

Sensors 2023, 23, 1043. https://doi.org/10.3390/s23021043 www.mdpi.com/journal/sensors

Article

Deep Learning-Based Adaptive Compression and Anomaly

Detection for Smart B5G Use Cases Operation

Ahmad El Sayed 1, Marc Ruiz 1,*, Hassan Harb 2 and Luis Velasco 1

1 Advanced Broadband Communications Center (CCABA), Universitat Politècnica de Catalunya (UPC),

08034 Barcelona, Spain
2 College of Engineering and Technology, American University of the Middle East,

Kuwait City 15453, Kuwait

* Correspondence: marc.ruiz-ramirez@upc.edu

Abstract: The evolution towards next-generation Beyond 5G (B5G) networks will require not only

innovation in transport technologies but also the adoption of smarter, more efficient operations of

the use cases that are foreseen to be the high consumers of network resources in the next decades.

Among different B5G use cases, the Digital Twin (DT) has been identified as a key high bandwidth-

demanding use case. The creation and operation of a DT require the continuous collection of an

enormous and widely distributed amount of sensor telemetry data which can overwhelm the

transport layer. Therefore, the reduction in such transported telemetry data is an essential objective

of smart use case operation. Moreover, deep telemetry data analysis, i.e., anomaly detection, can be

executed in a hierarchical way to reduce the processing needed to perform such analysis in a cen-

tralized way. In this paper, we propose a smart management system consisting of a hierarchical

architecture for telemetry sensor data analysis using deep autoencoders (AEs). The system contains

AE-based methods for the adaptive compression of telemetry time series data using pools of AEs

(called AAC), as well as for anomaly detection in single (called SS-AD) and multiple (called MS-

AGD) sensor streams. Numerical results using experimental telemetry data show compression ra-

tios of up to 64% with reconstruction errors of less than 1%, clearly improving upon the benchmark

state-of-the-art methods. In addition, fast and accurate anomaly detection is demonstrated for both

single and multiple-sensor scenarios. Finally, a great reduction in transport network capacity re-

sources of 50% and more is obtained by smart use case operation for distributed DT scenarios.

Keywords: B5G use cases; digital twins; data compression; anomaly detection; autoencoders

1. Introduction

Time series data are one of the most predominantly generated in modern information

systems [1], with sensors being responsible for a larger portion of such data production.

Among several applications requiring exhaustive and extensive sensor data collection, the

creation and synchronization of Digital Twins (DT) have been attracting recent and large

interest from both academic and industrial sectors [2]. The data generated from this type

of application needs to be collected and processed at a high resolution, which entails high

monitoring/telemetry frequencies, i.e., sub-second sampling rates. Several examples of

DTs for the modeling and management of smart systems can be found in the literature,

e.g., for smart manufacturing [3], drinking water management and distribution systems

[4], and optical communications [5].

Typically, DTs require the collection of data from widely distributed sensor network

systems and their transport to a centralized place, e.g., the cloud, where it is processed. In

fact, the DT is a well-known use case of an emerging service that is pushing the evolution

of current transport networks towards the beyond 5G (B5G) era [6]. This type of service

requires reliable and high-bitrate connectivity between plenty of physical locations

Citation: El Sayed, A.; Ruiz, M.;

Harb, H.; Velasco, L. Deep

Learning-Based Adaptive

Compression and Anomaly

Detection for Smart B5G Use Cases

Operation. Sensors 2023, 23, 1043.

https://doi.org/10.3390/s23021043

Academic Editor: Yuh-Shyan Chen

Received: 22 December 2022

Revised: 10 January 2023

Accepted: 13 January 2023

Published: 16 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

Sensors 2023, 23, 1043 2 of 19

holding heterogeneous sources (wireless and wired sensors) and the premises where the

DT is built and managed, which commonly entails connectivity across domains including

access, metro, and core networks. Therefore, developing solutions to compress these

dense monitoring data before their transport is essential to reduce operational costs in-

cluding connectivity, storage, and energy consumption [7].

Regarding different compression techniques suitable for time series data, two main

categories can be identified: lossless and lossy [8]. On the one hand, lossless compression

means that the decompressed data are identical to the compressed data, which tends to

produce low compression ratios, e.g., 50% compression. On the other hand, lossy com-

pression techniques are intended to produce a trade-off between the accuracy of the re-

constructed data and higher compression ratios, e.g., 90% compression. For the latter cat-

egory, the use of deep learning (DL) methods has attracted special interest from the re-

search community. Among different DL techniques, autoencoders (AE) represent a prom-

ising opportunity in the field of lossy compression. Basically, AEs are a type of deep neu-

ral network that has an encoder and a decoder part. The encoder part compresses input

data into a number of representations called latent features which have a size much

smaller than the input dimension. These representations form the latent space (LS) of the

AE. The encoder is usually able to compress the data by discarding non-relevant parts of

the data while keeping only the parts that can be effectively used for reconstruction in the

decoder part. Another advantage of using AEs is their intrinsic ability for anomaly detec-

tion [9]. Note that this allows performing not only compression but also data analysis at

the source before transport. Thus, locally distributed data analysis can be performed and

used to add more intelligence to the monitoring system, e.g., increasing a nominal moni-

toring sampling rate when an anomaly is detected [10].

In this paper, we propose a novel method for the lossy compression of time series

data using deep AEs along with two methods for anomaly detection that operate on both

single and multiple time series. For the compression, instead of compressing the input

data using a single AE, a pool of AEs with a different number of latent features is used.

Thus, the Adaptive AE-based Compression (AAC) method is presented as an autonomous

process that is able to choose the best AE in the pool, i.e., the one that reaches a target

reconstruction error with the minimum LS size. The variability of the number of latent

features means that the size of the compressed data is not fixed, which draws similarities

between AE-based compression and conventional compression methods in which the

characteristics of the input data play an important role in the compression ratio. It also

means that the compression is adaptive to the variations in the data and hence, compres-

sion size is indeed a variable that can be analyzed as additional and extended information

of collected monitoring data. It is worth mentioning that AEs are trained using data from

the specific sensor/s that they operate. However, since this may not be available from the

beginning of sensor operation, generic AEs with moderated compression rates trained for

heterogeneous sensor data are used until enough data are collected to train the specific

AEs.

Regarding the anomaly detection part, the first method, called Single Sensor Anomaly

Detection (SS-AD), takes advantage of the specificity of the trained AEs to detect when the

collected data contains an anomaly, e.g., if the sensor malfunctions or some kind of addi-

tional noise is introduced to the data from an external source. The second method, called

the Multiple Sensor Anomalous Group Diagnosis (MS-AGD), detects anomalies that can af-

fect several sensors in a correlated way, even when they cannot be detected by SS-AD in

an independent time series. It does this by comparing data points with a certain degree of

reconstruction error values across all the time series involved, making it able to detect

subtle correlated anomalies.

The remainder of this paper is as follows: Section 2 describes the latest related work

on the subject of time series compression and anomaly detection. Section 3 describes the

network architecture and main components. Section 4 describes our contribution in terms

of the algorithms for compression and anomaly detection. Section 5 shows the

Sensors 2023, 23, 1043 3 of 19

performance evaluation in a simulated environment using an experimental data set, in-

cluding a comparison to state-of-the-art methods. Eventually, Section 6 draws the main

conclusions of this research work.

2. Related Work

The widespread nature of time series data and the necessity to reduce its continually

growing sizes make the task of time series data compression very important, so plenty of

work is found in the literature about this topic. In addition, due to its importance in mod-

ern systems, such as sensor networks, IoT, and DT systems, anomaly detection in time

series data is discussed fairly. Table 1 summarizes the main contributions in the literature

on time series compression and anomaly detection.

2.1. Lossy Time Series Data Compression

The authors of [11,12] tackled the problem of lossy compression in time series data

using different techniques. In [11], a piecewise regression technique is used in order to

compress time series data from the smart grid. The approach depended on three regres-

sion algorithms, each specializing in a class of polynomial functions, which were applied

incrementally. The final compression factor depended on a user-defined maximum toler-

able deviation between the original time series and the reconstructed one. The authors of

[13] proposed a method of lossy compression that depends on extrema (minimum and

maximum) extracted from the data. Different definitions and different importance levels

for extrema were applied in several pass algorithms. The authors in [12] performed an

evaluation of five data compression algorithms and five change detection algorithms on

several datasets. Their approach focused on finding out how these different techniques

perform under different datasets with different characteristics, and how best to choose the

parameters under which these algorithms will work properly.

Regarding time series compression using AEs, the authors in [14] developed an algo-

rithm called LFZip (Lossy Floating-point Zip) which compresses time series by using an

encoder and a decoder that is based on the prediction-quantization-entropy coder frame-

work, with works under the mean absolute error metric that have a maximum allowable

error that is defined by the user. Another variant of the AE, the Convolutional AE, was

used by the authors in [15] to compress and decompress electroencephalogram signals in

order to reduce data size, thus conserving the energy of the edge devices reading and

transmitting these signals. Another medical application used AEs to compress data col-

lected from wearable IoT data that have a limited energy source [16], using three param-

eters: compression ratio, reconstruction error, and energy consumption, to optimize the

learning process. Furthermore, for IoT applications with limited processing memory, the

authors in [17] developed a low memory, low latency algorithm for time series compres-

sion that allows decompressing later at speeds up to 3 GB/s by using a high-speed fore-

casting algorithm. A Recurrent Neural Network (RNN)-based AE was used in [18], com-

bined with data segmentation and aggregation into segments of variable length but with

a similar total variation. Similarly, RNN AEs were used in [19] to partially reconstruct

multi-dimensional time series data effectively, allowing insight into the operating state of

some of the sensors in the system without the need for full reconstruction.

2.2. Anomaly Detection in Time Series

A remarkable list of use cases and algorithms for anomaly detection in time series

can be found in the literature [20,21]. In [20], the authors used deep AEs trained with raw

time series data from flight sensors collected under nominal operating conditions and ex-

amined the reconstruction error to detect faults with up to 97% accuracy and identify two

types of faults with no false positives. Similarly, deep AEs inspired by the robust principal

component analysis were developed in [22] to detect outliers and perform de-noising even

without access to clean data. The method proposed in [23], called GGM-VAE, uses a Gated

Sensors 2023, 23, 1043 4 of 19

Recurrent Unit (GRU) and is used to discover the correlation in multi-dimensional time

series data. Another approach that tackles anomaly detection in multivariate time series

is the method described in [24]. It describes the usage of 1D convolutional neural net-

works, where the convolutions are performed over the inputs across the temporal axis of

the data, to detect anomalies in sewer processing monitoring data by checking if the re-

construction error in the decoding stage is above a certain value.

In addition, in the scope of anomaly detection, the authors in [25] used a technique

they called smoothness inducing sequential variational AEs (SISVAE), which is based on

Variational AEs (VAE) but has a backbone in RNNs. Their method uses the mean and

variance of each sample as parameters, which means the compression process is not rigid

and is flexible to the variations in the data. Moreover, to compensate for the susceptibility

to anomalies that this approach generates, a smoothness-inducing prior over possible es-

timations is used, thus penalizing non-smooth estimations. The authors in [26] used the

Echo-State Network, which is a method used to train RNN where only parameters for

output are learned in order to train VAEs to detect anomalies in a multivariate time series,

making use of the temporal dependence in the data. A hybrid approach for anomaly de-

tection was used in [27], where Long-Short Term Memory (LSTM)-based AEs trained on

normal samples were used to extract features from both normal samples and ones con-

taining anomalies where an SVM classifier is used for detection purposes. A squeezed

Convolutional VAE (SCVAE) was modeled to detect anomalies in edge devices of IoT as

described in [28], and the reconstruction probability, which is a probabilistic measure that

takes into account the variability of the distribution of variables, was used to tune VAEs

to detect anomalies in [29]. Finally, the authors in [21] conducted a survey of the anomaly

detection methods for time series across a variety of domains and concluded that the main

challenges remain the real-time processing, online adaptive learning, multivariate data,

the shortage of labels anomaly data, and the difficulty in obtaining it, and the lack of a

generalized approach which works in all cases.

Table 1. State-of-the-art summary (sorted by year).

Ref Year
Compres-

sion

Anomaly De-

tection

Processing

Power
Summary of Methods

[13] 2011 yes no High
Extracting Important Minima

and Maxima

[11] 2014 yes no High Piecewise Regression

[29] 2015 no yes High
Reconstruction Probability

Analysis

[20] 2016 no yes Low Deep AEs

[26] 2016 no yes Low Echo State Training; RNN

[12] 2017 yes no -
Evaluating Different Time Se-

ries Compression Methods

[18] 2017 yes no Medium
Adaptive Piecewise Recurrent

AE

[22] 2017 no yes Medium
Deep AE; Principle Compo-

nent Analysis

[15] 2018 yes no Medium Convolutional AEs

[17] 2018 yes no Low
Low Memory, Low Latency

Forecasting Algorithm

[19] 2018 yes no Low
Recurrent AEs; Partial Recon-

struction

[23] 2018 no yes Low Gated Recurrent Units

[28] 2018 no yes Low Squeezed Convolutional AE

Sensors 2023, 23, 1043 5 of 19

[14] 2020 yes no Medium
Prediction-Quantization-En-

tropy Encoder

[24] 2020 no yes Low
1D Convolutional Neural Net-

work

[21] 2020 no yes - Survey of several techniques

[27] 2020 no yes Medium LSTM AEs; SVM Classifier

[16] 2020 yes no Low AEs

[25] 2021 no yes Medium
Smoothness Inducing Sequen-

tial Variational AE

2.3. Summary and Contributions

As can be seen, to the best of our knowledge, we can conclude that: (i) none of the

methods perform both operations (compression + anomaly detection) at the same time;

(ii) some of them require a lot of real-time processing power at the level of the agent per-

forming the compression or the anomaly detection; and (iii) some of them are only de-

ployable after extensive training using data from the targeted systems, which may delay

the deployment process.

In this work, we propose a hierarchical architecture for telemetry analysis that ena-

bles efficient and adaptive compression (by means of the AAC method) and anomaly de-

tection (by means of SS-AD and MS-AGD methods) simultaneously. Hence, our proposed

novel system outperforms the methods in the literature in the following ways: (i) performs

both compression and anomaly detection at the same time using the same models based

on AEs; (ii) requires very little processing power of the agent by using AEs for both com-

pression and anomaly detection tasks; and (iii) enables immediate deployment by using

AEs trained with general-purpose data, which allows performing at acceptable levels of

compression and reconstruction errors until enough sensor-specific data are collected to

train system-specific AEs.

