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Abstract: This paper presents the integration of active disturbance rejection control (ADRC) with
soft sensors for enhancing the composition control performance in a distillation column. Static
and dynamic soft sensors are developed to estimate the top and bottom product compositions
using multiple tray temperatures. In order to cope with the collinearity issues in tray temperature
measurements, static and dynamic principal component regression is used in developing the soft
sensors. The soft sensor outputs are introduced as the feedback signals to ADRC. This control scheme
is termed as “inferential ADRC control”. Static control offsets are eliminated through mean updating
in the soft-sensor models. The effectiveness of the proposed control scheme is demonstrated on a
benchmark simulated methanol-water distillation column.

Keywords: distillation columns; inferential control; active disturbance rejection control; principal
component regression

1. Introduction

In the last decades, the proficient and efficient use of energy has become a highly
significant issue in the industrial sector since the prices of energy as well as environmental
awareness are continuously increasing. Thus, industry is highly interested in approaches
for minimizing the energy consumption in industrial processes [1]. Distillation is still one of
the most commonly used and one of the most versatile separation methods for separating
liquid mixtures in petrochemical and chemical industries accounting for about 25–40% of
the energy usage in the sector. Due to its relatively low energy efficiency, this unit process
is often one of the biggest energy consumers in industrial processes. When considering
energy efficiency in any type of distillation columns, it is really necessary to account for the
form of energy being consumed and the quality of cooling and heating required. Trade-offs
exist between environmental impact, cost, energy sources and equipment requirements.
Distillation columns consume a huge amount of energy for providing heat required to
convert liquid to vapor and then condense the vapor back to liquid via the condenser.
Distillation uses more than 40% of the amount of energy utilized in the refining and bulk
chemical process industry and more than 90–95% of energy consumed in liquid separation
and purification, and accounts for more than 3% of the energy consumption in the world [2].
Moreover, the capital investment of these distillation systems is indicated to be at least
eight billion US dollars which can contribute to greater than 50% of both capital and plant
operating costs in a typical chemical plant which can have a significant impact on the
overall plant profitability [3]. The minimum energy expected to be consumed in distillation
columns depends on various operation variables such as temperature spans and operating
pressures and the optimization of these variables leads to reducing the energy demand
while meeting product quality and quantity requirement [4]. It is very likely that distillation
will continue to be the choice of liquid mixture separation for the next decade as it is still
labelled “as the technique of choice for many current purification and separation operations”
but it needs to make radical modifications and changes to reduce energy consumption.
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With the rising environmental concerns and growing energy awareness there is a need to
minimize the energy use in all industry sectors [4].

Advanced control of distillation columns is one way of improving their energy effi-
ciency. The control of distillation column must drive the product compositions as close to
their desired set-points as possible in the faces of unexpected disturbances in feed flow
rate and feed composition. However, it is quite difficult to get reliable and accurate prod-
uct compositions economically on-line and without time delay. The time delay in most
composition analyzers is typically between 10–20 min. Such large time delays cause poor
control performance and degraded process operation because the effects of disturbances
remain undetected for substantial periods of time. The most common alternative technique
to product composition control using composition analyzers is indirect composition control
through tray temperature control. However, single tray temperatures are not very accurate
indicators of product compositions especially under disturbances. Therefore, one approach
to overcome this issue is to implement inferential control with multiple tray temperatures in
conjunction with advanced control scheme, such as the active disturbance rejection control
(ADRC) scheme, to improve the overall control performance. Inferential control using soft
sensors is capable of alleviating the issue of large measurement delays by using secondary
outputs (tray temperatures) to infer the state of primary outputs (product compositions).

This paper is organized as follows: Section 2 gives an overview of ADRC and in-
ferential control. A binary methanol–water separation column is presented in Section 3.
Section 4 presents an inferential ADRC control strategy for binary distillation columns.
Both static and dynamic soft sensors implementation for product composition using princi-
pal component regression (PCR) is presented in Section 5. Section 6 presents the control
performance of inferential ADRC. The last section presents some concluding remarks.

