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Abstract: The gas sweetening process removes hydrogen sulfide (H2S) in an acid gas removal unit
(AGRU) to meet the gas sales’ specification, known as sweet gas. Monitoring the concentration of
H2S in sweet gas is crucial to avoid operational and environmental issues. This study shows the
capability of artificial neural networks (ANN) to predict the concentration of H2S in sweet gas. The
concentration of N-methyldiethanolamine (MDEA) and Piperazine (PZ), temperature and pressure
as inputs, and the concentration of H2S in sweet gas as outputs have been used to create the ANN
network. Two distinct backpropagation techniques with various transfer functions and numbers of
neurons were used to train the ANN models. Multiple linear regression (MLR) was used to compare
the outcomes of the ANN models. The models’ performance was assessed using the mean absolute
error (MAE), root mean square error (RMSE), and coefficient of determination (R2). The findings
demonstrate that ANN trained by the Levenberg–Marquardt technique, equipped with a logistic
sigmoid (logsig) transfer function with three neurons achieved the highest R2 (0.966) and the lowest
MAE (0.066) and RMSE (0.122) values. The findings suggested that ANN can be a reliable and
accurate prediction method in predicting the concentration of H2S in sweet gas.

Keywords: acid gas; concentration of H2S; automated prediction; artificial neural network; multiple
linear regression; Levenberg–Marquardt; scale conjugate gradient

1. Introduction

In recent decades, there has been a sharp increase in the demand for natural gas.
Despite its significant contribution to the current global economy and progress, natural
gas typically contains a number of pollutants that must be removed in order for it to meet
the requirements for gas pipelines, such as acid gases (hydrogen sulfide (H2S) and carbon
dioxide (CO2)) [1]. Due to human health and environmental concerns, numerous restric-
tions and regulations have been imposed on the gas sales’ specifications. The permitted
concentration of H2S is between 4 and 20 part per million (ppm) and not more than 3%
of CO2 [2]. Therefore, the acid gas must undergo a gas treatment process, namely gas
sweetening. In the gas sweetening process, acid gasses, such as H2S and CO2, are removed
to produce a sweet gas [3].

The gas sweetening processes can be divided into several categories, which include
physical, chemical and hybrid solvents, adsorption processes and physical separation.
Alkanolamine solvents for absorption have been the most extensively utilized commercial
technology in a variety of industries in recent years [2]. Utilizing the solvents’ capacity and
reducing the process’s operating costs are two common strategies put forth by researchers.
Studies have shown that mixed tertiary amines, such as N-methyldiethanolamine (MDEA)
and tri-ethanolamine (TEA), showed a positive impact as they reduced the process costs by
up to 3% when 40% MDEA and 5% TEA were used [4]. According to Ammar and Samah
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(2020), a formulated solvent known as mixed amines, which contains MDEA as the primary
solvent, is typically blended or added with one or more reactive amines such as piperazine,
TEA, sulfolane, or diethanolamine (DEA) [2].

The purpose of mixing different amines is to combine each of their favourable char-
acteristics to maximize the removal capacity of the acid gas. In contrast to primary and
secondary amines, the tertiary amine MDEA has a lower vapour pressure, greater resilience
to deterioration, and fewer corrosion issues [5]. Other than these advantages, the disadvan-
tage is that it does not directly react with CO2, slowing down the absorption rate of CO2
in aqueous MDEA [6]. To increase the rate of absorption, activators, including piperazine
(PZ), monoethanolamine (MEA), and sulfolane, are used with MDEA [7]. Using PZ as an
activator has shown positive results in the past few years. CO2 is absorbed more quickly by
MDEA when PZ is added than by MEA or DEA [8]. One study that established a detailed
model to examine the solubility of CO2 into activated MDEA by PZ demonstrated that
theoretically one mole of PZ can absorb two moles of CO2 [9].

It is necessary to establish the lean amine mixture’s ideal concentration, which matches
the H2S and CO2 levels in sweet gas. A typical alkanolamine-based solvent ranges from
30 to 45 wt% MDEA and 5–20 wt% piperazine, with the rest made up of water [10]. Still,
there is no guarantee of optimal removal efficiency for such a prescribed solvent. Given
the increasing range of feed gas conditions and varying process operations, such as those
encountered in current gas field practice, there is a need to consider a systematic approach
for optimizing such solvents [11]. Artificial neural networks (ANNs) have been widely
used in this context to solve engineering applications, particularly for the prediction of
highly non-linear systems [12]. The growing body of research on ANN applications has
demonstrated its advantages over traditional regression. This might be a result of how
closely these networks resemble the human brain [13]. There are three layers that make up
the ANN architecture: input, hidden, and output. Neurons make up for each of the layers
and are linked by synapses with weighted coefficients [12].