3. AE-Based Telemetry Compression and Anomaly Detection

3.1. Concept and Architecture

The reference scenario is sketched in Figure 1a, where a physical system contains a

plethora of different sensors that generate heterogeneous telemetry data that need to be

gathered and analyzed for several purposes such as smart autonomous operation. Alt-

hough the example in Figure 1 sketches a water distribution system, the proposed archi-

tecture and algorithms are designed to fit with any smart system collecting time series

telemetry data such as smart manufacturing and communication networks, just to men-

tion a few. Without loss of generality, let us assume that the sensors generate data period-

ically, with a fixed time interval (that can be different among sensors). Therefore, every

single sensor is a source of one or more time series telemetry data streams. All these data

flows need to be transported from their sources to the centralized location where the DT

is running. A typical DT architecture consists of three essential components: (i) a Data Lake,

where the collected, pre-processed, and post-processed data are stored; (ii) the Sandbox

Domain, containing the different models and algorithms that emulate the different com-

ponents of the physical system; and (iii) the Digital Twin Manager (DTM) that is in charge

of several actions including the management of the models in the sandbox domain. More-

over, the DTM interfaces with the Application Manager in charge of both the physical and

DT systems. Note that the Application Manager uses the DT to analyze the current and

future state of the physical system, which can be achieved by combining the collected data

available in the Data Lake and the models and algorithms in the sandbox domain. The

result of such analysis can lead to specific actions to be executed in the physical system.

Moreover, the Application Manager can configure rules and policies to the DTM, so that

the latter can perform tasks such as intelligent data aggregation and anomaly detection in

an autonomous way.

Sensors 2023, 23, 1043 6 of 19

DT Manager
Data Lake

Sandbox Domain Digital Twin
(DT)

DT
Manager

Application
Manager

Physical System

Transport Network

…

Device 1

Raw data

Sensor 1 Sensor n

Device Agent (DA)

Compressed
Data &

Meta-data

Config
Models

(a)

Cluster Agent (CA)

Application
ManagerData Lake

Anomaly
Detection
Events

Device n
…

Reconstructed
Data

(b)

Figure 1. Reference scenario (a); overall architecture (b).

Figure 1b provides a deeper insight into the hierarchical architecture needed to run

the proposed telemetry data compression and analysis. The first level is at the sensor layer

where data are generated periodically. For the sake of simplicity, let us assume that sen-

sors are those physical elements that are able to monitor one specific metric, e.g., temper-

ature, pressure, etc. Then, a number of these sensors are integrated into a monitoring de-

vice, that provides the support (computing, power) to those sensors, as well as contains

the needed transceivers and interfaces (wired or wireless) required to eject the data out of

the device. Since the vast majority of multi-purpose monitoring devices are built on top

of powerful boards such as Arduino or Raspberry Pi [30,31], a software-based Device Agent

(DA) is deployed in the device for several purposes, including telemetry data processing

and device control and management. Specifically, in the context of our work, we consider

that the DA contains the AEs necessary to compress the collected telemetry data and per-

form anomaly detection. Then, the DA sends the compressed data to the DTM that is

hosted in the remote location. Along with the compressed data, three types of metadata

are sent: (i) the device/sensors identification data, including location; (ii) the compression

method metadata, including aspects such as the AE id that is required to decompress the

data, as well as the expected reconstruction error; and (iii) the anomaly detection diagno-

sis, in case that some anomaly affecting one or multiple sensors is detected.

The second element in the proposed hierarchical architecture is the Cluster Agent

(CA) which runs as one of the processes in DTM and aggregates the inputs received from

a number of devices that form a group (cluster). The meaning of a cluster is open: it can

represent any subset of monitoring devices in a physical subsystem. Without loss of gen-

erality, we assume that the creation of clusters is part of the design of both the physical

system and DT, which is out of the scope of this paper. Each CA is in charge of decom-

pressing the data received from its nested DAs and storing such decompressed data in the

Data Lake. Moreover, it is also in charge of training AEs as soon as new relevant data are

collected and uploading new models to the DAs in an automatized manner. Finally, it

processes the anomaly detection diagnosis reports received from DAs, performs multiple

anomaly detection if needed, and notifies the application manager in case of some anom-

aly event has been detected.

The next subsection presents a detailed architecture of the main building blocks run-

ning in DA and CA elements, including the three main processes previously introduced:

Adaptive AE-based Compression (AAC), Single Sensor Anomaly Detection (SS-AD), and Mul-

tiple Sensor Anomalous Group Diagnosis (MS-AGD).

Sensors 2023, 23, 1043 7 of 19

3.2. Main Components

Figure 2 details the architecture previously sketched in Figure 1b, showing the key

building blocks and their relationship. The figure focuses on the processes related to te-

lemetry data compression and anomaly detection. For the sake of simplicity, the processes

of training and updating AEs are not depicted in the figure. Let us assume that the DA

implements a telemetry database (DB) that temporarily stores the data injected by each of

the sensors in the device. We can assume that this data collection is accomplished at a very

narrow telemetry interval, e.g., one measurement per second and device. Then, a larger

monitoring interval, e.g., every minute, is configured to retrieve data from the telemetry DB

and compress them. Thus, let us denote xst as the telemetry measurements collected during

monitoring interval t by sensor s. These data are then fed to the compressor module that is

responsible for running the AAC process. By means of the AE pool, adaptive and effective

compression is achieved. The compressed telemetry data (denoted as yst) as well as the

identifier of the AE selected by AAC for compression (denoted as idst) are sent to the CA.

Without loss of generality, we assume that CA process the received compressed data im-

mediately upon their reception, calling a simple de-compressor process that uses the de-

coder of the selected AE to reconstruct the original telemetry stream (denoted as x’st) and

inject it into the data lake.

DA

Telemetry DB

…

Sensor 1 Sensor n

AAC

xst

CA

…

Telemetry DB

yst , idst

AE pool

Data Lake

Decoder AE pool

x’st …

…

…

rst

DA Manager

SS-AD MS-AGD

rst rst diag

CA Manager

Device
Diagnosis

diag

req.

rst

…

…

MS-AGD

diag

Application
Manager

Device 1

Device n

Device
Diagnosis

rst

…

req.

rst …

Cluster Diagnosis

Figure 2. Detailed architecture and key components.

In addition to the compressed telemetry data, the AAC process also computes the

reconstruction error vector obtained by the selected AE (denoted as rst). This error is de-

fined as the difference between the original and reconstructed telemetry measurements.

This relevant output is locally processed at the DA for anomaly detection purposes. Spe-

cifically, the DA manager receives a reconstruction error vector per each sensor and mon-

itoring interval and triggers two different anomaly detection processes. On the one hand,

the SS-AD analyzes the individual reconstruction error of each sensor in order to find an

anomalous error pattern such as continuous large error. On the other hand, the MS-AGD

analyzes the reconstruction errors of the sensors in the device and performs a correlated

analysis in order to identify subtle anomalies affecting several sensors at the same time.

The diagnosis generated by each of the methods is then processed by the DA manager

Sensors 2023, 23, 1043 8 of 19

that generates a device diagnosis report when a remarkable event is detected by one or

both methods.

Such device diagnosis report (if generated) is sent to the CA manager which can trig-

ger a wider and deeper anomaly analysis. In particular, it can request to the DA of the

devices under its control those reconstruction error vectors that have not been sent before.

