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Abstract: This work demonstrates a novel, state-of-the-art method to reconstruct colored images via
the dynamic vision sensor (DVS). The DVS is an image sensor that indicates only a binary change in
brightness, with no information about the captured wavelength (color) or intensity level. However,
the reconstruction of the scene’s color could be essential for many tasks in computer vision and DVS.
We present a novel method for reconstructing a full spatial resolution, colored image utilizing the
DVS and an active colored light source. We analyze the DVS response and present two reconstruction
algorithms: linear-based and convolutional-neural-network-based. Our two presented methods
reconstruct the colored image with high quality, and they do not suffer from any spatial resolution
degradation as other methods. In addition, we demonstrate the robustness of our algorithm to
changes in environmental conditions, such as illumination and distance. Finally, compared with
previous works, we show how we reach the state-of-the-art results. We share our code on GitHub.

Keywords: computational photography; dynamic vision sensor; color reconstruction; active illumination

1. Introduction

The majority of image sensors used nowadays are composed of CCD and CMOS
image sensors [1]. When using these sensors, a simple composition of still images is taken
at a predetermined frame rate, to create a video. This approach has several shortcomings;
one such problem is data redundancy—each new frame contains information about all
pixels, regardless of whether this information is new or not. Handling this unnecessary
information wastes memory, power, and bandwidth [2]. This problem might not be critical
for the low frames per second (30–60 fps) use case, which is common when the video is
intended for human observers. However, applications in computer vision, specifically
those that require real-time processing (more so even for high frames per second video),
may suffer significantly from such inefficiencies [3].

Several different sensors were suggested to overcome the shortcomings of the frame-
based approach, some are bio-inspired (since they can outperform traditional designs [4,5]).
Various approaches have been proposed, such as optical flow sensors [6], which produce a
vector for each pixel representing the apparent motion captured by that pixel, instead of
generating an image, and temporal contrast vision sensors [7], which only capture changes
in pixel intensity and utilize hardware distinct from DVS, among others [8–10]. However,
the overwhelming majority of the market is still CCD and CMOS [1].

Dynamic vision sensors (DVSs) [11] are event-based cameras that provide high dy-
namic range (DR) and reduce the data rate and response times [2]. Therefore, such sensors
are popular these days [12]. Recently, several algorithms have been developed to support
them [13–17]. However, current technology is limited, especially in spatial resolution.
Each DVS pixel works independently, measuring log light intensity [18]. If it senses a
significant enough change (more prominent than a certain threshold), it outputs an event
that indicates the pixel’s location and whether the intensity has increased or decreased. The
DVS sensor only measures the light intensity and, therefore, does not allow direct color
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detection. Hence, its vision is binary-like, only describing the polarity of the change in
intensity. Due to its compressed data representation, the DVS is very efficient in memory
and power consumption [19]. Its advantage is even more prominent when compared
to high frames-per-second frame-based cameras. The reduced bandwidth required for
recording only changes, rather than whole images, enables continuous recording at high
temporal resolution without being restricted to very short videos.

In addition to the color filter array [20], several methods have been proposed to re-
construct color for digital cameras. Examples include optimization-based methods [21,22],
image fusion techniques [23], and methods to reconstruct multispectral information [24,25]
and 3D Point clouds [26].

Color detection allows more information to be extracted from the DVS sensor and be
used in a wide variety of computer vision tasks. These may include extracting DVS events
with color, segmenting objects based on color, or tracking various colored objects. We focus
on an algorithmic approach to reconstruct color from the binary-like output of the DVS
sensor. Unlike current approaches [27], ours does not reduce the native spatial resolution of
the sensor. Our algorithm is based on the responses of the DVS sensor to different impulses
of an RGB flicker. A list of frames is constructed from the events generated as a response to
the flicker, from which features are extracted to reduce redundancy. Two feature extraction
methods are described here, and each fits a different reconstruction method. The features
are either used as input for a convolutional neural network or a linear estimator, depending
on the reconstruction method discussed. The output of these algorithms is a single RGB
frame in a standard 8-bit color depth and identical spatial resolution to the input DVS
frames; this output is a reconstructed frame of the scene in color. It could then be compared
to a frame produced by a traditional camera. Figure 1 shows the workflow presented in
this paper. Our contributions are as follows:

1. A fast, real-time, linear method for reconstructing color from a DVS camera.
2. A CNN-based color reconstruction method for DVS.
3. Non-linearity analysis of the DVS-flicker system and an investigation of the DVS

response to non-continuous light sources.

Figure 1. Reconstruction workflow. Left to right: The data are captured with a DVS sensor and
a colored light source. Then, an event stream is created from the DVS, which is converted into
pseudo-frame representations. Finally, two different color reconstruction approaches can be applied.

2. Related Work

In traditional video cameras, color vision is achieved using a simple color filter array
(CFA) [20] overlaid on the sensor pixels, with the obvious downside of reducing the spatial
resolution of the sensor. In this approach, the output is divided into different channels, one
for each filter color. For instance, in the case of the popular Bayer filter, it generally has one
red and one blue channel and two green channels for a 2 × 2 binning configuration [28].
These channels can be used directly (without interpolation) in frame-based cameras to
produce a colored image or video. One might expect this approach to work just as well
for event-based cameras. However, results show that naively composing the different
color channels into an RGB image produces results that suffer from high salt-and-pepper
type noise and poor color quality (see Figure 4 subfigure C in [29]). A more sophisticated
approach to color interpolation from different color channels, such as the ones employed
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in [29–31] (classical algorithms or filters) and [32] (neural network solution) produce
better results, especially in terms of noise, but still suffer from poor color quality (see the
comparison between [29] and our method in the Result section).

In previous works, the DVS data are assumed to have been produced from a continu-
ous change in lighting. In contrast, in this work, we focus on color reconstruction using
the approximate impulse response of a DVS flicker system. Furthermore, the DVS exhibits
interesting behavior under non-continuous light changes, which we will discuss in this
paper. This was not reported in the literature.

Apart from our model-based approach (based on impulse responses), we also evaluate
our method using a CNN model. We chose this approach mainly because of its nonlinearity
and spatial correlation, as was demonstrated in previous works.

3. Dynamic Vision Sensor (DVS) and Setup

DVS cameras asynchronously output the position of a pixel that experiences a change
in logarithmic intensity that is greater than a certain threshold [33]. This method of
recording video has several advantages over more traditional synchronous sensors with
absolute (as opposed to logarithmic) intensity sensitivity. For example, DVS cameras enjoy
higher DR and compressed data acquisition methods, allowing for a more extraordinary
ability to detect movement in poorly controlled lighting while using less power, less
bandwidth, and better latency.

3.1. DVS Operation Method

Pixels in a DVS sensor contain photoreceptors that translate incident photons to the
current. The transistors and capacitors are then used to create a differential mechanism,
which is activated only when the incident log luminosity difference is greater than a
threshold [34].

3.2. DVS Response Analysis

One can model the response of the DVS sensor to a change in brightness as a delta function:

δ(r− ri, t− t0) (1)

where ri is the pixel (bold because it is a vector) at which the event has occurred, and t0 is
the time at which the event has occurred. The sensor responds to changes in the logarithmic
intensity of each pixel, which can be modeled for a certain pixel at time tk, as [12]:

∆L(ri, tk) ≥ pkC (2)

where L ≡ log(I), and

∆L(ri, tk) ≡ L(ri, tk)− L(ri, tk − ∆tk) (3)

Here, I(ri, tk) is the intensity, pk is the polarity of the pixel, which is +1 for an increase or−1
for a decrease in the brightness of that pixel. Variable C corresponds to the threshold that
allows a response to be observed and is derived from the pixel bias currents in the sensor.

3.3. Creating Video From Bitstream

The DVS outputs a bitstream using the address–event representation (AER); each event
detected by the DVS is characterized by an address (indicating the position of the pixel
that detects the change), polarity (assigning ‘one’ if the detected change was an increase in
brightness and −1 if it was a decrease), and the timestamp of the event detection. In order
to turn this list of events into a video, we first choose the desired FPS (we opted for 600 for
optimal performance with our specific DVS model, but it is possible to work with up to
1000 fps, and newer models can even go higher). After that choice, we uniformly quantize
time. To create a frame, we sum all the events that occurred in each time slice to a single
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frame, which retains the data about the total event count per pixel during a time period
reciprocal to the fps. A similar temporal binning procedure was introduced in [29].