When compared to other ANN types, the multilayer perceptron (MLP) with a back-
propagation learning approach is employed the most frequently for problem-solving [14].
Several studies have shown the use of ANN in natural gas treatment. A study on the
application of ANN in predicting the output parameter of gas sweetening regeneration
column revealed that the developed ANN model produced a good consistency with the
experimental data, which concluded that the model developed can be used for predicting
the output parameters accurately [15]. Another study regarding predicting the solubil-
ity of H2S for both single and blended adsorbents has shown that the ANN model with
17 hidden neurons produced the highest R2 (0.9817) and the lowest mean square error MSE
(0.0014) [12]. Furthermore, the experimental data and the predicted solubility of H2S is
well aligned.

In order to find the optimum prediction model for predicting the H2S content in
sweet gas, an ANN model based on MLP with various transfer functions and number of
neurons was created for this study. The outcomes of ANN have also been evaluated with
those of multiple linear regression (MLR). Section 2 of this paper describes the natural gas
sweetening plant, flowsheet development and validation and proposed system models for
predictions. Section 3 in this paper provides the results and discussion and is followed by
the conclusion of this study in Section 4.

2. Materials and Methods

The methods used to create the models that predict the H2S content of sweet gas are
discussed in this section. MLR and ANN were used to train the data from a validated
simulation. In contrast to linear regression, which was compared in this study due to
its ease and widespread use in many applications and research, ANN was chosen due
to its greater recognition and superior performance in predicting non-linear correlations.
Figure 1 depicts the overall flow of the study’s work plan.
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2.1. Process Description of Natural Gas Sweetening Plant

As mentioned, there are many methods used to treat acid gas. However, the amine
process is currently the most widely used method in acid gas removal [15]. The reversible
reaction for the gas sweetening process is as follows [16]:

2RNH2 + H2S
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(RNH2)2H2CO3 (2)

where R is mono-, di- or tri-ethanol, while N, H, S, C and O represent nitrogen, hydrogen,
sulphur, carbon and oxygen, respectively. The forward reaction of this process is exothermic,
and its reversible reaction is endothermic. The endothermic reaction of this process can be
promoted by heating the amine solution.

A typical process flow diagram for an amine-treating unit is shown in Figure 2. A
simplified version of the process description is provided below to facilitate further dis-
cussion; the complete process description is also available from [17]. The sour feed gas
is typically supplied into an input separator first to be cleansed and filtered of any free
liquids and solids before being fed into the amine unit. The aqueous amine solution enters
at the top of the amine absorber unit, and the sour gas is then fed into the bottom, flowing
counter-currently while in contact with it. H2S in the gas phase is transported to the liquid
phase during the absorber contact period in accordance with the reaction of Equation (1).
The amine solution that absorbed the acid gas and emerged from the bottom of the absorber
is the rich amine. Sweet gas is defined as sour gas that has been treated in an absorber
where the H2S concentration has dropped to below the standard limit of 4 ppm and not
more than 3 percent mole of CO2 leaves at the absorber’s top.
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The rich amine flows into a flash separator at low pressure, removing the hydrocarbons
through weight differences and separating gas components. Before entering the regenerator,
the rich amine is pre-heated through a lean/rich heat exchanger, reducing the reboiler’s
heat load. This is a preliminary step in removing H2S. When the rich amine is in touch
with the high-temperature amine vapour phase created in the reboiler, regeneration takes
place in the regenerator. As previously mentioned, a high temperature encourages the
reversal of Equation (1). Lean amine, which has a high temperature and a low percentage
of acid gas, is then cycled back to the absorber. In order to recover the vaporised amine, the
rich amine’s stripped acid gas is cooled in a condenser before being refluxed back into the
regenerator. Before they may be released into the atmosphere without harm, the acid gas
that leave from the reflux’s top needs to undergo additional processing.

2.2. Sour Feed Gas Specification

Before moving forward with the data generation of MDEA and PZ, a validated flow-
sheet is required. Some of the conditions of the variables are adopted from the previous
literature. The flow rate of the sour gas, its pressure and temperature are 7154.8 kmol/h,
54.03 bar and 52 ◦C. MDEA is commonly used between 30 to 50 wt%. As for this simulation,
48% of MDEA is used to simulate and compare with industrial data obtained from the
previous literature [18]. The MDEA solution enters at the top of the absorption tower at a
pressure and temperature of 54.32 bar and 55 ◦C, respectively. Table 1 shows the sour feed
gas composition used for the simulation.

Table 1. Sour feed gas composition used for the simulation.