2. An Overview of Active Disturbance Rejection Control and Inferential Control
2.1. Active Disturbance Rejection Control

Many industrial plants in the real world are not just time varying and nonlinear but
also highly uncertain. The design of control systems for such plants has been the focus
of much of the current improvements and developments under the umbrella of adaptive,
robust and nonlinear control. However, most of the proposed control methods are based
on the assumption that a fairly accurate mathematical model of the plant is available
and due to their dependence and complexity on advanced analytical methodologies and
mathematical model, these methods have certain limitations in engineering applications.
According to the well-known control theorist Roger Brockett that if there is no uncertainty
in the system, then feedback control is largely unnecessary [5].

Recognizing the vulnerability and sensibility of the reliance on accurate mathematical
models of many modern control algorithms, there has been a gradual avowal over the
years that active disturbance estimation is a practical alternative to accurate plant models.
Moreover, if a disturbance exists in the plant and is represented by the discrepancy between
the industrial plant and its model, then this disturbance can be estimated in real time. Then,
the plant-model mismatch can be successfully and efficiently compensated for, making
the model-based design tolerant of a considerable number of uncertainties. The main
focal point in the close control of such plants is how unknown dynamics and external
disturbance can be predicted or estimated.

ADRC was introduced in 1995 by Prof. Jinqing Han at the Chinese Academy of Sci-
ence [6–9]. However, most of the earlier papers are in Chinese and the concept of ADRC
was first introduced into English literature in 2001 by Gao [10–12]. The methodology of
ADRC has been in development for over two decades and has been utilized in various
engineering applications. It has been considered as an alternative paradigm in control
engineering to address and investigate non-linear and time variant systems [12]. ADRC is
considered as an advanced form of principle of active control (PAC) and inherits its concept
from the limitations of proportional–integral–derivative (PID) which are error computation,
oversimplification of control law as the form of linear weighted sum (LWS), noise degra-
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dation associated with the derivative term and complications associated to the integral
control term. The main advantages of ADRC are model independency and disturbance
rejection [11,12]. Figure 1 shows the ADRC structure which consists of three main parts:
transient profile generator (TPG), non-linear weighted sum (NWS), and extended state
observer (ESO).
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Figure 1. Structure of ADRC.

TPG proposed in [9] is a second order system that may produce smooth transition
output process tracking the input set-point signal. Moreover, it is an effective technique to
solve the conflict between avoiding overshoot and quickness in response of the controlled
variable. Han [9] proposed that TPG could be constructed by using the following equation.

.
V1 = V2.

V2 = −rsign
(

V1 −V + v2|v2|
2r

)
.

V2 = f han(v1 − v(t), v2, r, h0)

(1)

In the above equation, V is the setpoint for the controlled variable, V1 is the desired
trajectory, V2 is the derivative of the desired trajectory, r is sometimes called tracking speed,
h0 is the filtering factor, and f han is the Han function [9]. It can be noticed that the value
of the parameter r can be selected depending on the physical limitation of the plant. The
speed of the transient profile can be slowed down or speeded up by selecting a suitable
value of r.

Usually, the conventional PID control employs a linear combination of proportional
(present), integral (accumulative) and derivative (predictive) of the tracking errors. More-
over, other possibilities of combinations that might be much more effective are ignored. In
addition, it usually needs the strategy on trade-off between fastness and overshoot of the
control response. In order to avoid this contradiction, Han [9] gives an alternative nonlinear
function which depends on the magnitude of error signal to produce the control signal.

Systems are operating under different types of disturbances, among which the ones
that have some impacts on the output signal are the most significant. As a result, the
disturbances can be separated from the output signal by creating or defining new state
which can be done by ESO. ESO generates the estimates of the unknown disturbances and
unmeasured system states and then compensates them. Furthermore, ESO can enhance the
system performance adaptability.

