similar pattern.

The limitation of this assumption must be noted. In order to efficiently use the DTW,
the TF curves of the healthy experimental structure and the FEmodelmust follow a similar
pattern even if their features are shifted on the frequency domain. If a feature, e.g., a peak in
one curve, does not exist on the other curve, two scenarios are possible. Either it will be not
wrapped efficiently and could result in an exclusion of this feature on the recreated curve,
or it could also be wrapped on the next similar feature on the curve. In both scenarios, an
error arises on the specific frequency range that creates a blind spot where, if the damage
affects this specific frequency range, the proposed procedure might not able to find it.

In complex structures, not all the TF curves of the FE model might be able to be ef‑
ficiently wrapped with the TF of the healthy structure. Thus, a selection must be made
based on the quality of the wrapping between the curves and the quality of the recreated
TF curve in order to include all the features. The procedure of selection is manual and
should be carried out with caution. The flow chart of the entire proposed Damage Detec‑
tion Framework is presented in Figure 2.
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Figure 2. Flow chart of the proposed Damage Detection Framework.

4. Experimental Setup and Validation
The present section describes the experimental setup, damage scenarios, and the ap‑

plication of the proposed methodology.

4.1. Experimental Setup
A CFRP truss was selected as an examined structure. It consists of CFRP filament‑

wound tubes where aluminum connectors are glued at each end. These connectors are
bolted on intermediate aluminum parts. The complete structure is permanently clamped
on a steel base which is attached to a concrete wall. The CFRP tubes consist of seven (7)
plies, and the details are presented in Table 1.

Table 1. CFRP Composite Tube Properties.

Layer Orientation (+/−8◦) (+86◦) (+/−8◦) (+/−8◦)
Tube Internal Diameter 25 mm

Layer Thickness +/−8◦ 0.52 mm
+86◦ 0.16 mm

Themeasurement equipment consists of four triaxial accelerometerswhich are placed
on different tubes of the truss. Below the truss, an electrodynamic shaker is connected in
order to be used as an excitation source. The shaker is connected with a stinger rod and
a bolted load cell on the part of the truss. For all experimental measurements, a sampling
rate of 2048 Hz has been used and randomGaussian excitation was imposed on the shaker
connected with the CFRP truss, as shown in Figure 3.
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Figure 3. Experimental setup of the CFRP truss.

4.2. Finite Element Model
The FE model of the CFRP truss is shown in Figure 4. In total, the model is made of

1,480,912 elements (341,933 nodes) resulting in 2,051,598 degrees of freedom. Themodeling
of the aluminum joints, connections, and glue is performed with solid elements, while
for the CFRP shell elements have been used. The pin‑joint connections are modeled with
rigid body elements between the aluminum joints and connections. The base of the four
(4) aluminum joints in the back of the truss (with reference to Figure 4) are fully fixed, as
the physical truss structure is permanently clamped on a steel base which is attached to
the concrete wall. The random excitation is applied on the front low corner, at the same
position the physical structure is connected with the electrodynamic shaker.

Figure 4. Finite Element model of the truss.

Adetailed parametrization of the FEmodel is also depicted in Figure 5. Experimental
measurements of healthy structures were used to obtain the Optimal FEmodel of the struc‑
ture. A total of ten (10) material variables were included in the model updating process,
using the CMA‑ES algorithm with a comparison metric of Transmittance Functions.
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Figure 5. Parameterized FE model.

The material parameters used for the Nominal FE model included the CFRP’s or‑
thotropic material with E1 = 140.3 GPa, E2 = 8.6 GPa for the modulus of elasticity in
1 (fiber) and 2 (matrix) direction, respectively, ν12 = 0.27 for the Poisson’s ratio, G12 =
4.61 GPa for the in‑plane transverse shear modulus, and ρ = 1525 Kg/m3 for the density.
The material parameters of the aluminum parts were set as E = 68 GPa for the modulus of
elasticity, ν = 0.36 for the Poisson’s ratio, and ρ = 2698 Kg/m3 for the density. The final
updated parameters are presented in Table 2.

Table 2. Updated FE model material properties.

Part 1

Parameter Bounds Result

Modulus of Elasticity, Direction 1, E1 [GPa] [90, 150] 110
Modulus of Elasticity, Direction 2, E2 [GPa] [5.0, 10.0] 7.09
In‑plane Shear Modulus G12 [GPa] [4.0, 6.0] 5.34
Density, ρ [kg/m3] [1200, 1650] 1540

Part 2 3 4

Parameter Bounds Result Bounds Result Bounds Result

Young’s Modulus E [GPa] [60, 80] 62.1 [60, 80] 75.8 [0.85, 1.15] 1.14
Density ρ [kg/m3] [2450, 2950] 2482.5 [2450, 2950] 2650 [490, 1474] 983

Indicative Transmittance Functions (TFs) of the Nominal (purple line), Optimal FE
model (dashed black line), and the Healthy experimental structure (blue line) between the
accelerometer 1 and 2 on the Z‑axis are presented in Figure 6. It is obvious that, after the
model update process, there is still a modeling error rate for the Optimal FE model with
the respective real experimental structure. To overcome this obstacle, the Dynamic Time
Wrapping (DTW) algorithm will be used to allow the use of the FE model for damage
detection purposes in the following sections.
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Figure 6. Comparison of TF between accelerometers 1,2 (Z‑axis) between the Healthy experimental
structure, the Nominal FE model, and the Optimal FE model.