3.4. System Setup

We used Samsung DVS Gen3 [34] and positioned it such that it faced a static scene that
was 14 inches (35.5 cm) away. For the flicker, we used a screen that was capable of producing
light at different wavelengths and intensities. We placed the flicker directly behind the
camera, facing the scene, to illuminate it with approximate uniformity, leveraging the
fact that its area was larger than the region of the scene captured by the DVS. The flicker
changed the emitted color at a 3 Hz frequency. For the calibration process (which will be
discussed), we used a Point Grey Grasshopper3 U3 RGB camera, placed adjacent to the
DVS (see Figure 2).

The scene was static, so the camera could not see anything if the flicker did not
change color. The flicker’s light was reflected off the scene and into the sensor, meaning
that if we looked at a single DVS pixel, it measured whether the temporal change in the
integral—across all frequencies—of the product of the spectrum, the reflective spectrum of
the material, and the quantum efficiency of the sensor surpassed a certain threshold. When
light from the source changed in color or intensity, this change was recorded in the DVS.

Figure 2. System schematic. The distance from the DVS to the flicker is much shorter than 14′′. The
RGB flicker emits light at a 3 Hz frequency.

Using this system, we intend to capture a bitstream generated by the DVS as a response
to the flicker, from which a single RGB frame is produced. This frame is an RGB image
of the scene with the same resolution as the original DVS video. We present here two
algorithmic approaches (one linear and one using CNN, in the next section) for producing
that RGB frame. We will create a feature extraction method for each of the two different
algorithmic approaches. In order to train the CNN, we will create a labeled dataset using a
stereoscopic system with DVS and a standard frame-based camera. Finally, we will provide
an explanation of the performances and shortcomings of our method.

4. Method—Linear Approach

Here, we introduce a fast, real-time linear method for creating an RGB frame. This
method will estimate the color of each pixel based only on the single corresponding DVS
pixel. Therefore, our problem is simplified to reconstructing the color of a single pixel from
a list of DVS events for that pixel only; we will use the same method for all pixels to create
a full RGB image. As will be explained in the following section, we further reduce the
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problem to estimating the color from a vector of real positive numbers. We generate a few
labeled vectors and then build the linear minimum-mean-square-error (LMMSE) estimator
using the Moore–Penrose pseudoinverse [35].

4.1. Feature Extraction

As presented in Section 3.2, any change in the pixel intensity level causes a change in
the sensor event response. When recording the scene for color reconstruction, the intensity
and the color of the flicker vary. Therefore, after changing the intensity of light to a new
one, the new intensity is treated as if it is a different color. We associate each pixel response
with a different activated flicker pulse as an additional feature. In this manner, we assess
the features of each pixel for various flicker strengths and colors).

Pre-processing the DVS output yields a list of frames, with each being the sum of
events that occurred in a particular time slice. We start by choosing the time intervals, with
each corresponding to the response period of the DVS, to a change in the reflected intensity
outside the scene, which will later be referred to as integration windows. Thus, a response
curve of each pixel to each color change is yielded. We use a flicker that transmits three
different colors (RGB) at three different intensities.

In order to reduce the sizes of the data, we use the average response to each color
change (a single number per pixel) over a predefined integration window, and responses
corresponding to the exact color changes are averaged. The result is a vector of length
N + 1 (where N = 9 is the number of color changes the light source provides; in addition,
there is a bias parameter) for each pixel in the 640 by 480 sensor array. To justify this, we
will approximate each DVS pixel as an independent LTI system.

LTI Approximation

When the flicker is on, each pixel measures the light reflected from a certain part of
the scene. Suppose that for a given pixel, this part of the scene is a uniform color. When
the flicker is in one color, the pixel will measure the incident photon flux of Fi; when the
flicker changes color (suppose at t = 0), the incident photon flux changes to Ff . Thus,
the DVS pixel will output SEVERAL events corresponding to this change (see Figure 3
for example); this is a unique feature resulting from the non-continuous change in light
intensity. The number of events depends on the size of the change ∆F = Ff − