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Abstract: Self-propagating malware has been infecting thousands of IoT devices and causing security
breaches worldwide. Mitigating and cleaning self-propagating malware is important but challenging
because they propagate unpredictably. White-hat botnets have been used to combat self-propagating
malware with the concept of fight fire-with-fire. However, white-hat botnets can also overpopulate
and consume the resource of IoT devices. Later, lifespan was introduced as a self-destruct measure
to restrain white-hat botnets’ overpopulation, but unable to change based on real-time situations.
This paper proposes a method for diffusing white-hat botnets by controlling lifespan. The main
contribution of this paper is that the method uses a dynamic lifespan that increases and decreases
based on the congregation’s situation of the self-propagating malware and white-hat botnets. The
method tackles the problem of overpopulation of white-hat botnets since they can self-propagate
by controlling the ripple effect that widens the white-hat botnet’s diffusion area but suppresses
the number of white-hat botnets to achieve a ’zero-botnet’ situation. The effectiveness in reducing
the overpopulation rate was confirmed. The experiment result showed that the ripple effect could
reduce the number of white-hat botnets in the network by around 80%, depending on different
control parameters.
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1. Introduction

Many initiatives were taken to cease the spread of malware and botnets in an infected
network. Botnets such as Mirai [1], which was founded in 2016, can turn infected devices
into zombies to perform large-scale Distributed Denial of Service (DDoS) attacks. It can
attack IoT devices, such as cameras, that mostly run with default usernames and passwords.
Later in 2018, a well-known banking trojan that was founded in 2014 called Emotet [2]
became active again. It had evolved to become the door opener for other malware, such
as spyware and ransomware. It is then used as a ’mercenary botnet’ for other malicious
programs to exploit and download additional malware. The advancement of botnets’ threat
cause malware infection to worsen by not only making devices into zombies but also into
a tool for extorting money from their victims. Therefore, there is an urgency to stop the
spread of malware as soon as possible.

Some researchers have proposed the method of using white-hat botnets. White-hat
botnets [3] is regarded as a ‘vigilante’ program that helps to mitigate and clean up malware.
In 2014, Wifatch [4] appeared as one of the first good botnets that secure the system from
threats. Wifatch was used to perform updates from its peer-to-peer network to prevent
malicious malware from infecting a device. It is known that Wifatch does not contain any
malicious payloads. Therefore, it was used by security experts to patch security flaws such
as open Telnet ports. The advantage of Wifatch is that it does not use any zero-day exploits
or backdoors. It basically uses Telnet and interacts with its peers. It does not have any heavy
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malicious payload. However, Wifatch cannot respond to any changes, such as finding new
threats in the network, unless modified by its creator before being released. Therefore,
Wifatch is a static botnet. Then, in 2016, Hajime [5] appeared as another white-hat botnet.
It is created to target low-level security, such as default passwords, and inform the flaws. It
utilizes several attacks similar to its malicious rival Mirai. The advantage of Hajime is that
it spreads quickly on many unsecured IoT devices, such as cameras, to secure the device
from Mirai. However, Hajime resides permanently unless the devices are rebooted. This
makes Hajime stays for a long time and overpopulates into a massive network. To solve a
white-hat botnet’s overpopulation and residency problem, Yamaguchi [6] proposed lifespan
to control how long white-hat botnets can exist. Lifespan is used to set the self-destruct
time of white-hat botnets. Then, various observability, controllability, and basic commands
of the white-hat botnets were proposed [7]. Here, white-hat botnets are equipped with a
lifespan, so they will not permanently reside in the network. However, the problem persists
where white-hat botnet overpopulates because it is hard to observe how many white-hat
botnets self-propagate during their existence.

An IoT network may contain computers, sensors, and actuators. All devices transmit
data through a router, access point, or mobile ad-hoc network. Regardless of the network
topology, broadcast protocol, and devices, any malware may exploit a network if at least
one device is vulnerable. Therefore, a three-technique method which is detection [8],
prevention [9], and mitigation [10], is required. The detection method focuses on detecting
malware through several methods, such as signature-based or machine-learning methods.
The prevention method focuses on preventive measures, whereas the method focuses on
early defensive measures to block malware from invading a network. Next, the mitigation
method focuses on reducing the threat of malware that has already infected a system.
However, although malware can be removed from individual devices, ensuring all network
devices are clean is hard. This leads to the fourth technique, called clean-up. In general, the
clean-up technique is regarded as a part of mitigation where malware is removed from a
system. This is because, although malware was removed from a network, white-hat botnets
may reside in the network for a long time. Botnets consume each device’s resources and
may expose an open port for another attack. In mitigating malware attacks, we regard the
clean-up technique as a proper technique of cleaning both malware and white-hat botnet.

In this paper, we focus on the clean-up technique. We diffuse a white-hat botnet into
an infected network to exterminate malware. After the malware extermination using a
white-hat botnet, our method ensures that all connected nodes are clean from malware
and the white-hat botnet itself. The main objective is to achieve a ’zero-botnet’ situation
where the network is free from malware or white-hat botnet. The major contributions of
this paper are:

(i) The method proposes a control method of lifespan for white-hat botnets. The lifespan
changes according to the state of the white-hat nodes, where the lifespan can increase
or decrease.