Composition Mole Fraction

H2O 0.00234

i-Pentane 0.00520

n-Pentane 0.00560

i-Butane 0.01243

n-Butane 0.02150

CO2 0.03001

H2S 0.00024

Methane 0.72583

Ethane 0.11717

Propane 0.07377
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2.3. Simulation Validation

A case study was developed to validate the simulation results’ accuracy and reliability,
which will then be used for data generation. The simulation was developed in Aspen
HYSYS 12.1 with an acid gas fluid package, which is recommended for natural gas treat-
ment [2]. Figure 3 shows the developed flowsheet for acid gas treatment. Table 2 shows
the simulation and the industrial data’s flow rate of H2S and CO2 in sweet gas. The error
comparison between the industrial and simulation data is calculated as follows:

Error (%) =
Industrial− Simulation

Industrial
×100 (3)

The actual comparison of the flow rate of H2S, CO2 and the total flow of sweet gas
between the industrial, the previous literature and simulation data show a reasonably good
agreement. Thus, the flowsheet can be used for data generation.
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Table 2. Comparison of H2S, CO2 and total flow of sweet gas between industrial, literature and our
simulation data.

Properties Industrial Literature [18] Error (%) Simulation Error (%)

H2S (kmol/h) * 0.00959 0.01001 4.37 0.0101 5.31

CO2 (kmol/h) * 170.87 169.41 0.85 171.09 0.13

Total flow
(kmol/h) * 7031.80 7029.47 0.033 6974.00 0.82

* Units: Kilomol/hour (kmol/h).

2.4. Data Generation

From the converged simulation and validated flowsheet, numerous data can be gen-
erated by simulating different values of a single variable using the Aspen Simulation
Workbook. The choice of parameters and the range of manipulation for each parameter
are decided based on the previous literature. These datasets are crucial as data-driven
models depend heavily on a large dataset. The larger the dataset, the better the model. The
data produced are further utilized to study the effects of manipulating several operational
parameters of the system. Above all, data generation is conducted in three steps: simula-
tion of acid gas treatment using a base case scenario, identification of input and output
variables, which are the independent and dependent variables and rigorous simulation
using multiple case scenarios involving the manipulation of input variables and obtaining
the corresponding output variables.
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In machine learning, identifying independent and dependent variables is vital to make
predictions using data-driven models. Independent variables are input variables that do
not depend on other variables but might cause changes in other variables. In contrast,
dependent variables are output variables solely influenced by the changes implied in the
independent variables. The determination of independent and dependent variables is
purely supported by the literature where standard input and output variables are identified.
Their corresponding lower and upper boundaries for generating outputs are based on
various manipulated input variables. As for the MDEA and PZ, their lower and upper limits
were obtained from a previous study [2]. As for the temperature and absorber pressure,
the output was obtained through a sensitivity analysis. Sensitivity analysis analyses how
a certain dependent variable is affected by a changed value of an independent variable
under a specific set of assumptions. The range of the temperature and absorber for this
work is set to be ±30% of the base value. Table 3 shows the independent and dependent
variables corresponding to lower and upper limits. Table 4 shows the framework for the
data generation with respect to their input and their combination of inputs.

Table 3. List of independent and dependent variables corresponding with their lower and upper
limits for data generation.

Parameters Lower Base Upper Variables

MDEA (%) [2] 35.00 40.00 45.00

Independent

Pz (%) [2] 0.00 5.00 10.00

Temperature (◦C) [18] 38.50 55.00 71.50

Absorber
Pressure (bar) [18]

Feed 38.12 54.02 69.93

Lean amine 38.33 54.32 70.32

Top 37.30 52.85 68.41

Bottom 37.64 53.33 69.03

Concentration of H2S (ppm) in
sweet gas Dependent

Table 4. Data generation framework with respect to their input and their combination.

Data Generation
Input

MDEA (%) PZ (%) Temperature (◦C) Pressure (bar)

1 35.00–45.00 Base Base Base

2 Base 0.00–10.00 Base Base

3 Base Base 38.50–71.50 Base

4 Base Base Base 37.30–70.32

5 35.00–45.00 0.00–10.00 Base Base

6 Base 0.00–10.00 38.50–71.50 Base

7 Base Base 38.50–71.50 37.30–70.32

8 35.00–45.00 Base 38.50–71.50 Base

9 35.00–45.00 Base Base 37.30–70.32

10 Base 0.00–10.00 38.50–71.50 Base

11 Base 0.00–10.00 Base 37.30–70.32

12 35.00–45.00 0.00–10.00 38.50–71.50 Base

13 35.00–45.00 0.00–10.00 Base 38.50–71.50

14 Base 0.00–10.00 38.50–71.50 38.50–71.50

15 35.00–45.00 0.00–10.00 38.50–71.50 38.50–71.50
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2.5. Data Collection and Pre-Processing

A total of 15 simulation runs have been conducted with respect to their input and their
combination. This generates a total of 3015 data points from the data generation section.
The parameters reported in this study are the essential variables that affect the rate of
absorption of H2S. The concentration of MDEA and PZ, the temperature of amine solvent
and the pressure of the absorber are the input variables, and the concentration of H2S in
sweet gas is the targeted output. A total of five combinations of outputs were considered
to determine the concentration of H2S in sweet gas, shown in Table 5. The predictive
models were developed by using MATLAB version R2022a [14]. First, the code for the
neural network was developed by utilizing the neural net fitting toolbox in MATLAB. Then,
different transfer functions were tested by altering the codes. Next, the function “fitlm”
was used for linear regression to develop the regression model. Finally, correlation matrices
were plotted through a scatter plot before training to analyse the relationship between
the variables.