As an illustrative example, let us imagine that an anomaly in a temperature sensor has

been detected in device i. The CA can then request the reconstruction error of the rest of

the temperature sensors of all the devices in the cluster in order to perform a group anal-

ysis and detect, e.g., an incipient temperature anomaly in other elements of the system.

Note that, to allow this analysis, we consider that DA managers temporarily store recon-

struction errors even when they are not detecting any anomaly. Finally, the results of re-

ceived device diagnosis reports generated by DA managers and the sensor group analysis

(if proceeding) generated by the CA manager compose the cluster diagnosis report that is

sent to the application manager.

The next section presents detailed algorithms for AAC, SS-AD, and MS-AGD pro-

cesses.

4. Algorithms

4.1. Notation

Table 2 provides the main notations that are consistently used in the following algo-

rithms.

Table 2. Notations.

S Set of sensors

G
Set of groups. A group comprises a set of sensors that can be the sensors in a

given device or the sensors of the same type in a given cluster

Sg⊂ S Subset of sensors belonging to group g⊂ G

Z Set of allowable sizes for the LS

w Monitoring interval duration, in time units

Ψs Pool of AEs for compressing telemetry data from sensor s

xst Raw telemetry data vector from sensor s at time interval t

yst Compressed telemetry data vector from sensor s at time interval t

x’st Reconstructed telemetry data vector from sensor s at time interval t

idst Id of the AE used to compress data from sensor s at time interval t

rst Reconstruction error vector from sensor s at time interval t

DB Telemetry Database for training and testing purposes

εcomp Target average reconstruction error for compression

εanom Individual reconstruction error for anomaly detection

α Number of consecutive error values above anomaly detection threshold

β Number of total error values above anomaly detection threshold

4.2. AAC

Algorithm 1 details the pseudo-code of the AAC process which runs for each sensor

s in a device and is executed at every interval t a new telemetry stream is available. As

introduced in the previous section, it receives the raw telemetry data stream xst containing

a number w of measurements, the pool of AEs of the sensor Ψs, and the reconstruction

error threshold εcomp to determine whether a given compressed stream yst produces enough

of an accurately reconstructed telemetry stream when decoded. In addition to yst, the al-

gorithm also returns the identifier of the selected AE in the pool idst, as well as the recon-

struction error vector rst.

After initializing output variables (line 1 of Algorithm 1), the set of AEs in the pool

Ψs are sorted in ascendant order of size of LS (line 2). Thus, they are going to be

Sensors 2023, 23, 1043 9 of 19

sequentially evaluated in a loop from the highest to lowest compression ratio (line 3).

Given an AE ψ, the input data are normalized with the min-max values stored as model

coefficients (line 4). Then, the normalized input x is propagated through the encoder part

and the compressed stream y is obtained (line 5). At this point, the decoder is used to

compute the reconstructed data stream x’, which is used to compute the reconstruction

error r that ψ produces (lines 6–7). Note that if the average reconstruction error is below

threshold εcomp, then an accurate compression is found, and the AE pool search is inter-

rupted (lines 8–10). Finally, the resultant output is returned (line 11). Note that this output

can be either a compressed telemetry stream if an AE producing an average reconstruction

error below εcomp is found or the original input if no accurate compression can be effectively

accomplished.

Algorithm 1: AAC method.

INPUT: xst, Ψs, εcomp

OUTPUT: yst, idst, rst

1.

2

3.

4.

5.

6.

7.

8.

9.

10.

11.

yst ← xst; idst ← ∅; rst ← zeros(w)

sort(Ψs, |ψ.latent|, “ascendent”)

for each ψ ∈ Ψs:

x ← normalize(xst, ψ.minmax)

y ← ψ.encoder.propagate(x)

x’ ← ψ.decoder.propagate(y)

r ← computeReconstructionError(x, x’)

if avg(r) ≤ εcomp:

yst ← y; idst ← ψ.id; rst ← r

break

return yst, idst, rst

Recall that we consider that generic AEs with moderated compression rates trained

from heterogeneous generic sensor data are used until enough sensor-specific data are

collected to train ad-hoc AEs that better compress the data of a given sensor. Without loss

of generality, we can assume that this procedure can run periodically as soon as telemetry

data from sensors are available. Algorithm 2 details the proposed procedure to train and

update the AEs in a pool. Thus, given an AE pool Ψ (that could be initially empty) and a

database DB containing telemetry measurements (that can be either generic or sensor-

specific), the algorithm trains a set of AEs with LS sizes defined in set Z in order to find

new models that improve existing ones.

Algorithm 2: AE pool update.

INPUT: Ψs, Z, DB

OUTPUT: Ψs

1.

2

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

DBtrain, DBtest ← split(DB)

for each z ∈ Z:

ψnew ← trainAE(DBtrain, z)

ψcur ← select(Ψs, |ψ.latent|= z)

if ψcur = ∅ then

Ψs.add(ψnew)

else

Y ← ψnew.encoder.propagate(DBtest)

X’ ← ψnew.decoder.propagate(Y)

rnew ← computeReconstructionError (DBtest, X’)

Y ← ψcur.encoder.propagate(DBtest)

X’ ← ψcur.decoder.propagate(Y)

Sensors 2023, 23, 1043 10 of 19

13.

14.

15.

16.

rcur ← computeReconstructionError (DBtest, X’)

if avg(rnew) < avg(rcur) and max(rnew) < max(rcur) then

Ψs.replace(ψcur, ψnew)

return Ψs

The procedure starts by splitting the data in DB in both training and testing datasets,

e.g., following a typical 80–20% split [32] (line 1 in Algorithm 2). Then, each LS size z in Z

is selected and a new AE ψnew is trained for such LS size (lines 2–3). This new AE needs to

be compared against the current one in the pool with the same LS size (denoted as ψcur)

and therefore, it is retrieved from the pool (line 4). Note that ψnew is directly added to the

pool if there is no currently available AE with such size z (lines 5–6). Otherwise, the testing

dataset is used to evaluate the reconstruction error in both ψnew and ψcur (lines 8–13). Thus,

the current AE is replaced by the new one if both average and maximum reconstruction

errors are reduced by the new AE (lines 14–15). Eventually, the updated AE pool is re-

turned.

4.3. SS-AD

Algorithm 3 details the pseudo-code of the SS-AD procedure that runs locally in the

DA every time a new compressed telemetry stream is obtained and hence, a new recon-

struction error vector rst is available. Since the principle of anomaly detection using AEs

relies on the fact that an anomalous input will be poorly reconstructed, an anomaly error

detection threshold εanom is needed to perform such detection. Indeed, anomaly detection

is triggered if either one of the following conditions is met: (i) a number α of consecutive

measurements produced a reconstruction error larger than threshold εanom or (ii) a number

β of total measurements (non-consecutive) produced a reconstruction error larger than

threshold εanom.

The algorithm starts by initializing the counters of the consecutive and total number

of measurements above the error threshold (line 1 in Algorithm 3). Then, each single error

value in the rst vector is evaluated and compared with the threshold (lines 2–3). When the

error exceeds the thresholds, then both counters are increased in one unit (lines 4–5). At

this point, it is worth checking if one of the anomaly detection conditions is met and if so,

the procedure stops and returns an anomaly detection event (lines 6–7). Therefore, it is

necessary to reset the counter of consecutive values above the threshold before analyzing

the next error value (lines 8–9). Finally, no anomaly event is returned in the case that none

of the conditions is met (line 10).