Consider the following 2nd order system [9]:
.
x1 = x2.

x2 = f (x1, x2, de, t) + bu
y = x1

(2)

where y is the system output, u is the manipulated variable for controlling y, and f (x1, x2, de, t)
is a multivariable function of the states x1 and x2, the undesired external disturbance de,
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and time t. This function reflects the effect of the total disturbance dt(t). Using the total
disturbance dt(t) as an additional state variable, Equation (2) can be organized as follows:

.
x1 = x2.

x2 = x3 + bu
.
x3 = dt(t)

y = x1

(3)

The states x1(t) to x3(t) can then be estimated by an ESO and the estimated states are
denoted as z1(t) to z3(t) respectively. By inspecting Figure 1 and in order to remove the
impact of the total undesired disturbance on the controlled variable, the control law of the
ADRC scheme can be written as:

u =
g− z3(t)

b0
(4)

where g is the desired closed loop dynamics, z3(t) is the estimate of the total disturbance
dt(t), and b0 is an approximation of the parameter b in Equation (2).

2.2. Overview of Inferential Control

The increasing availability of a wide range of sensors and data acquisition systems has
led to a corresponding rise in the amount of data that can be logged through the computer
control and monitoring systems of industrial processes. Hardware sensors give information
on the process operation in terms of process variables, such as pressures, temperatures
and flow rates, and product quality variables, such as composition and polymer molecular
weight. Such sensors for product quality variables can be utilized to provide information on
the quality of the final product in order to certify that it satisfies the customer requirements.
However, many product quality variables cannot be easily and economically measured.
Such sensors like composition analyzers usually possess large measurement delay and they
are usually expensive. In many cases, the main product quality indicators are generally
obtained by off-line sample analysis in a scientific laboratory. On-line quality analyzers
such as gas chromatography and Near-InfraRed (NIR) are typically expensive and usually
incur high maintenance cost [13,14]. Furthermore, significant delays and discontinuity
associated with slowly processed quality measurements and laboratory analysis of on-
line analyzers may reduce the efficiency and effectiveness of control policies. Instead of
product composition control using composition analyzer and NIR, tray temperature control
is broadly used to indirectly control product compositions. Moreover, tray temperature
measurements are economic, reliable and virtually without any measurement time delays.
However, utilizing single tray temperature to characterize the product composition has
some drawbacks such as column pressure variation and feed rate or composition variation
can significantly affect the correlation between tray temperatures and product compositions.
In industrial processing plants, such restriction and limitations can have a severe impact on
product quality.

In an effort to overcome the problems encountered in product composition measure-
ment, soft sensing or inferential estimation techniques have acquired momentum recently
as viable alternatives to hardware sensors in on-line process monitoring and control [15]. In
the last two decades, there has been rising interest and research in the development of soft
sensors to provide regular on-line predictions of quality variables based on easy-to-measure
process variables. Such soft sensors provide real time estimates of product quality variables
and help to improve closed loop control performance and develop tight control policies [16].
A soft sensor can be considered as a mathematical model that generates reliable real time
estimates of unmeasured variables from easy-to-measure process variables [16].

There are various advantages of soft sensors in the monitoring and control of industrial
processes:

• They provide more insight into the process through catching the information hidden
in data;
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• They provide enhanced monitoring and control of industrial processes with the con-
sequences of reducing environmental impact, enhancing productivity and energy
efficiency, and improving business profitability through decreasing the production
cost related to off-specification products;

• They can be simply implemented on existing hardware. Moreover, on-line model
identification algorithms can be utilized to adapt the model when plant characteristics
change; and

• They entail little or no capital costs such as installation cost, commissioning and
management of the required infrastructure.

The design of soft sensors can be either by utilizing grey or black box identification
approaches or on the basis of an analytical model. In the development of data-driven
empirical model, least squares regression has been widely used. Nevertheless, when
numerous input variables are used, this technique can become ineffective due to the strongly
correlated nature of process variables. For instance, distillation column tray temperatures
are closely correlated to each other and change together in the same pattern. Using linear
regression techniques on such highly correlated process data leads to numerical errors due
to close to singularity in the data covariance matrix. The common approach for tackling
correlation problems is to select a few appropriate variables which are less correlated from
each other [17–19]. However, this simple technique is not optimal because the information
in the discarded measurements might enhance the model performance.