Table 5. Combination of input parameters in determining the concentration of H2S in sweet gas.

Dataset Inputs Outputs

1 Concentration of MDEA, PZ and temperature

Concentration of H2S (ppm)
in sweet gas

2 Concentration of MDEA, PZ and pressure

3 Concentration of PZ, temperature and pressure

4 Concentration of MDEA, temperature and
pressure

5 Concentration of MDEA, PZ, temperature and
pressure

2.6. Model Development
2.6.1. Feedforward Neural Network-Based Model

A neural network is an algorithm that draws inspiration from the human brain and
uses examples, patterns, and scenarios to learn and then applies them to solve problems [14].
The layers of neurons that make up a neural network serve as the network’s central process-
ing units. In contrast to a model based on regression, ANN can handle noisy and non-linear
data. Due to its simplicity of construction and ability to serve as a universal approximator,
this study opts for a multilayer feedforward network or multilayer perceptron (MLP) with
a single hidden layer [19]. A conceptual diagram of the created MLP used in this study is
shown in Figure 4. The network receives inputs in its input layer, which has four input
neurons, and predicts results in its output layer. Between the input and output, it has
hidden layers where the majority of the network’s processing is needed and conducted.
As an illustration, the hidden and output layer activation functions were performed using
“tansig” and “purelin.” The MLP must be taught to recognise the ideal weights of connec-
tions between the neurons in order to obtain a minimal difference between the measured
and predicted values of the dependent variable [20]. The most common method of training
MLP is through a two-step approach of the backpropagation (BP) method. The first step is
propagating the input signal to estimate the outputs [19]. In the second step, the weight
vectors and biases between the layers are adjusted, the mean square error (MSE) between
the observed and predicted results is reduced, and the model’s generalization is increased
to make it more dependable [14].
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2.6.2. Multiple Linear Regression (MLR)

Regression analysis is a crucial statistical tool that determines the correlation between
the dependent (response) and independent (predictors) variables. Linear regression is
one of the simplest yet most widely used models in determining the strength between the
predictors and the response. Regression can be divided into simple linear regression (SLR)
and multiple linear regression (MLR). In SLR, the response (outcome) is predicted based
on a single independent variable, which is depicted in (1). MLR is another name for a
statistical tool that is immensely useful in figuring out the optimal correlation between a
dependent variable and a number of independent variables. Since there are multiple inputs
in this investigation, a linear equation was fitted to the data as a primary building block for
correlation. The MLR models were created using the four model specification parameters,
namely linear, interaction, pure quadratic, and quadratic, which are given in (4)–(8) [21].

y = a0+a1x+ε (4)

y = a0 +
m

∑
i=1

aixi + ε (5)

y = a0 + ∑m
i=1aixi + ∑m

i,j=1;i<jaijxixj (6)

y = a0 + ∑m
i=1;p<3aix

p
i (7)

y = a0 +
m,p<3

∑
i=1;p<3

aix
p
i +

m

∑
i,j=1;i<j;p,q<3

aijx
p
i xq

j +
m

∑
i,j=1;i 6=j;p,q<3;p<q

aijx
p
i xq

j (8)

where y is the predicted output, x, xi and xij are the independent input variables, a0 is a
constant term, ai and aij are the regression coefficients, and ε is the residual error.

2.7. Model Training and Testing

To discover the model that best predicts values that are as close to the actual concen-
tration of H2S in sweet gas as possible, model training was carried out using a variety of
network configurations and learning parameters. Throughout the study, the data division
for ANN and MLR was kept constant to compare their performances on equal grounds.
Typically, 80% of the data is utilized for training and validation, and 20% is used for testing
or verification [15]. Testing (verification) is used to evaluate the accuracy of the previously
trained network by providing a dataset that has never been seen before by the network.
Two types of BP algorithm, Levenberg–Marquardt (LM) and scale conjugate gradient (SCG)
were involved in training the ANN models. Three distinct transfer functions, tangent
sigmoid (tansig), logistic sigmoid (logsig), and radial basis function (radbas), were utilized
to evaluate and optimise the ANN transfer function in the hidden layer. These functions
have one thing in common: they all need to calculate ex [22]. The equation of logsig, tansig
and radbas are given in (9)–(11), where x is the independent variable and j = 1, 2, . . . , 5.
Meanwhile, the activation function for the output layer is set to be a linear transfer function,
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which is purelin for all models. This function returns the value passed to the neuron to
calculate its output.

