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Abstract: The evolution towards next-generation Beyond 5G (B5G) networks will require not only 

innovation in transport technologies but also the adoption of smarter, more efficient operations of 

the use cases that are foreseen to be the high consumers of network resources in the next decades. 

Among different B5G use cases, the Digital Twin (DT) has been identified as a key high bandwidth-

demanding use case. The creation and operation of a DT require the continuous collection of an 

enormous and widely distributed amount of sensor telemetry data which can overwhelm the 

transport layer. Therefore, the reduction in such transported telemetry data is an essential objective 

of smart use case operation. Moreover, deep telemetry data analysis, i.e., anomaly detection, can be 

executed in a hierarchical way to reduce the processing needed to perform such analysis in a cen-

tralized way. In this paper, we propose a smart management system consisting of a hierarchical 

architecture for telemetry sensor data analysis using deep autoencoders (AEs). The system contains 

AE-based methods for the adaptive compression of telemetry time series data using pools of AEs 

(called AAC), as well as for anomaly detection in single (called SS-AD) and multiple (called MS-

AGD) sensor streams. Numerical results using experimental telemetry data show compression ra-

tios of up to 64% with reconstruction errors of less than 1%, clearly improving upon the benchmark 

state-of-the-art methods. In addition, fast and accurate anomaly detection is demonstrated for both 

single and multiple-sensor scenarios. Finally, a great reduction in transport network capacity re-

sources of 50% and more is obtained by smart use case operation for distributed DT scenarios. 
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1. Introduction 

Time series data are one of the most predominantly generated in modern information 

systems [1], with sensors being responsible for a larger portion of such data production. 

Among several applications requiring exhaustive and extensive sensor data collection, the 

creation and synchronization of Digital Twins (DT) have been attracting recent and large 

interest from both academic and industrial sectors [2]. The data generated from this type 

of application needs to be collected and processed at a high resolution, which entails high 

monitoring/telemetry frequencies, i.e., sub-second sampling rates. Several examples of 

DTs for the modeling and management of smart systems can be found in the literature, 

e.g., for smart manufacturing [3], drinking water management and distribution systems 

[4], and optical communications [5]. 

Typically, DTs require the collection of data from widely distributed sensor network 

systems and their transport to a centralized place, e.g., the cloud, where it is processed. In 

fact, the DT is a well-known use case of an emerging service that is pushing the evolution 

of current transport networks towards the beyond 5G (B5G) era [6]. This type of service 

requires reliable and high-bitrate connectivity between plenty of physical locations 
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holding heterogeneous sources (wireless and wired sensors) and the premises where the 

DT is built and managed, which commonly entails connectivity across domains including 

access, metro, and core networks. Therefore, developing solutions to compress these 

dense monitoring data before their transport is essential to reduce operational costs in-

cluding connectivity, storage, and energy consumption [7]. 

Regarding different compression techniques suitable for time series data, two main 

categories can be identified: lossless and lossy [8]. On the one hand, lossless compression 

means that the decompressed data are identical to the compressed data, which tends to 

produce low compression ratios, e.g., 50% compression. On the other hand, lossy com-

pression techniques are intended to produce a trade-off between the accuracy of the re-

constructed data and higher compression ratios, e.g., 90% compression. For the latter cat-

egory, the use of deep learning (DL) methods has attracted special interest from the re-

search community. Among different DL techniques, autoencoders (AE) represent a prom-

ising opportunity in the field of lossy compression. Basically, AEs are a type of deep neu-

ral network that has an encoder and a decoder part. The encoder part compresses input 

data into a number of representations called latent features which have a size much 

smaller than the input dimension. These representations form the latent space (LS) of the 

AE. The encoder is usually able to compress the data by discarding non-relevant parts of 

the data while keeping only the parts that can be effectively used for reconstruction in the 

decoder part. Another advantage of using AEs is their intrinsic ability for anomaly detec-

tion [9]. Note that this allows performing not only compression but also data analysis at 

the source before transport. Thus, locally distributed data analysis can be performed and 

used to add more intelligence to the monitoring system, e.g., increasing a nominal moni-

toring sampling rate when an anomaly is detected [10]. 

In this paper, we propose a novel method for the lossy compression of time series 

data using deep AEs along with two methods for anomaly detection that operate on both 

single and multiple time series. For the compression, instead of compressing the input 

data using a single AE, a pool of AEs with a different number of latent features is used. 

Thus, the Adaptive AE-based Compression (AAC) method is presented as an autonomous 

process that is able to choose the best AE in the pool, i.e., the one that reaches a target 

reconstruction error with the minimum LS size. The variability of the number of latent 

features means that the size of the compressed data is not fixed, which draws similarities 

between AE-based compression and conventional compression methods in which the 

characteristics of the input data play an important role in the compression ratio. It also 

means that the compression is adaptive to the variations in the data and hence, compres-

sion size is indeed a variable that can be analyzed as additional and extended information 

of collected monitoring data. It is worth mentioning that AEs are trained using data from 

the specific sensor/s that they operate. However, since this may not be available from the 

beginning of sensor operation, generic AEs with moderated compression rates trained for 

heterogeneous sensor data are used until enough data are collected to train the specific 

AEs. 

Regarding the anomaly detection part, the first method, called Single Sensor Anomaly 

Detection (SS-AD), takes advantage of the specificity of the trained AEs to detect when the 

collected data contains an anomaly, e.g., if the sensor malfunctions or some kind of addi-

tional noise is introduced to the data from an external source. The second method, called 

the Multiple Sensor Anomalous Group Diagnosis (MS-AGD), detects anomalies that can af-

fect several sensors in a correlated way, even when they cannot be detected by SS-AD in 

an independent time series. It does this by comparing data points with a certain degree of 

reconstruction error values across all the time series involved, making it able to detect 

subtle correlated anomalies. 

The remainder of this paper is as follows: Section 2 describes the latest related work 

on the subject of time series compression and anomaly detection. Section 3 describes the 

network architecture and main components. Section 4 describes our contribution in terms 

of the algorithms for compression and anomaly detection. Section 5 shows the 
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performance evaluation in a simulated environment using an experimental data set, in-

cluding a comparison to state-of-the-art methods. Eventually, Section 6 draws the main 

conclusions of this research work. 

2. Related Work 

The widespread nature of time series data and the necessity to reduce its continually 

growing sizes make the task of time series data compression very important, so plenty of 

work is found in the literature about this topic. In addition, due to its importance in mod-

ern systems, such as sensor networks, IoT, and DT systems, anomaly detection in time 

series data is discussed fairly. Table 1 summarizes the main contributions in the literature 

on time series compression and anomaly detection. 

2.1. Lossy Time Series Data Compression 

The authors of [11,12] tackled the problem of lossy compression in time series data 

using different techniques. In [11], a piecewise regression technique is used in order to 

compress time series data from the smart grid. The approach depended on three regres-

sion algorithms, each specializing in a class of polynomial functions, which were applied 

incrementally. The final compression factor depended on a user-defined maximum toler-

able deviation between the original time series and the reconstructed one. The authors of 

[13] proposed a method of lossy compression that depends on extrema (minimum and 

maximum) extracted from the data. Different definitions and different importance levels 

for extrema were applied in several pass algorithms. The authors in [12] performed an 

evaluation of five data compression algorithms and five change detection algorithms on 

several datasets. Their approach focused on finding out how these different techniques 

perform under different datasets with different characteristics, and how best to choose the 

parameters under which these algorithms will work properly. 

Regarding time series compression using AEs, the authors in [14] developed an algo-

rithm called LFZip (Lossy Floating-point Zip) which compresses time series by using an 

encoder and a decoder that is based on the prediction-quantization-entropy coder frame-

work, with works under the mean absolute error metric that have a maximum allowable 

error that is defined by the user. Another variant of the AE, the Convolutional AE, was 

used by the authors in [15] to compress and decompress electroencephalogram signals in 

order to reduce data size, thus conserving the energy of the edge devices reading and 

transmitting these signals. Another medical application used AEs to compress data col-

lected from wearable IoT data that have a limited energy source [16], using three param-

eters: compression ratio, reconstruction error, and energy consumption, to optimize the 

learning process. Furthermore, for IoT applications with limited processing memory, the 

authors in [17] developed a low memory, low latency algorithm for time series compres-

sion that allows decompressing later at speeds up to 3 GB/s by using a high-speed fore-

casting algorithm. A Recurrent Neural Network (RNN)-based AE was used in [18], com-

bined with data segmentation and aggregation into segments of variable length but with 

a similar total variation. Similarly, RNN AEs were used in [19] to partially reconstruct 

multi-dimensional time series data effectively, allowing insight into the operating state of 

some of the sensors in the system without the need for full reconstruction. 

2.2. Anomaly Detection in Time Series 

A remarkable list of use cases and algorithms for anomaly detection in time series 

can be found in the literature [20,21]. In [20], the authors used deep AEs trained with raw 

time series data from flight sensors collected under nominal operating conditions and ex-

amined the reconstruction error to detect faults with up to 97% accuracy and identify two 

types of faults with no false positives. Similarly, deep AEs inspired by the robust principal 

component analysis were developed in [22] to detect outliers and perform de-noising even 

without access to clean data. The method proposed in [23], called GGM-VAE, uses a Gated 
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Recurrent Unit (GRU) and is used to discover the correlation in multi-dimensional time 

series data. Another approach that tackles anomaly detection in multivariate time series 

is the method described in [24]. It describes the usage of 1D convolutional neural net-

works, where the convolutions are performed over the inputs across the temporal axis of 

the data, to detect anomalies in sewer processing monitoring data by checking if the re-

construction error in the decoding stage is above a certain value. 

In addition, in the scope of anomaly detection, the authors in [25] used a technique 

they called smoothness inducing sequential variational AEs (SISVAE), which is based on 

Variational AEs (VAE) but has a backbone in RNNs. Their method uses the mean and 

variance of each sample as parameters, which means the compression process is not rigid 

and is flexible to the variations in the data. Moreover, to compensate for the susceptibility 

to anomalies that this approach generates, a smoothness-inducing prior over possible es-

timations is used, thus penalizing non-smooth estimations. The authors in [26] used the 

Echo-State Network, which is a method used to train RNN where only parameters for 

output are learned in order to train VAEs to detect anomalies in a multivariate time series, 

making use of the temporal dependence in the data. A hybrid approach for anomaly de-

tection was used in [27], where Long-Short Term Memory (LSTM)-based AEs trained on 

normal samples were used to extract features from both normal samples and ones con-

taining anomalies where an SVM classifier is used for detection purposes. A squeezed 

Convolutional VAE (SCVAE) was modeled to detect anomalies in edge devices of IoT as 

described in [28], and the reconstruction probability, which is a probabilistic measure that 

takes into account the variability of the distribution of variables, was used to tune VAEs 

to detect anomalies in [29]. Finally, the authors in [21] conducted a survey of the anomaly 

detection methods for time series across a variety of domains and concluded that the main 

challenges remain the real-time processing, online adaptive learning, multivariate data, 

the shortage of labels anomaly data, and the difficulty in obtaining it, and the lack of a 

generalized approach which works in all cases. 

Table 1. State-of-the-art summary (sorted by year). 