4.3. Damage Cases
The experimental damage was created on a three‑point bending scenario of a CFRP

tube, Figure 7. The tube was placed in a compression machine while rubber material was
placed under the two points that hold the tube, thus preventing unwanted damage in these
regions. The resulting damage is a local reduction of stiffness, asmultiple local crackswere
created on the composite material.

Figure 7. The damaged CFRP tube mounted on one of the four possible positions of the truss (left).
Damage creation on the CFRP tube with the three‑point bending system (right).

In the current work, only single‑part damage is examined, meaning only one instance
of damage exists on the structure at each examined case. One diagonal tube of the trusswas
selected as the damaged part, which could be mounted in four different positions on the
specific structure (tubes 1, 3, 5, 7), thus creating the four different damage cases: D1, D3, D5,
and D7. The damage cases, along with the part numbers for the structure are presented in
Figure 8. The four accelerometers that were mentioned in Section 4.1 are located on tubes
1, 7, 9, and 11.

Regarding the excitation on the structure, all experimental measurements were ex‑
ecuted with a sampling rate of 2048 Hz and a random excitation signal from the elec‑
trodynamic shaker. Indicative experimental acceleration measurements are presented in
Figure 9 from accelerometer 1 between the healthy state and damage case D1.
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Figure 8. Damage cases (left). CFRP tube identification numbers (right).

Furthermore, Figure 10 shows some of the calculated TFs between accelerometers 1
and 3, including the healthy state and all damaged cases. In the given combinations of
Transmittance Functions, the generated damage cases mainly affect the frequency range
between 165 and 200 Hz, with some additional changes between 75 and 90 Hz.

Figure 9. Experimental time response signal of Accelerometer 1 [A1] on X‑axis.

Figure 10. Experimental Transmittance Function between accelerometer 1 and 3 on the Z‑axis (left)
and X‑axis (right).
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4.4. Damage Detection
The first step of the procedure is to create the required wrapping path of the healthy

TF and the FE Model for each TF separately. Figures 11 and 12 show indicative TFs of
two damage cases between the Optimal FE model (dashed black line), the structure at its
healthy state (blue line), the damage state (red line), and also the reconstructed damaged
TF curve. In both of these figures, it is obvious that a modeling error exists on the initial
curves, and itwouldprevent the use of the damagedetection framework, as itwill probably
indicate a false damaged area.

The pattern of the reconstructed damaged TF curve (red line) with the FE model
(dashed black line) is similar to the pattern between the healthy (blue line) and damaged
(red line) TF curves. Minor differences and errors on the new curves might appear, but if
this procedure is completed carefully it will only add a small portion of anomalies com‑
pared with the initial modeling error. In the case that the initial curves show the same
pattern but difference in magnitude, it is suggested that normalization will be applied to
the data prior to the DTW.

All damage cases were executed using the range of [0.1, 1.5] for the material param‑
eters pE, pD. Furthermore, the composite tubes 1 to 12 (numbered in Figure 8) were used
for the Part parameter as search space. The damaged area inserted into the FE model has
a maximum length of 230 mm.

Regarding the first case, D1, after executing the framework using the recreated dam‑
age curve the results were successful. The P parameter resulted inside the region which
corresponds to Tube 1 and is presented in Figure 13. Figure 14 shows the locational param‑
eters X and Y.

Figure 11. TFs of the Optimal FE model, healthy experimental and D1 case between accelerometer 1
and 3 at Y‑axis (up), and TFs of the Optimal FE model and the reconstructed damage curve (down).
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Figure 12. TFs of the Optimal FE model, healthy experimental and D5 case between accelerometer 1
and 2 at Z‑axis (up), and TFs of the Optimal FE model and the reconstructed damage curve (down).

Figure 13. D1: Part parameter (P) versus the Objective Function values.

As Tube 1 is expanding on the X, Y plane, the Z parameter does not have a pivotal
role in the final damaged area. The final objective function had a value of 0.110989, with
the material parameters pE, pD having a value of 0.767 and 1.016, respectively. As was
mentioned, the proposed framework does not have the ability to quantify the damage as
thematerial parameters depend on the size of the damaged area inserted into the FEmodel,
but also on the modeling error that might still exist. As such, the values of pE, pD should
not be interpreted as exact representations of the status of the tube. This is also the reason
why the calculation of the exact material mechanical properties (e.g., modulus of elasticity
and density) from the parameters pE, pD is not necessary. Moreover, Figure 15 shows
the TF of the newly created damaged FE model (dashed black line) compared with the
reconstructed TF curve of the D1 damage case (red line). Some differences are still present,
which is expected, but it is obvious that the two curves have a higher linear correlation
compared to before.