f(x) =
1

1− e−x′ (9)

f(x) =
ex−ex

ex−e−x′ (10)

f(x)= exp(− 1
2σ2

j

∣∣x− xj
∣∣2) (11)

The feedforward neural network with a single hidden layer used in this paper is
shown in Figure 5. The first layer of the network model in the model has five nodes to
represent the inputs (M, PZ, T, and P), while the last layer has one node to represent the
output (concentration of H2S in sweet gas). The five-node hidden layer is represented by the
middle layers. For instance, logsig and purelin were utilized as the activation functions for
the hidden and output layers, as shown in Figure 5. Usually, purelin is used as the transfer
function for the output layer. The combination of non-linear and linear transfer functions
has achieved efficient training from a previous study [23]. The number of neurons was
another criterion that was changed in this study. Input and output layer neurons should be
equal in number to the number of independent and dependent variables [14]. Nevertheless,
for determining the minimum and maximum number of neurons in the hidden layer, there
are no established standards [24]. The number of neurons selected is crucial because too
few neurons could make network learning more complex and too many neurons would
need excessive training time. On the other hand, for testing the MLR models, the equations
obtained through training are used by substituting the testing dataset.
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2.8. Model Performance and Evaluation

The performance of the developed ANN model and the MLR models in predicting the
concentration of H2S in sweet gas were evaluated through mean absolute error (MAE), root
mean square error (RMSE) and coefficient of determination (R2). The differences between
the actual and predicted outputs are commonly represented by the metrics MAE, RMSE,
and R2 (in this case, the actual and predicted concentration of H2S in sweet gas). An ideal
model should have the value of MAE and RMSE approaching zero, while R2 converges to
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unity [25]. Calculations of the three predictive indicators (MAE, RMSE and R2) are defined
as follows [14]:

MAE =
1
ns

ns

∑
k=1

(YA,k −YP,k) (12)

RMSE =

√
1
ns

ns

∑
k=1

(YA,k −YP,k)
2 (13)

R2 =
∑ns

k=1(YA,k −YP,k)
2

∑ns
k=1(YA,k −YAVG)

2 (14)

where ns is the number of the data points, YA is the actual H2S concentration and YP is the
predicted H2S concentration.

3. Results and Discussion

The correlation matrix shown in Figure 6 was used to examine the correlations between
all factors. The response, or the concentration of H2S in sweet gas, and the predictors,
namely MDEA, PZ, temperature, and pressure, could be seen to be linear. According to [26],
the range of the correlation coefficient is 0.70–0.89, signifying a strong correlation; 0.40–0.69,
a moderate correlation; and 0.10–0.39, a poor correlation. From Figure 6, it can be observed
that PZ has a strong correlation (0.74) with the concentration of H2S in sweet gas, followed
by pressure and MDEA, which is considered a moderate correlation and temperature
(−0.26), which indicates a weak correlation. Additionally, no multicollinearity is observed
between the predictors. Multicollinearity is a condition that includes a significant degree
of correlation between two or more independent variables (predictors), which could raise
the standard error of the coefficient. If this happens, some factors may not be statistically
significant even if they ought to be [27]. ANN and MLR models were used to further study
the relationship between the H2S content in the sweet gas and the input parameters. MAE,
RMSE and R2 were used to evaluate their performances for this study.
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3.1. Performances of ANN Models

The performance of the developed ANN models can be evaluated through Table 6.
From Table 6, it can be observed that the network structure with an LM algorithm equipped
with logsig transfer function and five neurons shows the best prediction accuracy compared
to the others. Model 3’s combination of three predictors (PZ concentration, temperature,
and pressure) proved to be the most effective in this structure. The MAE and RMSE values
for the dataset were 0.066 and 0.112, respectively, while the R2 determination coefficient for
the dataset was 0.966, which is the highest value. The fraction of model predictions that
matches the data increases as R2 increases. Additionally, it shows that the interpretation
of PZ, temperature, and pressure can account for at least 96% of the variation in H2S
concentration in sweet gas, indicating the usefulness of utilizing ANN in this study. It is
important to note that the models’ accuracy increases as the number of neurons rise from
one to five. This can be supported by the decreasing values of MAE and RMSE as the
number of neurons increases.