Ref Year 
Compres-

sion 

Anomaly De-

tection 

Processing 

Power 
Summary of Methods 

[13] 2011 yes no High 
Extracting Important Minima 

and Maxima 

[11] 2014 yes no High Piecewise Regression 

[29] 2015 no yes High 
Reconstruction Probability 

Analysis 

[20] 2016 no yes Low Deep AEs 

[26] 2016 no yes Low Echo State Training; RNN 

[12] 2017 yes no - 
Evaluating Different Time Se-

ries Compression Methods 

[18] 2017 yes no Medium 
Adaptive Piecewise Recurrent 

AE 

[22] 2017 no yes Medium 
Deep AE; Principle Compo-

nent Analysis 

[15] 2018 yes no Medium Convolutional AEs 

[17] 2018 yes no Low 
Low Memory, Low Latency 

Forecasting Algorithm 

[19] 2018 yes no Low 
Recurrent AEs; Partial Recon-

struction 

[23] 2018 no yes Low Gated Recurrent Units 

[28] 2018 no yes Low Squeezed Convolutional AE 
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[14] 2020 yes no Medium 
Prediction-Quantization-En-

tropy Encoder 

[24] 2020 no yes Low 
1D Convolutional Neural Net-

work 

[21] 2020 no yes - Survey of several techniques 

[27] 2020 no yes Medium LSTM AEs; SVM Classifier 

[16] 2020 yes no Low AEs 

[25] 2021 no yes Medium 
Smoothness Inducing Sequen-

tial Variational AE 

2.3. Summary and Contributions 

As can be seen, to the best of our knowledge, we can conclude that: (i) none of the 

methods perform both operations (compression + anomaly detection) at the same time; 

(ii) some of them require a lot of real-time processing power at the level of the agent per-

forming the compression or the anomaly detection; and (iii) some of them are only de-

ployable after extensive training using data from the targeted systems, which may delay 

the deployment process. 

In this work, we propose a hierarchical architecture for telemetry analysis that ena-

bles efficient and adaptive compression (by means of the AAC method) and anomaly de-

tection (by means of SS-AD and MS-AGD methods) simultaneously. Hence, our proposed 

novel system outperforms the methods in the literature in the following ways: (i) performs 

both compression and anomaly detection at the same time using the same models based 

on AEs; (ii) requires very little processing power of the agent by using AEs for both com-

pression and anomaly detection tasks; and (iii) enables immediate deployment by using 

AEs trained with general-purpose data, which allows performing at acceptable levels of 

compression and reconstruction errors until enough sensor-specific data are collected to 

train system-specific AEs. 

3. AE-Based Telemetry Compression and Anomaly Detection 

3.1. Concept and Architecture 

The reference scenario is sketched in Figure 1a, where a physical system contains a 

plethora of different sensors that generate heterogeneous telemetry data that need to be 

gathered and analyzed for several purposes such as smart autonomous operation. Alt-

hough the example in Figure 1 sketches a water distribution system, the proposed archi-

tecture and algorithms are designed to fit with any smart system collecting time series 

telemetry data such as smart manufacturing and communication networks, just to men-

tion a few. Without loss of generality, let us assume that the sensors generate data period-

ically, with a fixed time interval (that can be different among sensors). Therefore, every 

single sensor is a source of one or more time series telemetry data streams. All these data 

flows need to be transported from their sources to the centralized location where the DT 

is running. A typical DT architecture consists of three essential components: (i) a Data Lake, 

where the collected, pre-processed, and post-processed data are stored; (ii) the Sandbox 

Domain, containing the different models and algorithms that emulate the different com-

ponents of the physical system; and (iii) the Digital Twin Manager (DTM) that is in charge 

of several actions including the management of the models in the sandbox domain. More-

over, the DTM interfaces with the Application Manager in charge of both the physical and 

DT systems. Note that the Application Manager uses the DT to analyze the current and 

future state of the physical system, which can be achieved by combining the collected data 

available in the Data Lake and the models and algorithms in the sandbox domain. The 

result of such analysis can lead to specific actions to be executed in the physical system. 

Moreover, the Application Manager can configure rules and policies to the DTM, so that 

the latter can perform tasks such as intelligent data aggregation and anomaly detection in 

an autonomous way. 
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Figure 1. Reference scenario (a); overall architecture (b). 

Figure 1b provides a deeper insight into the hierarchical architecture needed to run 

the proposed telemetry data compression and analysis. The first level is at the sensor layer 

where data are generated periodically. For the sake of simplicity, let us assume that sen-

sors are those physical elements that are able to monitor one specific metric, e.g., temper-

ature, pressure, etc. Then, a number of these sensors are integrated into a monitoring de-

vice, that provides the support (computing, power) to those sensors, as well as contains 

the needed transceivers and interfaces (wired or wireless) required to eject the data out of 

the device. Since the vast majority of multi-purpose monitoring devices are built on top 

of powerful boards such as Arduino or Raspberry Pi [30,31], a software-based Device Agent 

(DA) is deployed in the device for several purposes, including telemetry data processing 

and device control and management. Specifically, in the context of our work, we consider 

that the DA contains the AEs necessary to compress the collected telemetry data and per-

form anomaly detection. Then, the DA sends the compressed data to the DTM that is 

hosted in the remote location. Along with the compressed data, three types of metadata 

are sent: (i) the device/sensors identification data, including location; (ii) the compression 

method metadata, including aspects such as the AE id that is required to decompress the 

data, as well as the expected reconstruction error; and (iii) the anomaly detection diagno-

sis, in case that some anomaly affecting one or multiple sensors is detected. 

The second element in the proposed hierarchical architecture is the Cluster Agent 

(CA) which runs as one of the processes in DTM and aggregates the inputs received from 

a number of devices that form a group (cluster). The meaning of a cluster is open: it can 

represent any subset of monitoring devices in a physical subsystem. Without loss of gen-

erality, we assume that the creation of clusters is part of the design of both the physical 

system and DT, which is out of the scope of this paper. Each CA is in charge of decom-

pressing the data received from its nested DAs and storing such decompressed data in the 

Data Lake. Moreover, it is also in charge of training AEs as soon as new relevant data are 

collected and uploading new models to the DAs in an automatized manner. Finally, it 

processes the anomaly detection diagnosis reports received from DAs, performs multiple 

anomaly detection if needed, and notifies the application manager in case of some anom-

aly event has been detected. 