(ii) The method controls the ripple effect when diffusing white-hat botnets. The charac-
teristics of the ripple effect are that the range and concentration of white-hat botnets
change depending on the parameter settings.

(iii) The evaluation of dynamic lifespan to the diffusion strategies using a white-hat botnet.

Each white-hat botnet has a lifespan that changes based on the density of the white-hat
botnet network. After the extermination of malware at the leaf nodes, the white-hate botnet
will self-destruct at the end of its lifespan. In the evaluation, we show that by using a
controlled lifespan, a white-hat botnet can exterminate all malware in the network and
disappear faster to achieve a ’zero-botnet’ situation compared to a fixed lifespan.

2. Related Works

We can distinguish the technique of handling malware attacks into four techniques
known as detection, prevention, mitigation, and clean-up. Here, we briefly summarize
some representative-related works that lead to the clean-up technique where we position
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our research. Many types of research did studies on the first three techniques, but they
gave very less focus to the fourth approach, which is the clean-up approach. Table 1 shows
the related works grouped by categories that distinguish our method using BDS (Botnet
Defense System) launcher. There are four main techniques for defending IoT networks
from malware: detection, prevention, mitigation, and clean-up. Some techniques may
depend on each other, and others may be taken independently.

Table 1. Comparison of Related Works.

Literature Method Detection Prevention Mitigation Clean-Up Static
Lifespan

Dynamic
Lifespan

Namanya et al. [11] Signature-based
√

Kakisim et al. [12] Signature-based
√

Rehman et al. [13] Signature-based
√

Vasan et al. [14] Machine Learning
√

Liu et al. [15] Machine Learning
√

Botacin et al. [16] Signature-based
√ √

Hussain et al. [17] Machine Learning
√ √

Albanese et al. [18] Moving Target Defense
√

Amich et al. [19] Moving Target Defense
√

Hwang et al. [20] Emulation
√

Sajjad et al. [21] Emulation
√

Ajmal et al. [22] Emulation
√

Chu et al. [23] Machine Learning
√ √

Martinelli et al. [24] Machine Learning
√ √

Kepner et al. [25] Forward Defense
√ √ √

Yamaguchi et al. [26] BDS Launcher
√ √ √ √

Pan et al. [27] BDS Launcher
√ √ √ √

Our Work BDS Launcher
√ √ √ √

The first technique is detection. This technique involves detecting botnets or malware
by identifying their signatures and evaluating the applications’ hash to validate the legiti-
macy of any update or modifications. Namanya et al. proposed a hash scoring technique of
portable executable files [11]. The technique combines four types of file similarity hashing
that have improved accuracy compared to individual hashing. Kakisim et al. [12] proposed
a Metamorphic malware identification using engine-specific patterns. Rehmann et al. [13]
proposed a machine learning-assisted signature and heuristic-based detection of malware.
Vasan et al. [14] and Liu et al. [15] proposed machine-learning for classifying malware.
Botacin et al. [16] proposed a hardware-assisted signature-based malware detection. Their
method is memory efficient for mobile devices, which only takes a small amount of stor-
age and reduces the CPU’s workload. Other than signature-based detection using hash,
machine learning has been widely applied. Yadav et al. and Hussain et al. [17] used a
machine-learning method to detect malware. Their techniques show promising results
in detecting malware compared to the traditional method, which is less effective against
polymorphism and code obfuscation. These advanced detection techniques enable the
second technique, which is the prevention technique. Other signature-based works are
given in Ref. [28] and by Witchmann et al. [29]. Other works related to machine learning are
given by Martinelli et al. [24], Kouliaridis et al. [30], Moussas et al. [31], and Yadav et al. [32].

The second technique is prevention. Prevention includes moving target defense, DNS
list analysis, and pre-deployment simulation. Albanese et al. [18] and Amich et al. [19]
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proposed a technique called moving target defense (MTD) to prevent botnet attacks. MTD
continuously changes or shifts a system’s attack surface to complicate the attackers. Their
method can limit the ability of the botnet to exploit the target system. Nadler et al. [28]
focuses on the DNS anti-malware list (DNSAML) of DNS services used by anti-malware
solutions. They demonstrated attacks that may cause anti-malware agents to ignore threats
and proposed a set of countermeasures. The prevention technique is quite a difficult
technique. Therefore, most systems are more likely to be exposed to botnets and mal-
ware. Hwang et al. [20] proposed a simulator for evaluating preventive measures before
deploying the measures in the real world. The tool can render massive IoT networks
so that the effectiveness of malware detection and prevention can be evaluated. Some
other preventive measures were also proposed by Sajjad et al. [21], Dinakarro et al. [33],
and Ajmal et al. [22]. However, preventive techniques are only one of the defense lines
leading to the mitigation technique.