Between ANN-LM and ANN-SCG, LM showed better consistency in terms of predic-
tion accuracy. The prediction accuracy increases as the number of neurons increases. This
can be due to the increasing number of synapses used for learning and data fitting [12]. The
accuracy of the SCG method does not appear to be correlated with the number of hidden
neurons, as demonstrated by the inconsistent prediction accuracy values that SCG showed
as the number of neurons increased. The conjugate directions and scaling of step size are
used to create and derive the SCG algorithm [28], resulting in the algorithm being ideal
for a large-scale, extremely non-linear prediction of thousands of data points [12]. The LM
algorithm, on the other hand, addresses problems by iteratively altering a weighted compu-
tation until an acceptable answer is found. It is a non-linear optimization and minimisation
of prediction error. Therefore, this algorithm is suggested to be suitable for complex–
medium scale problems [29]. In the present study, with 3015 data points, a relatively
superior prediction performance of ANN-LM is observed as compared to ANN-SCG.

The impacts of various transfer functions were also thoroughly studied. Although
theoretically, neural networks might learn any mapping, they could require flexible “brain
modules” or transfer functions that are suitable for problem-solving [30]. In comparison to
tansig and radbas, it achieves a higher accuracy by utilizing the logsig transfer function with
five neurons. The radbas transfer function, followed by logsig and tansig, yields superior
results for the SCG algorithm. Each transfer function has its own advantages. As the logsig
transfer function is differentiable, it is often employed in multilayer networks trained with
the backpropagation technique [31]. Tansig decreases the chance of neuron saturation by
providing stronger gradients than logsig. Additionally, it avoids the “biassing” of gradients
and speeds up the training of backpropagation algorithms for networks with an extensive
amount of connectivity, which can be seen in [32]. Radial basis functions (RBFs), on the
other hand, have a tendency to learn more quickly because each RBF unit only covers a
small portion of the input space. It works well in higher layers that are low-dimensional
and in lower layers that are high-dimensional sigmoid [33].

The findings in this study are similar with the findings in [12], where ANN is imple-
mented to predict the solubility of H2S since obtaining the experimental solubility of H2S is
time consuming and costly. Temperature, pressure, adsorbents and their weight fractions
are some factors that influence the solubility of H2S. Different numbers of neurons were
used to compare three methods, including LM and SCG. Mean square error (MSE) and
determination of coefficients (R2) was used to evaluate the performance of the models.
With 17 neurons, LM-ANN achieved the most astounding prediction performance of H2S
solubility throughout the investigation, with MSE of 0.0014 and R2 of 0.9817 as compared
to SCG-ANN (0.0791,0.8626).
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Table 6. Performance of ANN models with different transfer function and number of neurons during testing.

Number of Neurons 1 2 3 4 5

Training
Function

Transfer
Function Dataset MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

Levenberg–
Marquardt

Logsig

1 0.187 0.257 0.797 0.175 0.250 0.809 0.165 0.241 0.822 0.158 0.229 0.839 0.164 0.231 0.836

2 0.149 0.227 0.831 0.133 0.206 0.861 0.125 0.188 0.884 0.127 0.177 0.898 0.128 0.181 0.893

3 0.117 0.179 0.914 0.105 0.153 0.937 0.085 0.137 0.949 0.078 0.138 0.949 0.066 0.112 0.966

4 0.270 0.413 0.495 0.251 0.378 0.576 0.248 0.377 0.580 0.245 0.374 0.586 0.244 0.373 0.588

5 0.113 0.160 0.910 0.098 0.141 0.930 0.090 0.127 0.943 0.083 0.126 0.944 0.060 0.104 0.962

Tansig

1 0.186 0.257 0.796 0.187 0.257 0.797 0.187 0.254 0.803 0.168 0.241 0.821 0.167 0.234 0.832

2 0.148 0.228 0.831 0.133 0.207 0.860 0.130 0.188 0.884 0.119 0.173 0.902 0.125 0.178 0.897

3 0.117 0.179 0.914 0.099 0.165 0.927 0.094 0.146 0.943 0.086 0.139 0.948 0.088 0.137 0.949

4 0.272 0.412 0.497 0.250 0.378 0.576 0.246 0.376 0.582 0.247 0.375 0.584 0.246 0.373 0.587

5 0.110 0.159 0.912 0.088 0.136 0.935 0.083 0.128 0.943 0.077 0.121 0.948 0.071 0.109 0.958

Radbas

1 0.183 0.257 0.798 0.177 0.250 0.809 0.179 0.248 0.811 0.156 0.227 0.842 0.159 0.229 0.839

2 0.150 0.239 0.814 0.134 0.202 0.867 0.125 0.182 0.892 0.127 0.180 0.895 0.127 0.182 0.892

3 0.127 0.182 0.892 0.105 0.153 0.937 0.099 0.154 0.936 0.089 0.141 0.947 0.076 0.133 0.953