The next subsection presents a detailed architecture of the main building blocks run-

ning in DA and CA elements, including the three main processes previously introduced: 

Adaptive AE-based Compression (AAC), Single Sensor Anomaly Detection (SS-AD), and Mul-

tiple Sensor Anomalous Group Diagnosis (MS-AGD). 
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3.2. Main Components 

Figure 2 details the architecture previously sketched in Figure 1b, showing the key 

building blocks and their relationship. The figure focuses on the processes related to te-

lemetry data compression and anomaly detection. For the sake of simplicity, the processes 

of training and updating AEs are not depicted in the figure. Let us assume that the DA 

implements a telemetry database (DB) that temporarily stores the data injected by each of 

the sensors in the device. We can assume that this data collection is accomplished at a very 

narrow telemetry interval, e.g., one measurement per second and device. Then, a larger 

monitoring interval, e.g., every minute, is configured to retrieve data from the telemetry DB 

and compress them. Thus, let us denote xst as the telemetry measurements collected during 

monitoring interval t by sensor s. These data are then fed to the compressor module that is 

responsible for running the AAC process. By means of the AE pool, adaptive and effective 

compression is achieved. The compressed telemetry data (denoted as yst) as well as the 

identifier of the AE selected by AAC for compression (denoted as idst) are sent to the CA. 

Without loss of generality, we assume that CA process the received compressed data im-

mediately upon their reception, calling a simple de-compressor process that uses the de-

coder of the selected AE to reconstruct the original telemetry stream (denoted as x’st) and 

inject it into the data lake. 

DA 

Telemetry DB

…

Sensor 1 Sensor n

AAC 

xst

CA

…

Telemetry DB

yst , idst

AE pool

Data Lake

Decoder AE pool

x’st …

…
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…
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Manager

Device 1

Device n

Device
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…

req.

rst …
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Figure 2. Detailed architecture and key components. 

In addition to the compressed telemetry data, the AAC process also computes the 

reconstruction error vector obtained by the selected AE (denoted as rst). This error is de-

fined as the difference between the original and reconstructed telemetry measurements. 

This relevant output is locally processed at the DA for anomaly detection purposes. Spe-

cifically, the DA manager receives a reconstruction error vector per each sensor and mon-

itoring interval and triggers two different anomaly detection processes. On the one hand, 

the SS-AD analyzes the individual reconstruction error of each sensor in order to find an 

anomalous error pattern such as continuous large error. On the other hand, the MS-AGD 

analyzes the reconstruction errors of the sensors in the device and performs a correlated 

analysis in order to identify subtle anomalies affecting several sensors at the same time. 

The diagnosis generated by each of the methods is then processed by the DA manager 
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that generates a device diagnosis report when a remarkable event is detected by one or 

both methods. 

Such device diagnosis report (if generated) is sent to the CA manager which can trig-

ger a wider and deeper anomaly analysis. In particular, it can request to the DA of the 

devices under its control those reconstruction error vectors that have not been sent before. 

As an illustrative example, let us imagine that an anomaly in a temperature sensor has 

been detected in device i. The CA can then request the reconstruction error of the rest of 

the temperature sensors of all the devices in the cluster in order to perform a group anal-

ysis and detect, e.g., an incipient temperature anomaly in other elements of the system. 

Note that, to allow this analysis, we consider that DA managers temporarily store recon-

struction errors even when they are not detecting any anomaly. Finally, the results of re-

ceived device diagnosis reports generated by DA managers and the sensor group analysis 

(if proceeding) generated by the CA manager compose the cluster diagnosis report that is 

sent to the application manager. 

The next section presents detailed algorithms for AAC, SS-AD, and MS-AGD pro-

cesses. 

4. Algorithms 

4.1. Notation 

Table 2 provides the main notations that are consistently used in the following algo-

rithms. 

Table 2. Notations. 

S Set of sensors 

G 
Set of groups. A group comprises a set of sensors that can be the sensors in a 

given device or the sensors of the same type in a given cluster 

Sg⊂ S Subset of sensors belonging to group g⊂ G 

Z Set of allowable sizes for the LS 

w Monitoring interval duration, in time units 

Ψs  Pool of AEs for compressing telemetry data from sensor s  

xst Raw telemetry data vector from sensor s at time interval t 

yst Compressed telemetry data vector from sensor s at time interval t 

x’st Reconstructed telemetry data vector from sensor s at time interval t 

idst Id of the AE used to compress data from sensor s at time interval t 

rst Reconstruction error vector from sensor s at time interval t 

DB Telemetry Database for training and testing purposes 

εcomp Target average reconstruction error for compression 

εanom Individual reconstruction error for anomaly detection 

α Number of consecutive error values above anomaly detection threshold 

β Number of total error values above anomaly detection threshold 

4.2. AAC 

Algorithm 1 details the pseudo-code of the AAC process which runs for each sensor 

s in a device and is executed at every interval t a new telemetry stream is available. As 

introduced in the previous section, it receives the raw telemetry data stream xst containing 

a number w of measurements, the pool of AEs of the sensor Ψs, and the reconstruction 

error threshold εcomp to determine whether a given compressed stream yst produces enough 

of an accurately reconstructed telemetry stream when decoded. In addition to yst, the al-

gorithm also returns the identifier of the selected AE in the pool idst, as well as the recon-

struction error vector rst. 

After initializing output variables (line 1 of Algorithm 1), the set of AEs in the pool 

Ψs are sorted in ascendant order of size of LS (line 2). Thus, they are going to be 
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sequentially evaluated in a loop from the highest to lowest compression ratio (line 3). 