Brosilow and co-workers [17,18] introduced a composition estimator called the Brosilow
Estimator in which flow rates and temperatures were used for predicting unmeasured
disturbance and then the estimated disturbances were utilized to predict product composi-
tions. However, in recent years, product composition estimators have been designed using
partial least squares regression (PLS) [20,21]. Mejdell and Skogested [22] compared three
linear model-based composition estimators of a binary distillation column. They briefed
that good control performance might be reached with the steady state PCR (principal
component regression) estimator. They found that the performance of the steady state
PCR estimator is nearly good as the dynamic Kalman filter. Zhang [23,24] developed
an inferential feedback control strategy for binary distillation composition control using
PCR and PLS models. In these works, both top and bottom compositions are estimated
via multiple tray temperature measurements and the estimated top and bottom product
compositions are then used as feedback control signals.

3. A Binary Distillation Column for Methanol-Water Separation

The distillation column considered in this paper is a comprehensive nonlinear sim-
ulation of a methanol–water separation column which is based on the Wood and Berry’s
column at University of Alberta in Canada. The schematic diagram of this distillation
column is shown in Figure 2. The column has 10 trays including the re-boiler and the
condenser. The feed stream enters the distillation column at the 5th tray. The following
assumptions are used in the development of a rigorous mechanistic model: constant liquid
holdup, negligible vapor holdup, and perfect mixing in each stage. The nominal operation
data for this column are given in Table 1. The nominal set-points of the product composi-
tions in this study are the distillate at 93% and the bottom composition at 7%. A dynamic
simulation program is developed in MATLAB based on the mechanistic model. In our
previous study [25], we compared product composition control in this distillation column
using ADRC and PID control. It is shown that ADRC gives better performance than PID
for both setpoint tracking and disturbance rejection. However, the practical difficulty in
product composition measurements is not considered in [25] and it is assumed that product
composition measurements are available without time delays.
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Table 1. Nominal distillation column operation data.

Variables Nominal Values

Top composition (y1) 93% (wt) methanol
Bottom composition (y2) 7% (wt) methanol

Reflux flow rate (u1) 10.108 g/s
Steam flow rate (u2) 13.814 g/s

Feed composition (d1) 50.12% (wt) methanol
Feed flow rate (d2) 18.23 g/s

4. Inferential ADRC Scheme

The proposed inferential ADRC scheme for distillation column product composition
control is shown in Figure 3. It can be seen from Figure 3 that the top composition (y1) and
bottom composition (y2) are taken as the primary controlled variables where the secondary
measurements are tray temperatures (x). Moreover, the distillation column is subjected to
two different disturbances which are feed flow rate and feed composition disturbances.
In this control scheme, both top and bottom compositions are estimated via multiple tray
temperature measurements through soft sensors and the estimated product compositions
are then used as feedback signals for the composition controllers. The soft sensors are
developed using PCR. It should be noted that for highly nonlinear processes, such as
batch distillation processes, nonlinear soft sensors should be utilized [26–29]. In our earlier
work [30], static PCR models are used. In the current work, the soft sensors are extended to
using dynamic PCR models.
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Figure 3. Inferential ADRC control scheme.

5. PCR Model-Based Software Sensors

In order to develop soft sensors, historical process operational data containing mea-
surements of tray temperatures and product compositions are required. In this study,
simulated process operation data are generated covering different operating conditions
(with setpoint changes and disturbances). The data set for tray temperature and product
composition in a real distillation column can be obtained from historical plant operation.
Temperature measurement devices such as thermocouples are cheap and all tray tempera-
tures can be easily monitored. Composition analyzers can be expensive and it might not be
economically viable to install dedicated composition analyzers for each distillation column
in a plant. In this case, the plant can put on temporary composition analyzers, e.g., hired
ones, to a distillation column for the period of modelling campaign for the purpose of data
collection. As shown in Table 1, the nominal operating point considered in this paper is
that the top composition at 93% and the bottom composition at 7%. Simulated process
operational data around this nominal operating are generated. Figure 4 shows the top and
bottom product compositions while the corresponding secondary measurements of tray
temperatures are shown in Figure 5. It can be seen from Figure 5 that a strong correlation
exists among tray temperature measurements.
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5.1. Static PCR Models

In the static PCR model based soft sensors, the product compositions at time t are
estimated using the tray temperatures at time t. The soft sensors can be presented in the
following form:

y(t) = θ1T1(t) + θ2T2(t) + · · ·+ θ10T10(t) (5)

where y denotes the estimated product compositions, T1 to T10 represent the tray temper-
atures from tray 1 to tray 10 respectively, θ1 to θ10 are corresponding model parameters,
and t represents the discrete time. Before developing the soft sensors, the data are first
scaled to zero mean and unit variance. The complete set of tray temperature and product
composition data is divided into two sets: the training data set (samples 1 to 1189) and the
testing data set (samples 1190 to 1982). PCR models with various numbers of principal
components are developed on the training data and then tested on the testing data. The
PCR model with the lowest error on the testing data is considered as having the suitable
number of principal components and is taken as the final soft sensor.

Table 2 presents the sum of squared errors (SSE) of different PCR models on the
training and testing data. It can be seen that the PCR model with six principal components
gives the best performance for the top composition on the testing data and 10 principal
components offers the best performance for the bottom compositions on the testing data.
Therefore, six principal components are used in the top composition model and 10 principal
components are used in the bottom composition model. The developed PCR models for
top and bottom product compositions are as follows [30]:

yD(t) = 93 + 0.0450∆T1(t)− 0.0357∆T2(t)− 0.1304∆T3(t) + 0.1891∆T4(t)− 0.0345∆T5(t) + 0.0881∆T6(t)
−0.3115∆T7(t)− 0.3255∆T8(t)− 0.0666∆T9(t)− 0.6737∆T10(t)

(6)

yB(t) = 7− 0.3944∆T1(t) + 0.0718∆T2(t)− 0.2206∆T3(t) + 1.3567∆T4(t) + 0.2175∆T5(t) + 0.8840∆T6(t)
−0.9850∆T7(t)− 0.8758∆T8(t)− 1.7598∆T9(t)− 0.7149∆T10(t)

(7)

where yD and yB represent the top and bottom compositions (wt%) respectively, and ∆T is
the deviation of a tray temperature from its nominal mean value.
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Table 2. SSE on training and testing data for static PCR models with different numbers of principal
components.

No. of PCs
Top Composition Bottom Composition

Training Data Testing Data Training Data Testing Data

1 410.00 230.00 1400 280.30
2 32.00 10.00 679.90 82.27
3 31.00 10.00 89.39 19.71
4 4.00 0.78 68.10 8.50
5 3.50 0.48 49.35 6.71
6 3.15 0.32 40.86 5.45
7 3.14 0.32 35.64 6.43
8 3.07 0.36 27.82 3.36
9 2.93 0.38 20.21 2.66
10 2.85 0.34 17.86 1.94

Figure 6 gives the PCR model predictions. It can be seen from this figure that the
model predictions are very accurate, especially for the top product composition.
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5.2. Dynamic PCR Models

The inferential estimation accuracy might be further enhanced and improved if dy-
namic PCR models are developed. In this paper, dynamic PCR models with orders ranging
from one to seven were developed. The first order dynamic PCR models can be represented
in the form below:

y(t) = θ1,1T1(t) + θ1,2T1(t− 1) + θ2,1T2(t) + θ2,2T2(t− 1) + · · ·+ θ10,1T10(t) + θ10,2T10(t− 1) (8)

Data partition and data scaling are the same as in developing static PCR models
presented earlier. The suitable numbers of principal components were once again specified
by the least SSE on the testing data. Table 3 presents the number of principal components
and the corresponding SSE values on the testing data of these dynamic PCR models.
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Table 3. Number of principal components and SSE on testing data of different dynamic PCR models.