Algorithm 3: SS-AD

INPUT: rst, εanom, α, β

OUTPUT: anomaly

1.

2

3.

4.

5.

6.

7.

8.

9.

10.

kcons, ktotal ← 0

for each r ∈ rst do:

if r > εanom then

kcons ← kcons +1

ktotal ← ktotal +1

if kcons == α or ktotal = β then

return True

else

kcons ← 0

return False

Sensors 2023, 23, 1043 11 of 19

4.4. MS-AGD

The pseudo-code of the MS-AGD procedure is detailed in Algorithm 4, which aims

at computing a score that increases when a number of sensors within a group generate a

high reconstruction error at the same time. Indeed, this score has the form of a vector of

w positions, indicating the score at a given time unit within the analyzed monitoring in-

terval (which allows fine multiple anomaly detection analysis). Moreover, recall that the

MS-AGD can be executed at the device level, e.g., analyzing all (or a subset) of the sensors

of a given device, or at the cluster level, e.g., analyzing all (or a subset) of the sensors in a

given cluster. Regardless of the case, let us consider that the reconstruction error vectors

obtained at a given monitoring time interval of a given group of sensors are denoted as R.

This is the main input of MS-AGD, which also requires the specific parameter γ that de-

fines the time interval size needed to compute the score.

The first step is to initialize the score vector, as well as the auxiliary matrix Q that is

going to facilitate score computation (lines 1–2 of Algorithm 4). In particular, Q is a sparse

0–1 matrix, where cell <i, j> is 1 if and only if the sensor i at time unit j took a measurement

above the average value of that sensor within monitoring interval t. After computing Q

(lines 3–9), the score is computed for every time unit within the monitoring interval (lines

10–13). The score of each time unit i is the product of components a and b. On the one

hand, a is the normalized sum of 1 s in Q that time, i.e., which proportion of sensors gen-

erates a measurement that produced a reconstruction error above the average. On the

other hand, b computes the normalized dot product of Q in the last γ time units. Note that

a large value indicates that there are consecutive time units where several sensors are

above the average. In particular, b = 1 when all sensors in Sg stay above average recon-

struction error during a consecutive number γ of time units.

Algorithm 4: MS-AGD

INPUT: R = {rst, ∀s ∈ Sg}, γ

OUTPUT: score

1.

2

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

score ← zeros(w)

Q ← zeros(|Sg|, w)

i ← 0

for s ∈Sg do

i ← i + 1

ravg ← avg(R.rst)

for j == 1..w do

if R.rst[j] > ravg then

Q[i,j] ← 1

for j == γ..w do

a ← sum(Q[:, j])/|Sg|

b ← dotproduct(Q[:,j-γ+1:j])/γ

score[j] ← a·b

return score

To better understand the rationale behind the MS-AGD score, Figure 3 shows the

reconstruction error rst and the score in a monitoring time interval of w=20 of an example

with three sensors. Three different cases are depicted, assuming γ=5: (i) the error stays

constant and low for all the time and sensors (no anomaly, Figure 3a); (ii) the error in-

creases in all the sensors but not at the same time (non -correlated subtle anomaly, Figure

3b); and (iii) the error increases in all the sensors and partially coincides in time (correlated

subtle anomaly, Figure 3c). For the sake of simplicity, the average reconstruction error is

around 0.5% in all the sensors in Figure 3a and around 1.5% in all the sensors in Figure

3b,c. Colored circles indicate when the reconstruction error is above the threshold. As can

Sensors 2023, 23, 1043 12 of 19

be observed, the score reaches significant values (above 0.5) only when several sensors

exceed the average reconstruction error at the same time.

S1 S2 S3

Time unit

r s
t

sc
o

re

1 w 1 w 1 w

2%

1%

0%

1

0

0.5

(a) No anomaly (b) Non-correlated anomaly (c) Correlated anomaly

Figure 3. Example of the MS-AGD score: no (a), non-correlated (b), and correlated (c) anomaly.

5. Performance Evaluation

In this section, we first introduce the simulation environment developed to evaluate

the methods and algorithms presented in previous sections. Then, we analyze the perfor-

mance of AAC, SS-AD, and MS-AGD using telemetry data from a real physical system.

Finally, we analyze the impact of the proposed methods on a network case study where

transport network capacity savings are shown.

5.1. Simulation Environment

For numerical evaluation purposes, we implemented a Python-based simulator re-

producing the main blocks of the architecture presented in Figure 2, as well as the algo-

rithms in Section 4. In particular, a CA with three Das was configured, where every DA

processes data from one single sensor. Sensors were implemented as time series data gen-

erators injecting real measurements (one per second) from the Water Distribution (WADI)

dataset [33]. The WADI dataset contains experimental sensor data measured in a water

distribution testbed under different conditions, including normal operation and operation

in the presence of system perturbations. The testbed comprises several water tanks as well

as chemical dosing systems, booster pumps, valves, instrumentation, and analyzers, thus

forming a complete and appropriate physical system for the performance evaluation of

the proposed methods. Among all available data in WADI, we selected three time series

from three different sensor types (hereafter, referred to as S1, S2, and S3) with different

behaviors and patterns. Specifically, the selected sensors are located in a water pressure

valve and collect measurements of pressure, volume, and voltage. Figure 4 shows an ex-

ample of each sensor time series data under normal operation. As can be observed, they

are different in terms of time patterns, as well as in the magnitude and range of the telem-

etry data. Note that these data cover typical and widespread patterns observed in telem-

etry data, which will allow extending this performance evaluation analysis to other DT-

based systems such as smart manufacturing and communication networks.

Sensors 2023, 23, 1043 13 of 19

Figure 4. Example of the sensor data time series processed by each DA.

For the sake of simplicity, we assume that AEs in the pool of CA and Das are trained

using Algorithm 2 after a period of raw data collection to populate the initial database DB.

Without loss of generality, we assume that the measurements collected during this period

belong to the normal operation of the physical system. Then, fixing interval w to 256 sec-

onds, we obtained 7.68e5 samples for training, as well as 9.6e4 samples for testing. Re-

garding AE pool configuration, we considered four different AEs with Z = {4, 8, 16, 32} LS

sizes. In all the cases, we considered two hidden layers, with 128 and 64 hidden neurons

each. We used the keras library for AE training and testing, as well as pandas and numpy to

load and manipulate the datasets. AEs were trained during 100 epochs using the adam

optimizer and mean absolute errors as loss function, which results in reconstruction accu-

racy values around 99%.

5.2. AAC Performance

The first numerical study is focused on evaluating the performance of the AAC pro-

cedure in Algorithm 1 once the AE pool of every DA has been trained with the telemetry

data of its specific sensor. Figure 5 shows the compression factor as a function of target

reconstruction error εcomp for both normal operation (Figure 5a) and operation with per-

turbations (Figure 5b) after 9 hours of simulated time (~32,000 monitoring samples per

sensor). The compression factor was normalized between 0 and 1, where 0 means that the

AAC cannot compress any measurement below the target εcomp and 1 means that all meas-

urements are compressed with the AE with the lowest LS size (in our case, 4). As can be

observed, the AAC shows the desired adaptability, sharply increasing the compression

factor when εcomp is relaxed. Interestingly, we can observe that different time series produce

different compression performances, even when AEs were specifically trained for that

data. However, maximum compression is always achieved with low reconstruction error

(0.05) under normal system operation and remains very high when perturbations appear

in the system, which validates the applicability of the proposed method in systems subject

to changes in the telemetry data generated.

0.2

0.3

0.4

0

1

2

25

50

75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) S1

(b) S2

(c) S3

Se
n

so
r

m
ea

su
re

m
en

ts

Time

Sensors 2023, 23, 1043 14 of 19

0

0.2

0.4

0.6

0.8

1

0.01 0.02 0.03 0.04 0.05

S1 S2 S3

εcomp

0

0.2

0.4

0.6

0.8

1

0.01 0.02 0.03 0.04 0.05

S1 S2 S3

εcomp

N
o

rm
a

liz
ed

 C
o

m
p

re
ss

io
n

Fa
ct

o
r

(a) (b)

N
o

rm
a

liz
ed

 C
o

m
p

re
ss

io
n

Fa
ct

o
r

Figure 5. AAC performance under normal operation (a) and operation with perturbations (b).

Once the AAC has been presented as an adaptive and polyvalent method, let us now

focus on evaluating its performance compared to the two benchmarking methods. Firstly,

Figure 6a compares AAC against the simplest method consisting of the single AE that

works better for a given εcomp, i.e., the one with the smallest LS size that always achieves a

reconstruction error less than εcomp. Note that this benchmarking method is easy to deploy

in our system, provided that the required εcomp does not (often) change in time, because

every requirement variation could entail a new AE re-training to adjust LS size. The figure

shows the absolute compression factor (not normalized), as well as the relative gain of

AAC with respect to using the best AE in each case. In light of the results, we can conclude

that AAC produces a larger compression ratio than using a single AE, reaching a remark-

able relative gain above 60% for stringent reconstruction errors around 0.01. Recall that

AAC can adapt to changes in εcomp without the need of retraining AEs; that, combined with

its high performance, makes AAC the best option for AE-based compression.

0

10

20

30

40

50

60

70

0.01 0.05

LFZip

AAC

εcomp
εcomp

C
o

m
p

re
ss

io
n

 F
a

ct
o

r

C
o

m
p

re
ss

io
n

 F
a

ct
o

r

0%

20%

40%

60%

80%

100%

0

10

20

30

40

50

60

70

0 0.01 0.02 0.03 0.04 0.05

best AE AAC gain

G
a

in
 (%

)

(a)

(b)

134%

1249%

Figure 6. AAC benchmarking against the best single AE (a) and LFZIP (b) methods.

In order to have a second benchmarking evaluation, Figure 6b compares the achieved

compression ratio for two selected εcomp values against the compression method presented

in [14], called LFZip. Similar to AAC, LFZip is a lossy compression method using fully

connected neural network decoders that achieves good compression ratios. In [14], the

authors provide the achieved compression ratio for the selected target reconstruction er-

rors using different time series data. The figure compares the performance of AAC (aver-

aging all sensors under normal operation) and LFZip (results from [14]), where the large

benefits of AAC can be observed. However, since we were not able to reproduce either

the LFZip method with our sensor data or AAC with the data in [14] (due to the lack of

algorithm details and data availability), the conclusions of such comparison are mild. For

this reason, we included the relative gain of each method when εcomp is relaxed from 0.01

to 0.05. In view of the values, we can state that AAC clearly outperforms LFZip in terms

of adaptability to variable requirements and relative compression gain.

Sensors 2023, 23, 1043 15 of 19

It is worth noting that the outstanding AAC performance illustrated so far requires

the availability of a pool of aEs specifically trained for each of the sensors. Once a new

sensor is installed in the physical system and telemetry is starting to be collected and pro-

cessed by a new or existing DA, such specific aEs are not available until enough data have

been collected. This is the reason why, as introduced in previous sections, our approach

proposes initializing the AAC with a pool of generic aEs trained with heterogeneous data,

i.e., a mix of data from other sensors available in the data lake. Figure 7a compares the

percentage of compressed samples using generic aEs trained with a mix of telemetry

measurements of all sensors and specific aEs for each of the sensors individually. In both

cases, the AAC has been configured with a stringent εcomp = 0.01. As can be seen, generic

aEs produce an overall good performance (around 50% of samples can be effectively com-

pressed), although this provides a negligible benefit for sensors that behave very differ-

ently from the considered generic data. This occurs in S2 data, showing a clear on-off pe-

riod (recall the example in Figure 4) that vastly differs from the generic data used for

training. As soon as specific AEs can be trained, then both individual and overall com-

pression increases (around 80% of samples can be compressed).

0%

20%

40%

60%

80%

100%

S1 S2 S3 overall

Generic Specific

Sensor

%
 o

f
co

m
p

re
ss

e
d

 in
p

u
ts

%
 o

f
co

m
p

re
ss

e
d

 in
p

u
ts

Z

(a) (b)

0%

20%

40%

60%

80%

100%

4 8 16 32

Generic Specific

Figure 7. Generic and specific AAC performance vs. sensor type (a) and latent space size (b).

Finally, Figure 7b details how many times every AE in the pool is used, for both ge-

neric and specific AE pools. Results show the average performance for all DAs and εcomp =

0.01. Note that the smallest LS size is frequently selected; however, sometimes a smaller

compression (larger LS) is needed to guarantee the target reconstruction error, which adds

value to the proposed AAC method. Moreover, the use of larger AEs is reduced when

specific AEs are trained. For this very reason, we can conclude that the use of generic AEs

is useful to provide compression from the beginning of sensor operation but needs to be

substituted by specific AEs to reach maximum performance.

5.3. SS-AD and MS-AGD Performance

Once the AAC has been numerically evaluated and validated, in this section, we fo-

cus on evaluating the performance of anomaly detection procedures assuming that spe-

cific AE are already trained and working. In particular, we configured our simulator to

reproduce two different use cases: (i) large individual anomalies for SS-AD evaluation

and (ii) subtle time-correlated anomalies for MS-AGD evaluation.

For the first use case, we assume that SS-AD is continuously running for each sensor

during 9 hours of normal operation followed by a drastic change in the pattern of the

generated data (happening at time tanom). In order to introduce a variety of anomalies, we

consider that sensor Si starts generating at tanom data similar to that of sensor Sj, being i≠j

and i, j ∈ {1, 2, 3}, thus reproducing six different anomalies.

Figure 8 evaluates the percentage of false positives detected by each of the sensors as

a function of different values of SS-AD parameters εanom and α (β was fixed to 100). A false

positive is detected if SS-AD returns True during the period of normal operation, i.e.,

when no anomalies are introduced. In light of the results, we can conclude that increasing

Sensors 2023, 23, 1043 16 of 19

εanom to 0.10 is sufficient to reduce α to short values (25 for S1 and S2 and 10 for S3) that

lead to zero false positive detections. Note that, the shorter α is, the faster the detection of

true anomalies. Then, assuming the best configuration of parameters for every sensor, Ta-

ble 3 shows the detection accuracy of all the aforementioned anomalies. It is worth noting

that SS-AD achieves very high accuracy (>95%) for most of the considered anomalies. In-

deed, only the S1 SS-AD process is not able to detect S3-like data, which is reasonable due

to the similarity of both the S1 and S3 time series. Therefore, we can conclude that SS-AD

performs accurate and robust detection of individual anomalies.