Given an AE ψ, the input data are normalized with the min-max values stored as model 

coefficients (line 4). Then, the normalized input x is propagated through the encoder part 

and the compressed stream y is obtained (line 5). At this point, the decoder is used to 

compute the reconstructed data stream x’, which is used to compute the reconstruction 

error r that ψ produces (lines 6–7). Note that if the average reconstruction error is below 

threshold εcomp, then an accurate compression is found, and the AE pool search is inter-

rupted (lines 8–10). Finally, the resultant output is returned (line 11). Note that this output 

can be either a compressed telemetry stream if an AE producing an average reconstruction 

error below εcomp is found or the original input if no accurate compression can be effectively 

accomplished. 

Algorithm 1: AAC method. 

INPUT: xst, Ψs, εcomp 

OUTPUT: yst, idst, rst 

1. 

2 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

yst  ← xst; idst ← ∅; rst ← zeros(w) 

sort(Ψs, |ψ.latent|, “ascendent”) 

for each ψ ∈ Ψs: 

x ← normalize(xst, ψ.minmax) 

y ← ψ.encoder.propagate(x) 

x’ ← ψ.decoder.propagate(y) 

r ← computeReconstructionError(x, x’) 

if avg(r) ≤ εcomp: 

yst  ← y; idst ← ψ.id; rst ← r 

break 

return yst, idst, rst 

Recall that we consider that generic AEs with moderated compression rates trained 

from heterogeneous generic sensor data are used until enough sensor-specific data are 

collected to train ad-hoc AEs that better compress the data of a given sensor. Without loss 

of generality, we can assume that this procedure can run periodically as soon as telemetry 

data from sensors are available. Algorithm 2 details the proposed procedure to train and 

update the AEs in a pool. Thus, given an AE pool Ψ (that could be initially empty) and a 

database DB containing telemetry measurements (that can be either generic or sensor-

specific), the algorithm trains a set of AEs with LS sizes defined in set Z in order to find 

new models that improve existing ones. 

Algorithm 2: AE pool update. 

INPUT: Ψs, Z, DB 

OUTPUT: Ψs 

1. 

2 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

DBtrain, DBtest ← split(DB) 

for each z ∈ Z: 

ψnew ← trainAE(DBtrain, z) 

ψcur ← select(Ψs, |ψ.latent|= z) 

if ψcur = ∅ then 

Ψs.add(ψnew) 

else 

Y ← ψnew.encoder.propagate(DBtest) 

X’ ← ψnew.decoder.propagate(Y) 

rnew ← computeReconstructionError (DBtest, X’) 

Y ← ψcur.encoder.propagate(DBtest) 

X’ ← ψcur.decoder.propagate(Y) 



Sensors 2023, 23, 1043 10 of 19 
 

 

13. 

14. 

15. 

16. 

rcur ← computeReconstructionError (DBtest, X’) 

if avg(rnew) < avg(rcur) and max(rnew) < max(rcur) then 

Ψs.replace(ψcur, ψnew) 

return Ψs 

The procedure starts by splitting the data in DB in both training and testing datasets, 

e.g., following a typical 80–20% split [32] (line 1 in Algorithm 2). Then, each LS size z in Z 

is selected and a new AE ψnew is trained for such LS size (lines 2–3). This new AE needs to 

be compared against the current one in the pool with the same LS size (denoted as ψcur) 

and therefore, it is retrieved from the pool (line 4). Note that ψnew is directly added to the 

pool if there is no currently available AE with such size z (lines 5–6). Otherwise, the testing 

dataset is used to evaluate the reconstruction error in both ψnew and ψcur (lines 8–13). Thus, 

the current AE is replaced by the new one if both average and maximum reconstruction 

errors are reduced by the new AE (lines 14–15). Eventually, the updated AE pool is re-

turned. 

4.3. SS-AD 

Algorithm 3 details the pseudo-code of the SS-AD procedure that runs locally in the 

DA every time a new compressed telemetry stream is obtained and hence, a new recon-

struction error vector rst is available. Since the principle of anomaly detection using AEs 

relies on the fact that an anomalous input will be poorly reconstructed, an anomaly error 

detection threshold εanom is needed to perform such detection. Indeed, anomaly detection 

is triggered if either one of the following conditions is met: (i) a number α of consecutive 

measurements produced a reconstruction error larger than threshold εanom or (ii) a number 

β of total measurements (non-consecutive) produced a reconstruction error larger than 

threshold εanom. 

The algorithm starts by initializing the counters of the consecutive and total number 

of measurements above the error threshold (line 1 in Algorithm 3). Then, each single error 

value in the rst vector is evaluated and compared with the threshold (lines 2–3). When the 

error exceeds the thresholds, then both counters are increased in one unit (lines 4–5). At 

this point, it is worth checking if one of the anomaly detection conditions is met and if so, 

the procedure stops and returns an anomaly detection event (lines 6–7). Therefore, it is 

necessary to reset the counter of consecutive values above the threshold before analyzing 

the next error value (lines 8–9). Finally, no anomaly event is returned in the case that none 

of the conditions is met (line 10). 

Algorithm 3: SS-AD 

INPUT: rst, εanom, α, β 

OUTPUT: anomaly 

1. 

2 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

kcons, ktotal ← 0 

for each r ∈ rst do: 

if r > εanom then 

kcons ← kcons +1 

ktotal ← ktotal +1 

if kcons == α or ktotal = β then 

return True 

else 

kcons ← 0 

return False 
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4.4. MS-AGD 

The pseudo-code of the MS-AGD procedure is detailed in Algorithm 4, which aims 

at computing a score that increases when a number of sensors within a group generate a 

high reconstruction error at the same time. Indeed, this score has the form of a vector of 

w positions, indicating the score at a given time unit within the analyzed monitoring in-

terval (which allows fine multiple anomaly detection analysis). Moreover, recall that the 

MS-AGD can be executed at the device level, e.g., analyzing all (or a subset) of the sensors 

of a given device, or at the cluster level, e.g., analyzing all (or a subset) of the sensors in a 

given cluster. Regardless of the case, let us consider that the reconstruction error vectors 

obtained at a given monitoring time interval of a given group of sensors are denoted as R. 

This is the main input of MS-AGD, which also requires the specific parameter γ that de-

fines the time interval size needed to compute the score. 

The first step is to initialize the score vector, as well as the auxiliary matrix Q that is 

going to facilitate score computation (lines 1–2 of Algorithm 4). In particular, Q is a sparse 

0–1 matrix, where cell <i, j> is 1 if and only if the sensor i at time unit j took a measurement 

above the average value of that sensor within monitoring interval t. After computing Q 

(lines 3–9), the score is computed for every time unit within the monitoring interval (lines 

10–13). The score of each time unit i is the product of components a and b. On the one 

hand, a is the normalized sum of 1 s in Q that time, i.e., which proportion of sensors gen-

erates a measurement that produced a reconstruction error above the average. On the 

other hand, b computes the normalized dot product of Q in the last γ time units. Note that 

a large value indicates that there are consecutive time units where several sensors are 

above the average. In particular, b = 1 when all sensors in Sg stay above average recon-

struction error during a consecutive number γ of time units. 

Algorithm 4: MS-AGD 

INPUT: R = {rst, ∀s ∈ Sg}, γ 

OUTPUT: score 

1. 

2 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

score ← zeros(w) 

Q ← zeros(|Sg|, w) 

i ← 0 

for s ∈Sg do 

i ← i + 1 

ravg ← avg(R.rst) 

for j == 1..w do 

if R.rst[j] > ravg then 

Q[i,j] ← 1 

for j == γ..w do 

a ← sum(Q[:, j])/|Sg| 

b ← dotproduct(Q[:,j-γ+1:j])/γ 

score[j] ← a·b 

return score 

To better understand the rationale behind the MS-AGD score, Figure 3 shows the 

reconstruction error rst and the score in a monitoring time interval of w=20 of an example 

with three sensors. Three different cases are depicted, assuming γ=5: (i) the error stays 

constant and low for all the time and sensors (no anomaly, Figure 3a); (ii) the error in-

creases in all the sensors but not at the same time (non -correlated subtle anomaly, Figure 

3b); and (iii) the error increases in all the sensors and partially coincides in time (correlated 

subtle anomaly, Figure 3c). For the sake of simplicity, the average reconstruction error is 

around 0.5% in all the sensors in Figure 3a and around 1.5% in all the sensors in Figure 

3b,c. Colored circles indicate when the reconstruction error is above the threshold. As can 
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be observed, the score reaches significant values (above 0.5) only when several sensors 

exceed the average reconstruction error at the same time. 

S1 S2 S3

Time unit 

r s
t

sc
o

re

1 w 1 w 1 w

2%

1%

0%

1

0

0.5

(a) No anomaly (b) Non-correlated anomaly (c) Correlated anomaly

 

Figure 3. Example of the MS-AGD score: no (a), non-correlated (b), and correlated (c) anomaly. 

5. Performance Evaluation 

In this section, we first introduce the simulation environment developed to evaluate 

the methods and algorithms presented in previous sections. Then, we analyze the perfor-

mance of AAC, SS-AD, and MS-AGD using telemetry data from a real physical system. 

Finally, we analyze the impact of the proposed methods on a network case study where 

transport network capacity savings are shown. 

5.1. Simulation Environment 

For numerical evaluation purposes, we implemented a Python-based simulator re-

producing the main blocks of the architecture presented in Figure 2, as well as the algo-

rithms in Section 4. In particular, a CA with three Das was configured, where every DA 

processes data from one single sensor. Sensors were implemented as time series data gen-

erators injecting real measurements (one per second) from the Water Distribution (WADI) 

dataset [33]. The WADI dataset contains experimental sensor data measured in a water 

distribution testbed under different conditions, including normal operation and operation 

in the presence of system perturbations. The testbed comprises several water tanks as well 

as chemical dosing systems, booster pumps, valves, instrumentation, and analyzers, thus 

forming a complete and appropriate physical system for the performance evaluation of 

the proposed methods. Among all available data in WADI, we selected three time series 

from three different sensor types (hereafter, referred to as S1, S2, and S3) with different 

behaviors and patterns. Specifically, the selected sensors are located in a water pressure 

valve and collect measurements of pressure, volume, and voltage. Figure 4 shows an ex-

ample of each sensor time series data under normal operation. As can be observed, they 

are different in terms of time patterns, as well as in the magnitude and range of the telem-

etry data. Note that these data cover typical and widespread patterns observed in telem-

etry data, which will allow extending this performance evaluation analysis to other DT-

based systems such as smart manufacturing and communication networks. 
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Figure 4. Example of the sensor data time series processed by each DA. 

For the sake of simplicity, we assume that AEs in the pool of CA and Das are trained 

using Algorithm 2 after a period of raw data collection to populate the initial database DB. 

Without loss of generality, we assume that the measurements collected during this period 

belong to the normal operation of the physical system. Then, fixing interval w to 256 sec-

onds, we obtained 7.68e5 samples for training, as well as 9.6e4 samples for testing. Re-

garding AE pool configuration, we considered four different AEs with Z = {4, 8, 16, 32} LS 

sizes. In all the cases, we considered two hidden layers, with 128 and 64 hidden neurons 

each. We used the keras library for AE training and testing, as well as pandas and numpy to 

load and manipulate the datasets. AEs were trained during 100 epochs using the adam 

optimizer and mean absolute errors as loss function, which results in reconstruction accu-

racy values around 99%. 

5.2. AAC Performance 

The first numerical study is focused on evaluating the performance of the AAC pro-

cedure in Algorithm 1 once the AE pool of every DA has been trained with the telemetry 

data of its specific sensor. Figure 5 shows the compression factor as a function of target 

reconstruction error εcomp for both normal operation (Figure 5a) and operation with per-

turbations (Figure 5b) after 9 hours of simulated time (~32,000 monitoring samples per 

sensor). The compression factor was normalized between 0 and 1, where 0 means that the 

AAC cannot compress any measurement below the target εcomp and 1 means that all meas-

urements are compressed with the AE with the lowest LS size (in our case, 4). As can be 

observed, the AAC shows the desired adaptability, sharply increasing the compression 

factor when εcomp is relaxed. Interestingly, we can observe that different time series produce 

different compression performances, even when AEs were specifically trained for that 

data. However, maximum compression is always achieved with low reconstruction error 

(0.05) under normal system operation and remains very high when perturbations appear 

in the system, which validates the applicability of the proposed method in systems subject 

to changes in the telemetry data generated. 
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Figure 5. AAC performance under normal operation (a) and operation with perturbations (b). 

Once the AAC has been presented as an adaptive and polyvalent method, let us now 

focus on evaluating its performance compared to the two benchmarking methods. Firstly, 

Figure 6a compares AAC against the simplest method consisting of the single AE that 

works better for a given εcomp, i.e., the one with the smallest LS size that always achieves a 

reconstruction error less than εcomp. Note that this benchmarking method is easy to deploy 

in our system, provided that the required εcomp does not (often) change in time, because 

every requirement variation could entail a new AE re-training to adjust LS size. The figure 

shows the absolute compression factor (not normalized), as well as the relative gain of 

AAC with respect to using the best AE in each case. In light of the results, we can conclude 

that AAC produces a larger compression ratio than using a single AE, reaching a remark-

able relative gain above 60% for stringent reconstruction errors around 0.01. Recall that 

AAC can adapt to changes in εcomp without the need of retraining AEs; that, combined with 

its high performance, makes AAC the best option for AE-based compression. 
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Figure 6. AAC benchmarking against the best single AE (a) and LFZIP (b) methods. 

In order to have a second benchmarking evaluation, Figure 6b compares the achieved 

compression ratio for two selected εcomp values against the compression method presented 

in [14], called LFZip. Similar to AAC, LFZip is a lossy compression method using fully 

connected neural network decoders that achieves good compression ratios. In [14], the 

authors provide the achieved compression ratio for the selected target reconstruction er-

rors using different time series data. The figure compares the performance of AAC (aver-

aging all sensors under normal operation) and LFZip (results from [14]), where the large 

benefits of AAC can be observed. However, since we were not able to reproduce either 

the LFZip method with our sensor data or AAC with the data in [14] (due to the lack of 

algorithm details and data availability), the conclusions of such comparison are mild. For 

this reason, we included the relative gain of each method when εcomp is relaxed from 0.01 

to 0.05. In view of the values, we can state that AAC clearly outperforms LFZip in terms 

of adaptability to variable requirements and relative compression gain. 
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It is worth noting that the outstanding AAC performance illustrated so far requires 

the availability of a pool of aEs specifically trained for each of the sensors. Once a new 

sensor is installed in the physical system and telemetry is starting to be collected and pro-

cessed by a new or existing DA, such specific aEs are not available until enough data have 

been collected. This is the reason why, as introduced in previous sections, our approach 

proposes initializing the AAC with a pool of generic aEs trained with heterogeneous data, 

i.e., a mix of data from other sensors available in the data lake. Figure 7a compares the 

percentage of compressed samples using generic aEs trained with a mix of telemetry 

measurements of all sensors and specific aEs for each of the sensors individually. In both 

cases, the AAC has been configured with a stringent εcomp = 0.01. As can be seen, generic 

aEs produce an overall good performance (around 50% of samples can be effectively com-

pressed), although this provides a negligible benefit for sensors that behave very differ-

ently from the considered generic data. This occurs in S2 data, showing a clear on-off pe-

riod (recall the example in Figure 4) that vastly differs from the generic data used for 

training. As soon as specific AEs can be trained, then both individual and overall com-

pression increases (around 80% of samples can be compressed). 
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Figure 7. Generic and specific AAC performance vs. sensor type (a) and latent space size (b). 

Finally, Figure 7b details how many times every AE in the pool is used, for both ge-

neric and specific AE pools. Results show the average performance for all DAs and εcomp = 

0.01. Note that the smallest LS size is frequently selected; however, sometimes a smaller 

compression (larger LS) is needed to guarantee the target reconstruction error, which adds 

value to the proposed AAC method. Moreover, the use of larger AEs is reduced when 

specific AEs are trained. For this very reason, we can conclude that the use of generic AEs 

is useful to provide compression from the beginning of sensor operation but needs to be 

substituted by specific AEs to reach maximum performance. 

5.3. SS-AD and MS-AGD Performance 

Once the AAC has been numerically evaluated and validated, in this section, we fo-

cus on evaluating the performance of anomaly detection procedures assuming that spe-

cific AE are already trained and working. In particular, we configured our simulator to 

reproduce two different use cases: (i) large individual anomalies for SS-AD evaluation 

and (ii) subtle time-correlated anomalies for MS-AGD evaluation. 

For the first use case, we assume that SS-AD is continuously running for each sensor 

during 9 hours of normal operation followed by a drastic change in the pattern of the 

generated data (happening at time tanom). In order to introduce a variety of anomalies, we 

consider that sensor Si starts generating at tanom data similar to that of sensor Sj, being i≠j 

and i, j ∈ {1, 2, 3}, thus reproducing six different anomalies. 

Figure 8 evaluates the percentage of false positives detected by each of the sensors as 

a function of different values of SS-AD parameters εanom and α (β was fixed to 100). A false 

positive is detected if SS-AD returns True during the period of normal operation, i.e., 

when no anomalies are introduced. In light of the results, we can conclude that increasing 
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εanom to 0.10 is sufficient to reduce α to short values (25 for S1 and S2 and 10 for S3) that 

lead to zero false positive detections. Note that, the shorter α is, the faster the detection of 

true anomalies. Then, assuming the best configuration of parameters for every sensor, Ta-

ble 3 shows the detection accuracy of all the aforementioned anomalies. It is worth noting 

that SS-AD achieves very high accuracy (>95%) for most of the considered anomalies. In-

deed, only the S1 SS-AD process is not able to detect S3-like data, which is reasonable due 

to the similarity of both the S1 and S3 time series. Therefore, we can conclude that SS-AD 

performs accurate and robust detection of individual anomalies. 
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Figure 8. SS-AD: false positive detection. 

Table 3. SS-AD: best configuration and anomaly detection accuracy. 

Si εanom α 
Sj 

S1 S2 S3 

S1 0.1 25 - 95.7% 0% 

S2 0.1 25 95.4% - 99.9% 

S3 0.05 25 95.6% 95.5% - 

Regarding the second use case, we took advantage of WADI dataset measurements 

collected under perturbations that were intentionally introduced in the system. The avail-

able metadata clearly indicates the time when a perturbation starts, which we identified 

as tanom. Figure 9 plots the three sensors’ data in the period before and after tanom, as well as 

the score computed in all such periods. In view of the results, we can conclude that the 

proposed score clearly identifies when the correlated anomaly starts (no false positive de-

tection is observed before tanom). Note that the first time interval where the score reaches a 

value significantly larger than 0 is only 40 seconds later than tanom, which validates MS-

AGD as a prompt time-correlated anomaly detection method. 
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Figure 9. MS-AGD performance. 



Sensors 2023, 23, 1043 17 of 19 
 

 

5.4. Case Study 

Eventually, we conducted a numerical case study in order to evaluate the impact of 

the proposed methodology assuming a larger network scenario such as the one sketched 

in Figure 1a. Thus, we assume that a physical system containing hundreds to thousands 

of sensors is geographically distributed among a number of locations where the DAs are 

locally deployed. For the sake of simplicity, let us assume that the overall telemetry data 

generated by all the sensors in the system, i.e., the total volume that needs to be gathered 

by the DT, is fixed at 400 Gb/s. Moreover, let us assume an optical transport network that 

allows transparent connectivity between the remote physical locations and the location 

where the DT is deployed, e.g., a data center. To support the transport of such telemetry 

data, optical connections taking advantage of digital subcarrier multiplexing technology 

can be deployed [34]. This ensures that optical connections can be established with a fine 

granularity of 25 Gb/s each. 

Figure 10a shows the amount of data injected as a function of the number of locations, 

assuming an even split among locations of the total amount of telemetry data. Two cases 

are shown: no compression and using AAC. For the latter, we consider εcomp = 0.01 and, 

according to Figure 6 and considering that the sensors behave similarly to the ones used 

before, the average compression factor is around 12.5. Assuming this compression perfor-

mance, the figure shows great savings in the total amount of data generated by every 

location distributed in the network. Nevertheless, the impact on the true amount of data 

that needs to be conveyed in the transport network will depend on the number of optical 

connections needed to carry out such data. This is shown in Figure 10b as a function of a 

number of locations, as well as the capacity savings of using AAC with respect to the no 

compression scenario. For instance, 50% of optical capacity savings are achieved when 

400 Gb/s of raw data are generated among eight different locations. In this case, every 

location is generating around 50 Gb/s of raw telemetry data, which requires two optical 

connections between the location and the centralized DT. On the contrary, the proposed 

AAC method reduces the conveyed data to 4 Gb/s, which can be served with only one 

optical connection per location. 
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Figure 10. Network study analysis: data generated (a) and number of optical connections (b). 

Hence, we can definitively conclude that the proposed adaptive telemetry compres-

sion mechanism allows a large reduction in the number of optical connections and true 

data to be conveyed through the transport network. 

6. Conclusions 

In this paper, we presented a smart management system of DT telemetry data con-

sisting of different processes for adaptive telemetry data compression (AAC), single sen-

sor anomaly detection (SS-AD), and multiple sensor anomalous group diagnosis (MS-

AGD). All the methods made use of AEs trained with generic and specific sensor teleme-

try data, as well as a set of algorithms that used those AEs to maximize the performance 

of compression and anomaly detection. 
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The numerical evaluation of such models and algorithms was performed using an 

experimental data set from a water distribution system. The main conclusions derived 

from such numerical analysis are (i) AAC produces a larger compression ratio than using 

a single AE, reaching a remarkable relative gain above 60% for stringent reconstruction 

errors around 1%; (ii) AAC achieves compression ratios one order of magnitude larger 

than other benchmarking lossy compression mechanisms in the literature; (iii) SS-AD 

achieves an anomaly detection accuracy larger than 95% when telemetry data anomalies 

are injected; and iv) MS-AGD is able to accomplish the prompt detection (<1 min) of subtle 

correlated anomalies affecting a group of sensors. 

In addition, the proposed smart management of telemetry data for the DT use case 

was evaluated in terms of the reduction in transport network resources. To this aim, we 

considered distributed scenarios where telemetry data sources were spread among differ-

ent network locations, thus needing to gather such telemetry data in a centralized location. 

Results showed that remarkable capacity savings, measured in terms of dedicated optical 

connections, were achieved for moderately-high distributed scenarios. 

As a final remark, it is worth mentioning that this work allows for promoting the 

deployment of DT-based management solutions for those industrial systems that have not 

yet adopted it. Since telemetry data sources are currently available (sensors in automated 

control systems are widely used in industry), one of the major current obstacles for mi-

grating towards DT-based solutions is the high cost of the management and curation of 

such a large amount of generated telemetry data. In this regard, the proposed contribu-

tions showed a significant reduction in such cost by efficient compression and decentral-

ized analysis, thus facilitating the adoption of DT in industry. 
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