4 0.282 0.411 0.501 0.264 0.381 0.569 0.271 0.412 0.498 0.254 0.378 0.578 0.240 0.371 0.591

5 0.118 0.181 0.885 0.090 0.135 0.936 0.088 0.136 0.935 0.064 0.109 0.958 0.081 0.121 0.949

Logsig

1 0.187 0.258 0.796 0.178 0.251 0.806 0.185 0.261 0.791 0.189 0.272 0.772 0.219 0.317 0.691

2 0.148 0.227 0.831 0.148 0.220 0.843 0.150 0.231 0.826 0.179 0.254 0.790 0.148 0.216 0.848

3 0.121 0.192 0.901 0.114 0.177 0.916 0.108 0.161 0.930 0.104 0.176 0.916 0.087 0.153 0.937

4 0.287 0.415 0.491 0.298 0.417 0.484 0.297 0.406 0.512 0.289 0.419 0.479 0.288 0.414 0.491

5 0.112 0.162 0.908 0.107 0.158 0.912 0.095 0.143 0.928 0.112 0.159 0.911 0.157 0.217 0.835
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Table 6. Cont.

Number of Neurons 1 2 3 4 5

Training
Function

Transfer
Function Dataset MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

Scaled conjugate
gradient

Tansig

1 0.190 0.260 0.793 0.185 0.257 0.797 0.186 0.255 0.800 0.174 0.243 0.818 0.177 0.257 0.797

2 0.154 0.230 0.827 0.152 0.225 0.834 0.153 0.220 0.842 0.145 0.216 0.847 0.145 0.225 0.835

3 0.114 0.179 0.914 0.097 0.165 0.926 0.110 0.173 0.920 0.114 0.177 0.915 0.085 0.153 0.937

4 0.271 0.415 0.489 0.251 0.376 0.580 0.254 0.383 0.566 0.248 0.375 0.584 0.246 0.379 0.574

5 0.114 0.162 0.908 0.112 0.159 0.911 0.104 0.153 0.918 0.094 0.142 0.930 0.105 0.151 0.920

Radbas

1 0.185 0.262 0.790 0.188 0.260 0.792 0.189 0.273 0.771 0.192 0.262 0.789 0.183 0.250 0.808

2 0.154 0.242 0.809 0.138 0.219 0.843 0.156 0.232 0.824 0.135 0.195 0.876 0.144 0.205 0.862

3 0.125 0.201 0.891 0.103 0.154 0.937 0.088 0.147 0.942 0.105 0.165 0.927 0.164 0.241 0.843

4 0.291 0.420 0.477 0.283 0.417 0.486 0.296 0.442 0.420 0.290 0.419 0.480 0.262 0.393 0.542

5 0.125 0.206 0.851 0.110 0.161 0.909 0.101 0.146 0.925 0.079 0.124 0.946 0.084 0.133 0.938
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Furthermore, the effect of input parameters on the concentration of H2S in sweet
gas was also investigated in this work. It can be observed that as the inputs change, the
performance of the ANN models with various transfer functions changes. The results
obtained using Dataset 4 showed lower accuracy, with a lower coefficient of determination
(R2) and higher error values for both algorithms. The input parameter, Piperazine (PZ),
is significant (0.74) towards the concentration of H2S in sweet gas, which is supported by
the scatter plots in Figure 6. This indicates that the importance of having PZ as an input
parameter and the absence of PZ reduces the prediction accuracy.

3.2. Performances of MLR Models

In this study, the effectiveness of ANN was compared to that of MLR. MLR was
created based on four distinct model specifications: quadratic, interactions, pure quadratic,
and linear. Table 7 displays the performance of each model. Higher range of R2 and lower
range of MAE and RMSE resulted from regression through quadratic. The quadratic terms
obtained the highest R2 value, 0.92, and the lowest, 0.53. Dataset 5, which contains all the
input variables (MDEA, PZ, temperature and pressure), has shown the best performance in
predicting the concentration of H2S in sweet gas, obtaining the lowest values of MAE and
RMSE and the highest R2 value as compared to the other dataset. The MLR model with
quadratic terms produced from Dataset 5 is shown in Equation (15).

Concentration of H2S in sweet gas = 3.2440+0.0174M− 0.6617PZ + 0.0819T− 0.0872P + 0.0087MPZ− 0.0022MT
+0.0008042MP + 0.0040PZT− 0.0028PZP− 0.0009485TP + 0.00012292M2+0.0431PZ2+0.00059214T2+0.00081678P2 (15)

Table 7. MLR performance from different types of model specification during training and testing.