The final damaged FEmodel is presented in Figure 16, where the damaged area high‑
lighted in red includes the damage of the physical structure.
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Figure 14. D1: X and Y parameters versus the Objective Function values.

Figure 15. Transmittance Functions of the Damaged FE model and D1 case between accelerometer
1 and 3 at Y‑axis.

Figure 16. D1: Damaged FE model.

Equivalent results are obtained for the other damage cases. All the results for damage
cases D3, D5, and D7 are summarized in Table 3, along with the corresponding
Figures 17–23 that showcase the damaged FE model and the part parameter for each case.
The different combinations of the locational parameters were expected even with those
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large differences. The selected damaged tube is placed at an angle (diagonal tube) with
the respected axis, and multiple combinations exist that result in the same damaged area.
The examined cases were successful, and the physical damage is always included inside
the model’s damaged area, highlighting the effectiveness of the proposed Damage Detec‑
tion Framework.

Table 3. Parameter results for each damage case.

Case
Parameters Figures

X Y Z Part pE pD
Damaged
FE Model

Part
Parameter

D1 0.38 0.11 ‑ 1 0.767 1.016 Figure 16 Figure 13

D5 0.54 0.50 ‑ 5 0.730 1.023 Figure 17 Figure 19

D3 0.73 ‑ 0.60 3 0.702 1.100 Figure 20 Figure 21

D7 0.63 ‑ 0.81 7 0.780 0.970 Figure 22 Figure 23

Figure 17. D5: Damaged FE model.

Regarding the damaged case D5, Figure 18 shows the TFs of the damaged FE model
and the experimental reconstructed curve of the D5 case. It is clear that the damage FE
model has a high linear correlation with the reconstructed curve after the optimization
procedure.

Figure 18. Transmittance Functions of the Damaged FE model and D5 case between accelerometer
1 and 3 at Y‑axis.
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Figure 19. D5: Part parameter (P) versus the Objective Function values.

Figure 20. D3: Damaged FE model.

Figure 21. D3: Part parameter (P) versus the Objective Function values.
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Figure 22. D7: Damaged FE model.

Figure 23. D7: Part parameter (P) versus the Objective Function values.

The results of the presented procedures show that, in all four damage cases, the frame‑
work was able to detect the structural damage. Additionally, the modeling error rate
between the complex healthy structure and the Optimal FE model would not allow the
framework to be used without the use of DTW. In conclusion, the framework can be ap‑
plied without further processing of the TF curves if the modeling error is small, as already
demonstrated in a simpler experimental setup, while in the case of complex structures
where modeling error cannot be avoided, the use of DTW and reconstructed curves can
provide a solution and allow the presented framework to be applied and the damage iden‑
tified.

5. Conclusions
Amethodology using amodel‑based damage detectionmethod is presented using an

FEmodel update procedure. Themain goal is to advance the already existingmethod to be
applicable to structures where the modeling error cannot be minimized. The development
of an accurate FE model for simple structures may be an easy task, while in complex struc‑
tures the modeling error may be unavoidable. In such cases, with a high rate of modeling
error even after the optimization of the FE model, the previous version of the framework
would not be accurate enough. To overcome this obstacle, a new procedure using the Dy‑
namic TimeWrapping (DTW) algorithm is implemented in order to minimize the effect of
the modeling error. DTW enables the damaged TF curve of the experimental structure to
be reconstructed around the FE model curve. Therefore, the new damaged curve and the
FE model have the same differences as the actual experimental damaged curve with the
healthy experimental TF curve of the structure. In the case that the modeling error of the
FEmodel is small, the framework can also be used without the application of DTW, as pre‑
sented previously, although using DTW even with a small modeling error would increase



Sensors 2023, 23, 591 21 of 23

the accuracy. In addition, limitations must also be addressed. Without the use of the DTW,
the framework relies only on the accuracy of the optimal FE model, which may also be ac‑
ceptable depending on the structure considered. If the DTW is used, then the modeling
error is minimized, but even then the FE model curves must have similar characteristics
(e.g., peaks and valleys) through the frequency domain. In addition, the framework can
effectively locate the damaged area, but it cannot quantify the damage, as this work is also
affected by other parameters, such as the size of the input damage in the FEmodel. Future
research based on the proposed method could focus on other methods that could recreate
the damaged pattern, but also the application to systems exhibiting non‑linear behavior.

The effectiveness of the proposed framework is demonstrated on an experimental
composite CFRP truss structure. As was shown, the peaks of the TF curves between the FE
model and the healthy structure had a high percentage of error. While the error between
individual peaks of the curves would reach a maximum value up to 4%, the accumulated
error from all the curves and features of the structure would lead to a false indication of
the damage. The recreation of the pattern allowed the wrapping of the curves in a non‑
linear manner and thus allowed all the important features of the curves to be kept while
minimizing the accumulated error. Four cases of damage developed at different locations
of the structure in the CFRP material. The framework, with the application of DTW, was
able to successfully locate all four damage locations.
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