The third technique is the mitigation technique. The mitigation technique is taken
when a network is exposed to malware attacks. This technique requires proper tactics and
strategies to ease the impact of attacks by botnets and malware. Yamaguchi [6] introduced
the concept of fighting fire with fire. The method uses a white-hat botnet to fight malware.
The white-hat botnet is a type of IoT worm called Hajime that cleans up vulnerabilities
in IoT devices. The fight between white-hat botnets and Mirai can be represented with
an agent-oriented Petri net model called PN2. Yamaguchi [26] also introduced control
strategies and basic commands for cleaning-up malware with white-hat botnets. However,
once a botnet node occupies a host, it also occupies the resources and becomes a burden
to the host. Therefore, white-hat botnets should not reside long in the network. Here,
lifespan shows a promising method to allow white-hat botnets to disappear after a certain
period. Later, Yamaguchi et al. [34] proposed a botnet defense system that utilizes machine
learning. Machine learning is used along with the divide and conquers algorithm to diffuse
the white-hat botnet into the system. Another mitigation method was proposed in Than
Vu et al. [35] and Mahboubi et al. [36]. Chu et al. [23] proposed clustering classification
mining and an algorithm to countermeasure botnets using machine learning.

The fourth technique is clean-up. Despite the effort to detect, prevent and mitigate
botnet attacks, once botnets infect a network, they can linger and persist for a long time. This
is due to the existence of botmasters and command and control servers that dynamically
change their IP addresses even though their domain is known. Moreover, botnets infect
any vulnerable targets found within their scanning range. In 2018, the Council on Foreign
Relations [37] brought up the idea of zero-tolerance policies for botnets. They started
the idea of cleaning up the internet from botnets. Then, in 2022, the idea is supported
by Kepner et al. [25]. They stated that botnets are usually cleansed long after the initial
infection. The process of botnet’s growth consists of plan, stage, infection, spread, detection,
and cleanse. Once malware or botnet are detected, widespread clean-up can take place.
However, this process repeats indefinitely. They proposed the idea of observe-pursue-counter
approach. They gave the key parameter of the defense system as the detection time from
initial infection to detection tdetect. The smaller the tdetect, the more effective the system
will be. If tdetect can be reduced significantly, the impact of botnet spread can be reduced.
Therefore, the most effective way is to “defend forward”. However, there are still very few
works related to the forward defense mechanism, such as by Wichman et al. [29]. They
used infection markers marked by malware to generate vaccines on the infected computer
without input from human experts.

Table 1 shows our method proposed by Yamaguchi et al. [26] is used in the fourth
stage, which is the clean-up stage. The method uses white-hat botnets to exterminate
malware in a network. Then Pan et al. [27] proposed zoning tactics to exterminate malware
using clustering. The white-hat botnet is diffused into the network using a launcher and
placed in a specific position to form a zone for clean-up or mitigate the attack. Both
methods by Yamaguchi et al. and Pan et al. proposed the idea of using lifespan in their
strategies. The idea of using lifespan has increased the flexibility of controlling tactics when
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diffusing white-hat botnets. Bin Ahmadon et al. [38] showed that more effective tactics
could be proposed by changing the length of lifespan. Therefore, our work proposed a
method that utilizes a dynamic lifespan. We showed that by allowing the lifespan of the
white-hat botnet to change dynamically, we could achieve a better result during clean-up.
Doroudi et al. [39] proposed a clean-up strategy for servers. Markov chain was used
to evaluate malware cleanup policies. They improve clean-up policies by queue length
information. Chakravarty et al. [40] stated that most of the works in malware mitigation
focus on the defensive measure, which is to use a firewall, scanning techniques, and security
compartmentalization. That is to say most work focus on prevention and detection.

3. Approach of Diffusion Based on Dynamic Lifespan
3.1. Research Problem

In our perspective, we diffuse white-hat botnets that can detect and remove malware
in a network and enable the white-hat botnet to exist for a certain period. The diffusion is
controlled by lifespan that changes based on the density of white-hat botnets and malware.
The forward defense strategy will be used to exterminate all malware and to withdraw all
white-hat botnet nodes, which we call a “zero botnet” state.

Specific scenarios and network topologies may affect the effectiveness of mitigating
malware attacks. In the research problem, we need to determine the best strategy for
mitigation and clean-up. Eventually, the strategy should lead to successful diffusion called
a ‘zero-botnet’. We believe that there is a trade-off between the population of white-hat
botnets and lifespan. It is important to avoid the overpopulation of white-hat botnets after
a successful clean-up in a network.

We will determine the most effective lifespan control pattern in specific scenarios
where nodes are dense and scattered. Lifespan will dynamically change, but it is important
to exterminate malware and leave no white-hat botnet in the network while suppressing
the spread of malware in a shorter time. Here, to control the white-hat botnet to clean up
infected nodes, we utilize a ratio called lifespan ratio. The lifespan ratio can be changed
before launching the white-hat botnet into the network.

Definition 1 (Lifespan Ratio). Lifespan ratio r is the multiplication value for increasing and de-
creasing the current lifespan L. Ratio r can be denoted as α for increase ratio and β for decrease ratio.

The problem can be defined as a problem to decide the lifespan ratio when diffusing
white-hat botnets. Based on the following problem, we denote the increase ratio of r is
denoted by α and the decrease ratio is denoted by β. The output of the problem can be
defined as a clean network where there are no infected nodes.

Definition 2 (White-Hat Botnet Diffusion Problem).
Input: Network nodes N = {n1, n2, · · · , nk} (∃n ∈ N:n ∈ M ∪W ,M is a set of infected nodes
andW is a set of white-hat botnets with initial lifespan L), increase ratio α , decrease β
Output: Network with nodes N′ = {n1, n2, n3, · · · , nk} where ∀n ∈ N : n /∈ M∪W

The given problem takes input from nodes N = {n1, n2, n3, · · · , nk} in a network.
Initially, there exists a set of infected nodesM and white-hat botnetsW deployed in the
network. The objective of this paper is to achieve a ’zero-botnet’ situation where eventually
no malware of white-hat botnets exists. Therefore, the problem is to clean the network from
white-hat botnets whereM = φ andW = φ.

3.2. Lifespan-Based Control Method with Ripple Effect

To control lifespan, we propose the increase ratio α and β. They decide how long the
increase and decrease of the lifespan should be when a certain condition is satisfied.

1. Initial Lifespan L: Initial lifespan L is the initial lifespan given to a white-hat botnet
when it spreads to another node.



Sensors 2023, 23, 1018 6 of 18

2. Increase ratio α: Increase ratio is the rate of increase from initial lifespan L such that
L′ = L + α.

3. Decrease ratio β: Decrease ratio is the rate of decrease from initial lifespan L such that
L′ = L− β.

Depending on the infection situation, the effectiveness of cleaning up the network
N from malware depends on the initial lifespan L, increase ratio α, and decrease ratio β
value. Here, if we set the initial lifespan along with α and β values. Therefore, we focus on
manipulating the increase and decrease ratio r when deploying white-hat botnets.

The overview of the control method is shown in Figure 1. In a network N where
each node nk is a white-hat botnet, normal node, or an infected node, the objective is to
clean up the network from the infected node. In Figure 1, normal nodes are shown as
white circles, white-hat botnet nodes as blue circles, and infected nodes as orange circles.
Any transmission signals a white-hat botnet node (blue circle) to identify connected nodes
and verify their status. The green arrows represent the signals to increase the lifespan of
any white-hat botnet nodes which are connected to any infected botnet node. The red
arrows represent the signal of decreasing the lifespan when the white-hat botnet receives a
transmission from any white-hat botnet node.

(a) (b)
Figure 1. Overview of the dynamic lifespan control. (a) Increase lifespan when a white-hat botnet
node encounters infected nodes. (b) Decrease lifespan when white-hat botnet nodes congregate.

In a network environment, network nodes can exist in a dense and sparse network.
Some of the networks are also constructed in a mesh network. In a dense mesh network,
infection by malware may occur more frequently and faster. The effect of infection in a
dense network is larger than in a sparse network. This is because of the density of the nodes.
Figure 1 shows an example of a dense mesh network. Once an infected node infected at
least one node, the spreading occurs swiftly across the whole network. In the previous
research [38], in order to counter the infection, we utilized a white-hat botnet with lifespan
and diffuse the white-hat botnet nodes across the network.

Here, we introduce the idea of a dynamic lifespan. Dynamic lifespan can increase or
decrease according to the environment. The advantage of using dynamic lifespan is that
once all infected nodes have been cleaned up, all white-hat botnet nodes disappear once
their life reaches its lifespan. However, there are cases where the diffusion is successful
or unsuccessful. This is due to the changes in the number of white-hat botnet nodes and
infected nodes because white-hat botnets reduce over time when it reaches their own
lifespan. To diffuse white-hat botnets successfully we need a strategy to control lifespan in
white-hat botnets.

This paper proposes a novel mechanism that leverages the congregation density
between nodes called ripple effects. The ripple effect in a network is regarded as the
continuation and spreading of an infection. This method leverages the ripple effect for
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spreading white-hat botnet nodes to mitigate and clean up infected nodes. Lifespan can be
used to control the ripple effect.

The ripple effect can be controlled with ratio α and β by considering the status of the
nodes in the network i.e., infected or clean. Figure 2 shows the mechanism of dynamic
lifespan. Figure 2a shows an illustration of lifespan over time. Lifespan does not change
when there is no connection between infected nodes or white-hat botnets. Figure 2b lifespan
will increase by ratio α when a white-hat botnet node detected an infected node. Figure 2c
illustrates lifespan will decrease by ratio β when a white-hat botnet node is connected
with another white-hat botnet node. Figure 3 illustrates the mechanism of remaining life.
Figure 3a shows remaining life decreases over time starting from the current or initial
lifespan. Figure 3b illustrates the increase of remaining life by α if a white-hat botnet
node detected an infected node. Figure 3c illustrates remaining life decreases by β when a
white-hat botnet node congregates with another white-hat botnet node.

(a) (b) (c)

Figure 2. Mechanism of dynamic lifespan that changes according to node status. (a) Normal lifespan
change. (b) Lifespan increases when a white-hat botnet node detected a malware node. (c) Lifespan
decreases when a white-hat botnet node congregates with another white-hat botnet node.

(a) (b) (c)

Figure 3. Mechanism of remaining life according to node status. (a) Normal white-hat botnets’
remaining life over time. (b) Remaining life when a white-hat botnet node detected an infected
node. (c) Remaining life decreases when a white-hat botnet node congregates with another white-hat
botnet node.

The illustration of our approach is shown in Figure 4. The lifespan ln is shown by the
blue color of each node. The darker blue represents a longer lifespan. ln is controlled by
initial lifespan L, increase ratio α and decrease ratio β.

First, we introduce the following parameters. These parameters take into account the
environment and the lifespan.

(i) Congregation density D: The density of white-hat botnet nodes or infected nodes that
gather within the communication range.

(ii) Lifespan ratio r: Multiplication ratio for increasing or decreasing the current lifespan.
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(a)

(b)
Figure 4. Illustration of our approach. (a) Illustration of conventional white-hat botnet diffusion.
(b) Illustration of diffusion using our approach.

To decide the congregation density, we use the density calculation based on the number
of white-hat botnet nodes or infected nodes and the total number of connected nodes. We
give the following definition:

Definition 3. A white-hat botnet network is said to be perfectly dense if and only if the ratio of
total connected nodes k and the number of white-hat botnet nodes or infected nodes m is 1.

We can calculate the congregation density of the white-hat botnets or infected nodes.
The number of adjacent white-hat botnet congregation density D can be calculated as in
Equation (1). In Equation (1), k is the number of connected nodes and m is the number of
connected white-hat nodes or infected nodes. The congregation density D influences the
strength of the white-hat botnets i.e., the length of its lifespan. From Equation (1), we can
define the congregation density of white-hat botnets as DW if m represents the number of
white-hat botnet nodes and congregation density of infected nodes as DM if m represents
the number of infected nodes.

D =
2m

k(k− 1)
(1)

The lifespan can be adjusted to increase or decrease in length by using the control
parameter r (in some cases α or β). For example, given the congregation density of white-hat
botnet D, we can calculate the lifespan as in Equation (2). For a perfectly dense white-hat
botnet network, we set the strength of the ratio to 1; otherwise, we set the strength of
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the ratio to the level of the congregation density D. Here, we denote r to represent the
reduction ratio of lifespan.

ln =

{
ln−1 − r for D = 1

ln−1 − (D×r) for D < 1
(2)

We can control the botnet’s lifespan based on Equation (2). As an example, we give
three cases:

1. White-hat botnets in Network of Botnets: We decrease the botnet’s lifespan by 2
times i.e., r = − 2, and create a new child.
We can modify Equation (2) as follows:

ln =

{
ln−1 − 2 for D = 1

ln−1 − (2×D) for D < 1
(3)

2. White-hat botnets in Network of Botnets and Malware: We increase the botnet’s
lifespan by 2 i.e., r = 2 and create a new child.
We can modify Equation (2) as follows:

ln =

{
ln−1 + 2 for D = 1

ln−1 + (2×D) for D < 1
(4)

3. White-hat botnets in Network of Normal Nodes: We normally reduce the lifespan
by 1 i.e., r = 1 and create a new child.
We can modify Equation (2) as follows:

ln = ln−1 − 1 (5)

From the derivation of Equation (2) to Equation (5), the lifespan can be controlled
with ratio r. Since ratio r can increase or decrease the lifespan, r can be denoted as α as the
increase ratio and β as the decrease ratio. We give the white-hat botnet diffusion procedure
based on controlled lifespan using Algorithm 1. In Algorithm 1, we can define ratio α and
β as follows:

1. Increase Ratio α: Increase ratio is a ratio in which the lifespan ratio is increased when
connected nodes of a white-hat botnet are infected nodes. Increased ratio strengthens
the defense by building a wall of botnets with longer lifespans when encountering
infected nodes.

2. Decrease Ratio β: Decrease ratio is a ratio that decreases the lifespan when the
connected nodes of white-hat botnets are white-hat botnets. It is used to control the
congregation density to suppress the overpopulation of white-hat botnets.

Both α and β play an important role in changing the value of lifespan and remaining
life. One of the characteristics of this method is the controllable ripple effect when diffusing
white-hat botnets. Figure 5 illustrates the ripple effect on a surface graph with 400 nodes
using Algorithm 1. The height of the surface graph shows the remaining age of every
white-hat botnet node starting from the initial lifespan L = 10. The range of the remaining
lifespan shown in the figure is between 0 to 30 s. Figure 5a shows the initial placement at
1 s. Then, Figure 5b shows the rise of the ripple wave at 20 s. Figure 5c shows the expansion
of the ripple wave after 40 s. Note that, the middle of the wave shows a lower surface
because the remaining life of the white-hat botnet nodes is lower.

The effectiveness of reducing the number of infected nodes can be controlled with the
size of ratio α and β. The ratios control how wide and how long the ripple effect lasts. Here,
we hypothesize that if the ratio r = α = β is fixed, the effectiveness depends strongly on the
initial lifespan L. If α increases, the number of white-hat botnets can increase significantly.
However, if α increases too much, the number of white-hat botnets become too many and
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resides for a long time in the network. Here, we can balance the population of white-hat
botnets using the decrease ratio β. Similar to α, it is important to decide the value of β.

Algorithm 1 Diffusion of White-Hat Botnet

Input: Network nodes N = {n1, n2, n3, · · · , nk} and W is a set of white-hat botnets,
Increase Ratio α, Reduction Ratio β, congregation density DW and DM

Output: Lifespan L for each node n ∈ N
. Diffuse white-hat botnet

1: for each node n in N do
2: Obtain current state S← STATE
3: Obtain neighbour state R← NSTATE
4: Set initial lifespan L← ln
5: Set the lifespan ratio α← α, β← β
6: if STATE is BOTNET and NSTATE is NORMAL then
7: Set NSTATE as white-hat botnet NSTATE← BOTNET
8: end if
9: if STATE is BOTNET and NSTATE is BOTNET then

10: Decrease the lifespan L← L− (DW × α)
11: end if
12: if STATE is BOTNET and NSTATE is INFECTED then
13: Set NSTATE as white-hat botnet NSTATE← BOTNET
14: Increase the lifespan L← L + (DM × β)
15: end if

. Output lifespan of node n
16: Output lifespan L for node n.
17: end for

(a) (b) (c)
Figure 5. Image of the ripple effect. The height of the surface graph shows the remaining age.
(a) Initial placement of white-hat botnet (t = 1). (b) The rise of ripple effect (t = 20). (c) The
expansion of ripple effect (t = 40).

4. Evaluation
4.1. Experiment Design

We conducted a simulation of wireless sensor networks (WSN) to evaluate our method.
Basically, we compare dynamic lifespan with fixed lifespan and dynamic lifespan with
different parameter settings. The simulation is illustrated in Figure 6. Contiki Cooja
Simulator was used to simulate the WSN environment. The simulation setting was using
Sky Mote with UDGM (Unit Disk Graph Medium) transmission model. In Figure 6,
the range of reception is shown as a green circle. Connected nodes are set within the
transmission range (green circle). During simulation, the status is shown as three colors:
blue (white-hat botnet), red (infected node), and green (normal node). Each malware and
white-hat botnet will change status once malware infects another node or a white-hat botnet
clears malware from the infected node.
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Figure 6. An illustration of a simulation scenario.

To evaluate different lifespan-changing mechanisms, we evaluated the method with
the following lifespan ratio.

(i) Fix Ratio: Fixed lifespan with a variation of 5, 10, and 20 where r = 1.
(ii) Adjust Increase Ratio: Increase the initial lifespan L within the range of 20, 15, 10, and 5

with the increase ratio α larger than ratio β where α > β such that α ∈ {10, 9, 8, · · · , 1}
and β ∈ {1, 2, 3, · · · , 10}.

(iii) Adjust Decrease Ratio: Decrease the initial lifespan L of 20, 15, 10, and 5 with de-
crease ratio α smaller than ratio β where β > α such that β ∈ {10, 9, 8, · · · , 1} and
α ∈ {1, 2, 3, · · · , 10}.

(iv) Adjust Increase-Decrease Ratio: Increase initial lifespan L with a variation of 5, 10,
and 20 with increase ratio α and decrease ratio β such that α ∪ β ∈ {10, 9, 8, · · · , 1}.

4.2. Evaluation Results

We conducted an experiment to confirm the effect of controlling lifespan to exterminate
malware in IoT networks. The simulation is shown in Figure 6. The simulation tool used is
Contiki Cooja 3.0 running on Linux Ubuntu with 16 GB of RAM. The simulation can cover
at most 400 nodes of wireless sensor nodes. The experiment was simulated with UGDM
(Unit Graph Disc Model) distance loss.

We evaluated three important parameters; increase ratio α, decrease ratio β, and initial
lifespan L. Six types of parameters setting were considered in the evaluation.

1. Fixed Lifespan: The initial lifespan L is fixed to L = 5, 10, 20. There is no change in the
increase or decrease ratio.

2. Low Balanced Ratio: The increase ratio and decrease ratio are set to the same value
i.e., α = β = 2. The value is a relatively small value.

3. Small Attack—Small Withdrawal Ratio: The increase ratio is set to α = 2 and the
decrease ratio is set to β = 1. The decrease ratio is slightly lower than the increase ratio.

4. Large Attack—Small Withdrawal Ratio: The increase ratio is set to a large value α = 5
and the decrease ratio is set to a small value β = 1.



Sensors 2023, 23, 1018 12 of 18

5. Large Attack—Medium Withdrawal Ratio: The increase ratio is set to a large value
and the decrease ratio is set to a relatively medium value r = 5, α = β.

6. Large Attack—Large Withdrawal: The increase ratio and the decrease ratio is set to
the same large amount r = 5, α = β.

Figure 7 shows the result of diffusion by changing the initial lifespan. The lifespan
was fixed at 5, 10, and 20. The difference between the solid line and the dashed line can
recognize the success of clean-up. The solid line represents the number of white hat botnet
nodes. The dashed line represents the number of infected nodes. Obviously, to identify
successful outcomes, we need to confirm if the solid lines went above the dashed lines or
not after the number of infected nodes becomes zero. In Figure 7a, the lifespan was set at
the most minimal value, which is at L = 5 and a single decrease ratio α = {10, 5, 2} was
used. Based on the result, all α parameter settings were unsuccessful because the number
of infected nodes in every setting exceeds the number of white-hat botnet nodes. Next,
we increased the initial lifespan to L = 10. The result is shown in Figure 7b The ratio of
α at 10 and 5 was too large because the number of infected nodes exceeds the white-hat
botnet nodes after 20 s and 25 s. Only α = 2 was successful. Finally, we increased the
initial lifespan to L = 20. The result is shown in Figure 7c. The results showed that the
decrease ratio α = 10 was also still too large for the parameter settings. From the result, we
can conclude that even though we increased the initial lifespan, we cannot guarantee the
success of the diffusion. The diffusion should be controlled with both increase and decrease
ratios α and β.
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Figure 7. Comparison of result based on initial lifespan L. (a) Experiment result (L = 5, α = {10, 5}).
(b) Experiment result (L = 10, α = {10, 5}). (c) Experiment result (L = 20, α = {10, 5}).

We applied α and β to the diffusion in the next experiment settings. The result is
shown in Figure 8. We found that for L = 5 as shown in Figure 8a, the settings of either
α = 5, β = 1 or α = 2, β = 1 was not successful. At L = 10, only α = 5 and β = 1 was
successful (see Figure 8b). At L = 20, either setting was successful. However, since we
increased the initial lifespan to 20, the number of white-hat botnets increased and took
more time to disappear. Therefore, the best parameter settings with the most minimal
number of white-hat botnets and optimal clean-up were L = 10, α = 5, β = 1.

Table 2 shows the result for important parameter settings. Setting with ’Yes’ represents
successful cleanup. The result shows that the initial lifespan does not always have an
advantage in the diffusion method. For initial lifespan at L = 20 all experiment was
successful except for Balance Large Attack-Withdrawal setting. For L = 10, Small Attack-Small
Withdrawal and Large Attack-Small Withdrawal was successful. This shows that minimizing
the decrease ratio can ensure successful diffusion.
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Figure 8. Comparison of result by changing ratio α and β where α > β. (a) Experiment result
(L = 5, α = {2, 5}, β = 1). (b) Experiment result (L = 10, α = {2, 5}, β = 1). (c) Experiment result
(L = 20, α = {2, 5}, β = 1).

Table 2. Comparison of parameter settings. Yes: Succesful Diffusion; No: Unsuccessful Diffusion.

Experiment Settings α β L = 5 L = 10 L = 20

Fixed Initial Lifespan N/A N/A No No Yes

Balanced Small Attack—Withdrawal 2 2 No No Yes

Small Attack—Small Withdrawal 2 1 No No Yes

Large Attack—Small Withdrawal 5 1 No Yes Yes

Large Attack—Medium Withdrawal 5 2 No Yes Yes

Balanced Large Attack—Withdrawal 5 5 No No No

Figure 9 shows the comparison of different parameter settings, including initial lifes-
pan L, increase ratio α, decrease ratio β, and the position of the white-hat botnet launcher.
The lifespan that changes through time shows that the spread of white-hat botnets can
be controlled with the three parameters and by deciding the position of the launcher.
The simulation using 400 WSN nodes shows different outcomes. Figure 10 compares
three successful parameter settings. At around 80 s or later, the ‘zero-botnet’ situation
was confirmed. Parameter setting with L = 10, α = 5, β = 1 shows the best clean-up with
minimal white-hat botnets. Here, we can conclude that α > β always leads to better results
compared to α = β.

The result shows that if α = β, then the white-hat botnet will remove each other before
successfully removing all infected nodes. In the case of α > β, the white-hat botnet can
remove infected nodes and perform self-removal more efficiently. From the evaluation,
white-hat botnets acquired higher endurance before disappearing when increasing their
lifespan. Based on the result, the proposed method showed improvement in minimizing
lifespan with 44% improvement in reduction of the white-hat botnet and around 70%
successful reduction of infected nodes in a shorter time.

4.3. Discussions

Payload always exists when using botnets. That is the reason we proposed the
method so that botnets do not overpopulate and congregate to the whole IoT network.
By controlling the lifespan and number of white-hat botnets, the method can avoid the
exhaustive usage of devices’ resources.
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(a)

(b)

(c)

Figure 9. Comparison of diffusion range using different parameters. BDS launcher positioned
at right-bottom. (a) Result of remaining botnet life ln (L = 10, α = 10, β = 6). (b) Result of remaining
botnet life ln (L = 10, α = 10, β = 3). (c) Result of remaining botnet life ln (L = 10, α = 5, β = 1).

Previous methods in utilizing BDS launchers for mitigating malware attacks focus
on the idea of self-destruction using lifespan. In this idea, once all malware has been
cleaned-up the white-hat botnet nodes will also disappear. The idea of self-destruction by
Yamaguchi [26] is regarded as limiting the life of a white-hat botnet. The idea of lifespan
was proposed. Pan et al. [27] proposed a zoning method to mitigate malware attacks,
and lifespan is used to release a zone from a botnet once the lifespan has been reached.
The method is effective when forming a temporary zone when needed and releasing the
zone once it has been recovered.

Bin Ahmadon et al. [38] studied the method to control lifespan for controlling the
diffusion of white-hat botnets. Until now, previous research has regarded white-hat botnet
diffusion as release-and-forget strategy. However, it has a drawback where the white-hat
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botnet is not responsive enough when cleaning up the network. This is because the
concept of observe-pursue-counter approach proposed by Kepner et al. [25] was not taken
into consideration. To achieve ’zero-botnet’ we need responsive white-hat botnets that can
become stronger when they need to attack and withdraw once they recovered a territory.
Therefore, our method of using dynamic lifespan also can be applied to observe-pursue-
counter approach.

In this experiment, we can confirm that we can also reduce the number of white-
hat botnets by controlling the lifespan and the position and direction of ripple waves.
Note that in this experiment, to accelerate the reduction of white-hat botnets, the lifespan
ratio increases by α when neighboring nodes are white-hat botnets or infected nodes.
The lifespan ratio is reduced by β when white-hat botnet nodes congregate.
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Figure 10. Comparison of the number of white-hat botnet’s successful parameter settings.

Based on the result, if the network range is unknown, i.e., wireless network, the
combination of increase ratio α and decrease ratio β is recommended. However, due to
the limitation of the network, it is better to keep L at the most minimum value where all
white-hat botnets can reach all infected nodes. Parameters with α > β should be optimized
with the positioning of the launcher, and balanced with the initial lifespan. It is always
recommended to perform a simulation using the three parameters to achieve the optimum
clean-up result.

Finally, the ripple effect helps white-hat botnets to widen the cover area and clean up
the network. The ripple effect also reduces the number of white-hat botnets to prevent the
‘overpopulation’ of white-hat botnet nodes in the systems. Therefore, the proposed method
is suitable for achieving the ’zero-botnet’ state of particular IoT networks.

5. Conclusions

White-hat botnet is a powerful tool for tackling the problem of cleaning up malware
in IoT systems. White-hat botnets such as Wifatch and Hajime can patch security flaws
and remove malware through rebooting. However, they may reside on the system perma-
nently and overpopulate if no proper control method is considered. The white-hat botnets
themselves are static unless the creator changes their hardcoded functions.



Sensors 2023, 23, 1018 16 of 18

Most white-hat botnets are based on the release-and-forget approach. Therefore, the
problem of overpopulation and overtaking system resources by their payload is impractical.
Here, lifespan has been identified as one of the solutions. However, botnets with static
lifespans could not respond to the situation. There is a need for a dynamic lifespan that can
change based on the congregation situation of white-hat botnet.

In this paper, we proposed a method that utilizes dynamic lifespans. The advantage
of using a dynamic lifespan is a controllable ripple effect that effectively increases and
decreases the population of white-hat botnets. At the same time, it can effectively remove
malware that eventually achieves a ’zero-botnet’ situation. We proposed 3 important
parameters in the proposed method to control the remaining lifespan ln: initial lifespan
L, increase ratio α, and decrease ratio β. The proposed method showed that the proper
balance ratio of the 3 parameters could effectively allow a white-hat botnet to respond
effectively in removing malware.

In future work, we will consider more advanced techniques to utilize dynamic lifespan
in white-hat botnets. For example, to control two ripple effects of white-hat botnets that
cancel each other so that the diffusion at multiple launcher positions can achieve optimal
effect in malware removal and suppressing overpopulation. We expect dynamic lifespan
usage in white-hat botnets to contribute to the strategy that has more control and feasibility
for tackling self-propagating malware attacks in various network topologies. For example,
to create different variants of white-hat botnets that cooperate and compete with each other
to clean up the network. We will also consider adversarial attacks where we will consider
and discuss adversarial attack detection. In adversarial attack, we will consider utilizing our
technique to tackle the problem by sparsely positioned malicious bots (saturation attack),
continuous malicious bot launching, fake malicious bots, or a combination of all attacks.
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