Model Orders Model Output SSE No. of Principal Components

1
Top composition 0.662 11
Bot composition 13.04 11

2
Top composition 0.361 14
Bot composition 9.958 7

3
Top composition 0.045 32
Bot composition 2.970 7

4
Top composition 0.140 50
Bot composition 2.542 7

5
Top composition 0.122 17
Bot composition 1.323 7

6
Top composition 0.145 42
Bot composition 4.722 8

7
Top composition 0.141 54
Bot composition 3.958 8

It can be seen that the dynamic PCR models significantly enhance the estimation
accuracy compared to the static PCR model especially at third order, fourth order, fifth
order, and sixth order models. All these four models have been compared, discussed
and investigated in terms of SSE values. The differences in SSE values between these
four models are not significant. Hence, the fifth order dynamic PCR model is used and
integrated with the ADRC scheme to estimate the top and bottom product compositions.
The estimations from the 5th order dynamic PCR model are shown in Figure 7. Again, in
this figure the solid lines represent the actual measured compositions while the dashed
lines represent the corresponding model estimations.
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It can be seen that the dynamic PCR models significantly improve the estimation
accuracy compared to the static PCR model especially at the 3rd to 6th order models. All
these four models have been compared, discussed and investigated in terms of SSE values.
The differences in SSE values between these four models are not significant. Hence, the
5th order dynamic PCR model is used and integrated with the ADRC scheme to control
the top and bottom compositions. The estimations from the 5th order dynamic PCR model
are shown in Figure 7. Again, in this figure the solid lines represent the actual measured
compositions while the dashed lines represent the corresponding model estimations.
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The model parameters of the 5th order dynamic PCR models are given in Appendix A,
where Table A1 gives the model parameters for the top composition and Table A2 gives
the model parameters for the bottom composition. Figure 8 presents the estimation errors
for both the static and the 5th order dynamic PCR model. It can be seen that the 5th order
dynamic PCR model gives better prediction performance than the static model.
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6. Inferential ADRC Scheme Based on PCR Models

In the product composition control of this distillation column, the manipulated vari-
ables for top and bottom compositions are reflux flow rate (L) and steam flow rate (V)
to the reboiler, respectively. The secondary measurements, which are tray temperature
measurements, are fed to the PCR soft sensors to estimate the top and bottom product
compositions. Then, the estimations are used in feedback control to the ADRC controller, as
shown in Figure 9. The performance of both ADRC and inferential control was investigated
through simulation. The following disturbances in the form of step changes were applied to
the simulated column: the feed composition was increased by 15% at the 600th minutes and
the feed flow rate was increased by 15% at the 1200th minutes. Moreover, series setpoints
changes were applied to both top and bottom product compositions.
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The inferential ADRC control strategy is compared with single tray temperature
control and composition analyzer-based control. Through investigating the data presented
in Figures 4 and 5, it was found that the temperature of the 8th tray (from the bottom
column) has the largest correlation coefficient with the top product composition and the
temperature of the 2nd tray has the largest correlation coefficient with the bottom product
composition. Hence, temperatures of the 2nd and the 8th trays were controlled to indirectly
control the bottom and top product compositions respectively. Temperatures at the 2nd
and the 8th trays corresponding to the top composition of 93% and the bottom composition
of 7% are 85.9 ◦C and 70.5 ◦C, respectively. Hence, the setpoints for the 2nd and the 8th
tray temperatures were set at 85.9 ◦C and 70.5 ◦C, respectively. Temperature setpoints
corresponding to other product compositions were identified from simulated process
operation data. In the product composition analyzer-based composition control, a 10 min
measurement delay was assumed. For both cases, multi-loop PI controllers were used.

Figure 10 shows the control performance of tray temperature control and composition
analyzer-based control. The solid, dash-dotted, and dashed lines represent the response of
the single tray temperature control, composition analyzer-based control, and the desired
set-point signal. It can be seen from this figure that composition analyzer-based control
has sluggish response and due to the large measurement delay, the controller has been
significantly de-tuned to ensure stability. In the tray temperature control scheme, significant
static control offsets exist in both product compositions especially the bottom product
composition. This is due to the fact that the relationship between the single tray temperature
and product compositions can be significantly affected by the variation of process operating
condition such as setpoint changes and the presence of disturbances.
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Figure 10. Control performance of tray temperature control and composition analyzer-based control.