Dataset Type Training Testing

MAE RMSE R2 MAE RMSE R2

1

Linear

0.269 0.372 0.570 0.272 0.367 0.590

2 0.269 0.372 0.570 0.272 0.367 0.590

3 0.236 0.321 0.660 0.245 0.334 0.700

4 0.323 0.435 0.410 0.322 0.435 0.440

5 0.249 0.338 0.670 0.228 0.298 0.690

1

Interaction

0.219 0.327 0.670 0.227 0.325 0.680

2 0.219 0.327 0.670 0.227 0.325 0.680

3 0.152 0.239 0.820 0.162 0.237 0.850

4 0.317 0.431 0.420 0.311 0.423 0.470

5 0.157 0.244 0.830 0.140 0.190 0.870

1

Pure
quadratic

0.183 0.264 0.780 0.187 0.265 0.780

2 0.183 0.264 0.780 0.187 0.265 0.780

3 0.117 0.185 0.890 0.119 0.188 0.900

4 0.295 0.420 0.450 0.283 0.407 0.510

5 0.119 0.193 0.890 0.109 0.163 0.910

1

Quadratic

0.181 0.254 0.800 0.183 0.254 0.800

2 0.181 0.254 0.800 0.183 0.254 0.800

3 0.106 0.172 0.900 0.111 0.177 0.920

4 0.300 0.406 0.480 0.292 0.397 0.530

5 0.107 0.172 0.910 0.103 0.155 0.920
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In Table 7, from testing Dataset 4, which does not include PZ as the input parameter,
it can be observed that all types of MLR gave low values of R2, ranging from 0.44 to 0.53.
However, when PZ was incorporated as the input, all models’ accuracy improved, ranging
from 0.59 to 0.92. This shows the significance of PZ as an input parameter towards the out-
put. Furthermore, the accuracy of the models developed with different model specification
increased in this order: linear (0.44–0.70), interaction (0.47–0.87), pure quadratic (0.51–0.91)
and quadratic (0.53–0.92).

3.3. Comparison between ANN and MLR

The results obtained from ANN and MLR models during training and testing have
been compared to evaluate their performances. In terms of values, the performance of
ANN-LM in predicting the concentration of H2S in sweet gas is better compared to the other
models. The results from Figure 7a, which compares the actual and predicted values of the
output during training, reveal that the model achieved a high R2 value of 0.96 and low MAE
(0.06) and RMSE (0.11) values. During the training, the R2 value from ANN-LM was 0.96,
indicating that the model follows almost perfectly the actual data. The developed model
can achieve a higher prediction accuracy when test datasets are used, as seen in Figure 7b.
ANN-SCG model also depicts a high accuracy by obtaining a high R2 value for training
(0.92) and testing (0.94) (refer to Figure 7c,d). On the other hand, MLR with quadratic terms
showed a lower value of R2 for training (0.91) and testing (0.91), indicating that the model
is less reliable in predicting the concentration of H2S in sweet gas as compared to the other
models. The accuracy of the models developed in this study increased in this order: MLR,
ANN-SCG and ANN-LM.
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Figure 8 shows the residuals between each model’s actual and predicted data. The
maximum residual for testing datasets for ANN-LM, ANN-SCG and MLR were determined
to be around 0.87,0.76 and 1.25. These results reveal the capability of ANN in predicting
the concentration of H2S in sweet gas, which provides better accuracy than MLR.
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4. Conclusions

This work shows the capability of ANN in predicting the concentration of H2S in sweet
gas, which is crucial for safety reasons and design requirements. To develop ANN and
MLR models with high accuracy in predicting the concentration of H2S, the concentration
of MDEA and PZ, temperature and pressure are used as the inputs, and H2S concentration
in sweet gas is used as the output. Different learning methods, transfer functions and the
number of neurons were investigated to obtain a suitable model. In this work, a model
developed with three input parameters (Dataset 3), which include MDEA, PZ and pressure
from Levenberg–Marquardt equipped with logsig transfer function with five neurons,
showed the highest prediction accuracy, which obtained the highest R2 (0.966) value and
the lowest MAE (0.066) and RMSE (0.122) as compared to the others. Throughout this
study, the absence of PZ in the dataset reduced the prediction accuracy for both types
of models, indicating the importance of PZ in predicting the concentration of H2S. Both
models, ANN and MLR, could predict the overall desirability of concentration of H2S in
sweet gas with relatively good adjustment and fit between 0.700–0.966. However, the ANN
models showed better performance compared to MLR models. This study has shown the
potential application of ANN as a modelling tool to predict the concentration of H2S in
sweet gas in the oil and gas industry. This study contributes to the exploration of ANN as a
prediction model for H2S in sweet gas. The utilization of ANN models as an alternative
method throughout this work can be used as a context and guidance for the researchers and
the industry. In future works, ANN could be utilized to determine the best composition of
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solvents and other sets of parameters for H2S absorption that reduce the time and cost for
the intended solvent optimization study compared to conventional trial-and-error-based
experimental methods.
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