0%

5%

10%

15%

20%

25%

30%

35%

40%

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

Fa
ls

e
p

o
si

ti
ve

 d
et

ec
ti

o
n

α

εanom: 0.05

εanom: 0.10
S1 S2 S3

Figure 8. SS-AD: false positive detection.

Table 3. SS-AD: best configuration and anomaly detection accuracy.

Si εanom α
Sj

S1 S2 S3

S1 0.1 25 - 95.7% 0%

S2 0.1 25 95.4% - 99.9%

S3 0.05 25 95.6% 95.5% -

Regarding the second use case, we took advantage of WADI dataset measurements

collected under perturbations that were intentionally introduced in the system. The avail-

able metadata clearly indicates the time when a perturbation starts, which we identified

as tanom. Figure 9 plots the three sensors’ data in the period before and after tanom, as well as

the score computed in all such periods. In view of the results, we can conclude that the

proposed score clearly identifies when the correlated anomaly starts (no false positive de-

tection is observed before tanom). Note that the first time interval where the score reaches a

value significantly larger than 0 is only 40 seconds later than tanom, which validates MS-

AGD as a prompt time-correlated anomaly detection method.

0

0.5

1

0

0.2

0.4

0.6

0.8

1

S1 S2 S3

N
o

rm
al

iz
ed

 m
ea

su
re

m
en

t

time

sc
o

re

tanom

tanom + 40s

Figure 9. MS-AGD performance.

Sensors 2023, 23, 1043 17 of 19

5.4. Case Study

Eventually, we conducted a numerical case study in order to evaluate the impact of

the proposed methodology assuming a larger network scenario such as the one sketched

in Figure 1a. Thus, we assume that a physical system containing hundreds to thousands

of sensors is geographically distributed among a number of locations where the DAs are

locally deployed. For the sake of simplicity, let us assume that the overall telemetry data

generated by all the sensors in the system, i.e., the total volume that needs to be gathered

by the DT, is fixed at 400 Gb/s. Moreover, let us assume an optical transport network that

allows transparent connectivity between the remote physical locations and the location

where the DT is deployed, e.g., a data center. To support the transport of such telemetry

data, optical connections taking advantage of digital subcarrier multiplexing technology

can be deployed [34]. This ensures that optical connections can be established with a fine

granularity of 25 Gb/s each.

Figure 10a shows the amount of data injected as a function of the number of locations,

assuming an even split among locations of the total amount of telemetry data. Two cases

are shown: no compression and using AAC. For the latter, we consider εcomp = 0.01 and,

according to Figure 6 and considering that the sensors behave similarly to the ones used

before, the average compression factor is around 12.5. Assuming this compression perfor-

mance, the figure shows great savings in the total amount of data generated by every

location distributed in the network. Nevertheless, the impact on the true amount of data

that needs to be conveyed in the transport network will depend on the number of optical

connections needed to carry out such data. This is shown in Figure 10b as a function of a

number of locations, as well as the capacity savings of using AAC with respect to the no

compression scenario. For instance, 50% of optical capacity savings are achieved when

400 Gb/s of raw data are generated among eight different locations. In this case, every

location is generating around 50 Gb/s of raw telemetry data, which requires two optical

connections between the location and the centralized DT. On the contrary, the proposed

AAC method reduces the conveyed data to 4 Gb/s, which can be served with only one

optical connection per location.

1

10

100

1000

0 4 8 12 16

No compression

AAC

0%

20%

40%

60%

80%

100%

0

2

4

6

8

10

12

14

16

0 4 8 12 16

No compression

AAC

Connection Savings

D
at

a
ge

n
e

ra
te

d
 p

e
r

lo
ca

ti
o

n
 (G

b
/s

)

N
u

m
b

e
r

o
f

o
p

ti
ca

l c
o

n
n

e
ct

io
n

s

C
ap

ac
it

y
sa

vi
n

gs

of locations # of locations

(a) (b)

Figure 10. Network study analysis: data generated (a) and number of optical connections (b).

Hence, we can definitively conclude that the proposed adaptive telemetry compres-

sion mechanism allows a large reduction in the number of optical connections and true

data to be conveyed through the transport network.

6. Conclusions

In this paper, we presented a smart management system of DT telemetry data con-

sisting of different processes for adaptive telemetry data compression (AAC), single sen-

sor anomaly detection (SS-AD), and multiple sensor anomalous group diagnosis (MS-

AGD). All the methods made use of AEs trained with generic and specific sensor teleme-

try data, as well as a set of algorithms that used those AEs to maximize the performance

of compression and anomaly detection.

Sensors 2023, 23, 1043 18 of 19

The numerical evaluation of such models and algorithms was performed using an

experimental data set from a water distribution system. The main conclusions derived

from such numerical analysis are (i) AAC produces a larger compression ratio than using

a single AE, reaching a remarkable relative gain above 60% for stringent reconstruction

errors around 1%; (ii) AAC achieves compression ratios one order of magnitude larger

than other benchmarking lossy compression mechanisms in the literature; (iii) SS-AD

achieves an anomaly detection accuracy larger than 95% when telemetry data anomalies

are injected; and iv) MS-AGD is able to accomplish the prompt detection (<1 min) of subtle

correlated anomalies affecting a group of sensors.

In addition, the proposed smart management of telemetry data for the DT use case

was evaluated in terms of the reduction in transport network resources. To this aim, we

considered distributed scenarios where telemetry data sources were spread among differ-

ent network locations, thus needing to gather such telemetry data in a centralized location.

Results showed that remarkable capacity savings, measured in terms of dedicated optical

connections, were achieved for moderately-high distributed scenarios.

As a final remark, it is worth mentioning that this work allows for promoting the

deployment of DT-based management solutions for those industrial systems that have not

yet adopted it. Since telemetry data sources are currently available (sensors in automated

control systems are widely used in industry), one of the major current obstacles for mi-

grating towards DT-based solutions is the high cost of the management and curation of

such a large amount of generated telemetry data. In this regard, the proposed contribu-

tions showed a significant reduction in such cost by efficient compression and decentral-

ized analysis, thus facilitating the adoption of DT in industry.

Author Contributions: Conceptualization, M.R., H.H. and L.V.; Methodology, A.E.S., M.R. and

L.V.; Software, A.E.S.; Validation, A.E.S.; Investigation, A.E.S.; Resources, H.H.; Data curation,

A.E.S.; Writing—original draft, A.E.S.; Writing—review & editing, M.R., H.H. and L.V.; Supervi-

sion, M.R. and H.H.; Funding acquisition, M.R. and L.V. All authors have read and agreed to the

published version of the manuscript.

Funding: This research was funded by the European Commission Horizon Europe SNS JU DE-

SIRE6G project (G.A. 101096466), by the AEI through the IBON project (PID2020-114135RB-I00), and

by the ICREA institution.

Institutional Review Board Statement: Not applicable.

Informed Con sent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mainmon, O.; Rokach, L. Data Mining and Knowledge Discovery Handbook; Springer: New York, NY, USA, 2005.

2. Barricelli, B.R.; Elena, C.; Folgi, D. A Survey on Digital Twin: Definitions, Characteristics, Applications, and Design Implica-

tions. IEEE Access 2019, 7, 167653–167671.

3. Qi, Q.; Tao, F. Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0: 360 Degree Comparison. IEEE Access

2018, 6, 3585–3593.

4. Fuertes, P.C.; Alzamora, F.; Carot, M.; Campos, J.A. Building and Exploiting a Digital Twin for the Management of Drinking

Water Distribution Networks. Urban Water J. 2020, 17, 704–713.

5. Ruiz, M.; Sequeira, D.; Velasco, L. Deep Learning -based Real-Time Analysis of Lightpath Optical Constellations. IEEE/OPTICA

J. Opt. Commun. Netw. 2022, 14, C70–C81.

6. International Telecommunications Union. Representative Use Cases and Key Network; International Telecommunications Union:

Geneva, Switzerland, 2020.

7. El Sayed, A.; Harb, H.; Ruiz, M.; Velasco, L. ZIZO: A Zoom-In Zoom-Out Mechanism for Minimizing Redundancy and Saving

Energy in Wireless Sensor Networks. IEEE Sens. J. 2021, 21, 3452–3462.

8. Salomon, D. A Concise Introduction to Data Compression; Springer: New York, NY, USA, 2008.

9. Yao, Y.; Sharma, A.; Golubchik, L.; Govindan, R. Online Anomaly Detection for Sensor Systems: A Simple and Efficient Ap-

proach. Perform. Eval. 2010, 67, 1059–1075.

Sensors 2023, 23, 1043 19 of 19

10. Velasco, L.; Ruiz, M.; Cugini, F.; Casellas, R.; Chiado Piat, A.; Gonzlez, O.; Lord, A.; Napoli, A.; Layec, P.; Rafique, D.; et al.

Monitoring and Data Analytics for Optical Networking: Benefits, Architectures, and Use Cases. IEEE Netw. 2019, 33, 100–108.

11. Eichinger, F.; Efros, P.; Karnouskos, S.; Böhm, K. A Time-Series Compression Technique and its Application to the Smart Grid.

Very Large Data Bases J. 2014, 24, 193–218.

12. Hollmig, G.; Horne, M.; Leimkühler, S.; Schöll, F.; Strunk, C.; Englhardt, A.; Efros, P.; Buchmann, E.; Böhm, K. An Evaluation

of Combinations of lossy Compression and Change-Detection Approaches for Time-Series Data. Inf. Syst. 2017, 65, 65–77.

13. Fink, E.; Gandhi, H. Compression of Time Series by Extracting Major Extrema. J. Exp. Theor. Artif. Intell. 2011, 23, 255–270.

14. Chandak, S.; Tatwawadi, K.; Wen, C.; Wang, L.; Aparicio, J.; Weissman, T. LFZip: Lossy compression of multivariate floating-

point time series data via improved prediction. In Proceedings of the Data Compression Conference, Virtual, 24–27 March 2020.

15. Al-Marridi, A.Z.; Mohamed, A.; Erbad, A. Convolutional Autoencoder Approach for EEG Compression and Reconstruction in

m-Health Systems. In Proceedings of the International Wireless Communications & Mobile Computing Conference, Limassol,

Cyprus, 25–29 June 2018.

16. Sunilkumar, K.N.; Shivashankar, S.; Keshavamurthy, K. Bio-Signals Compression Using Auto-Encoder. Int. J. Electr. Comput.

Eng. 2020, 11, 424.

17. Blalock, D.; Madden, S.; Guttag, J. Sprintz: Time Series Compression for the Internet of Things. Proc. Assoc. Comput. Mach. Inter-

act. Mob. Wearable Ubiquitous Technol. 2018, 2, 1–23.

18. Hsu, D. Time Series Compression Based on Adaptive Piecewise Recurrent Autoencoder. Comput. Res. Repos., 1, 1-10, 2017.

19. Wong, T.; Luo, Z. Recurrent Auto-Encoder Model for Multidimensional Time Series Representation. In Proceedings of the In-

ternational Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

20. Reddy, K.K.; Sarkar, S.; Venugopalan, V.; Giering, M. Anomaly Detection and Fault Disambiguation in Large Flight Data: A

Multi-modal Deep Auto-encoder Approach. In Proceedings of the International Conference on Prognostics and Health Man-

agement, Ottawa, ON, Canada, 20–22 June 2016.

21. Cook, A.A.; Mısırlı, G.; Fan, Z. Anomaly Detection for IoT Time-Series Data: A Survey. IEEE Internet Things J. 2020, 7, 6481–

6494.

22. Zhao, C.; Paffenroth, R.C. Anomaly Detection with Robust Deep Autoencoders. In Proceedings of the KDD, Halifax, NS, Can-

ada, 13–17 August 2017.

23. Guo, Y.; Liao, W.; Wang, Q.; Yu, L.; Ji, T.; Li, P. Multidimensional Time Series Anomaly Detection: A GRU-based Gaussian

Mixture Variational Autoencoder Approach. In Proceedings of the 10th Asian Conference on Machine Learning, PMLR, Beijing,

China, 14–16 November 2018.

24. Russo, S.; Disch, A.; Blumensaat, F.; Villez, K. Anomaly Detection using Deep Autoencoders for in-situ Wastewater Systems

Monitoring Data. In Proceedings of the 10th IWA Symposium on Modelling and Integrated Assessment, Watermatex 2019,

Copenhagen, Denmark, 1–4 September 2020.

25. Li, L.; Yan, J.; Wang, H.; Jin, Y. Anomaly Detection of Time Series with Smoothness-Inducing Sequential Variational Auto-

Encoder. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 1–15.

26. Suh, S.; Chae, H.D.; Kang, H.-G.; Choi, S. Echo-State Conditional Variational Autoencoder for Anomaly Detection. In Proceed-

ings of the International Joint Conference on Neural Networks, Vancouver, BC, Canada, 24–29 July 2016.

27. Ghrib, Z.; Jaziri, R.; Romdhane, R. Hybrid approach for Anomaly Detection in Time Series Data. In Proceedings of the Interna-

tional Joint Conference on Neural Networks, Glasgow, UK, 19–24 July 2020.

28. Kim, D.; Yang, H.; Chung, M.; Cho, S.; Kim, H.; Kim, M.; Kim, K.; Kim, E. Squeezed Convolutional Variational AutoEncoder

for Unsupervised Anomaly Detection in Edge Device Industrial Internet of Thing. In Proceedings of the International Confer-

ence on Information and Computer Technologies, DeKalb, IL, USA, 23–25 March 2018.

29. An, J.; Cho, S. Variational Autoencoder based Anomaly Detection. Spec. Lect. IE 2015, 2, 1–18.

30. Vujović, V.; Maksimović, M. Raspberry Pi as a Wireless Sensor Node: Performances and Constraints. In Proceedings of the

International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija,

Croatia, 26–30 May 2014.

31. Ferdoush, S.; Li, X. Wireless Sensor Network System Design Using Raspberry Pi and Arduino for Environmental Monitoring

Applications. Procedia Comput. Sci. 2014, 34, 103–110.

32. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006.

33. Water Distribution Dataset; iTrust, Centre for Research in Cyber Security, Singapore University of Technology and Design: Sin-

gapore, 2019.

34. Velasco, L.; Barzegar, S.; Sequeira, D.; Ferrari, A.; Costa, N.; Curri, V.; Pedro, J.; Napoli, A.; Ruiz, M. Autonomous and Energy

Efficient Lightpath Operation Based on Digital Subcarrier Multiplexing. IEEE J. Sel. Areas Commun. 2021, 39, 2864–2877.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-

thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