Figure 11 shows the setpoint tracking and disturbance rejection performance of infer-
ential ADRC with static PCR model across a broad range of setpoint changes, feed flow rate
and feed composition disturbances. The setpoint signal was smoothed by TPG to avoid
the undesired overshoot. It can be seen that the top composition is controlled quite well
with small static control offsets, but large static control errors exist for the bottom product
composition. The static control errors are due to the errors of the PCR models which can
get worse when operating condition changes such setpoint change and/or disturbance
changes. Figure 12 shows the setpoint tracking and disturbance rejection performance of
inferential ADRC with the 5th order dynamic PCR model for the same setpoint changes,
feed flow rate and feed composition disturbances, as shown in Figure 11. It can be seen
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the control performance improved under the dynamic PCR model. However, static control
offsets still exist.
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To overcome the static control offset issue due to the variation in process operating con-
ditions, the intermittent process variable mean updating strategy proposed by Zhang [24]
is used here. When a new steady state is reached, the static values of product compositions
and tray temperatures are used to replace the current mean values of these variables in the
PCR models. It can be seen here that only intermittent product composition measurements
are required. Figures 13 and 14 present the control performance with mean updating
technique. It can be noticed from these figures that the mean updating technique is an
efficient technique for significantly reducing the static control offsets. Moreover, the SSE of
control errors has been reduced dramatically after using the mean updating technique, as
shown in Table 4.
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Table 4. SSE of different control schemes.

Control Schemes Top Comp. Bottom Comp.

Inferential ADRC with static
PCR model

Without mean updating 54,542 6946.9

With mean updating 1.6889 1.8309

Inferential ADRC with 5th
order dynamic PCR model

Without mean updating 165.52 219.59

With mean updating 0.1856 0.1551

It can be seen from Figures 13 and 14 that the resulting control off-sets and steady
state model estimation bias have been eliminated successfully through the mean updating
technique. Moreover, it can be noticed from Table 4 that the dynamic PCR model has
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much smaller estimation off-sets than the static PCR model when the operating condition
changed. This leads to a result that the dynamic PCR model is more robust than the static
PCR model to process operating condition variations. As a result, the dynamic inferential
ADRC scheme gives better control performance than the static inferential ADRC.

7. Conclusions

Inferential ADRC control schemes with static and dynamic PCR models are proposed
for product composition control in distillation columns. Inferential estimation models
for product compositions are developed from process operational data using PCR. The
estimated product compositions are used as the controlled variables in the ADRC controller.
Mean updating technique is used to eliminate the steady state model estimation bias and the
resulting control off-sets. The proposed control method is applied to a simulated methanol–
water separation column. Simulation results indicate the effectiveness and success of the
proposed dynamic inferential ADRC control method over the static inferential ADRC
control method. As a future work, the inferential ADRC control method will be applied to
high purity distillation columns and heat integrated distillation columns.
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Appendix A

Model parameters of the 5th order dynamic PCR models are given in Table A1 (for top
composition) and Table A2 (for bottom composition).

Table A1. Model parameters for top composition.

t t − 1 t − 2 t − 3 t − 4 t − 5

T1 −0.037 0.006 0.077 0.091 0.039 −0.151
T2 0.012 −0.039 −0.030 −0.061 0.031 −0.001
T3 0.115 0.059 0.031 −0.021 −0.002 −0.030
T4 0.051 0.014 −0.003 −0.035 −0.009 −0.020
T5 0.046 −0.022 −0.021 −0.044 −0.052 −0.016
T6 −0.083 −0.045 0.056 0.068 0.065 0.016
T7 −0.138 −0.069 0.020 0.044 0.071 0.055
T8 −0.171 −0.110 −0.042 −0.023 0.004 0.007
T9 −0.175 −0.103 −0.015 0.013 0.068 0.100
T10 −0.219 −0.146 −0.088 −0.071 −0.047 −0.017



Sensors 2023, 23, 1019 16 of 17

Table A2. Model parameters for bottom composition.

t t − 1 t − 2 t − 3 t − 4 t − 5

T1 −0.569 −0.453 −0.307 −0.140 0.032 0.191
T2 −0.122 −0.084 −0.037 0.042 0.154 0.261
T3 0.056 0.052 0.047 0.060 0.100 0.142
T4 0.019 −0.004 −0.041 −0.076 −0.093 −0.097
T5 0.083 0.059 0.020 −0.033 −0.084 −0.122
T6 0.113 0.065 0.016 −0.028 −0.005 −0.062
T7 0.002 −0.027 −0.047 −0.053 −0.041 −0.015
T8 0.032 0.014 0.004 0.007 0.026 0.055
T9 −0.008 −0.033 −0.048 −0.048 −0.027 0.008
T10 0.017 0.001 −0.004 0.003 0.028 0.067
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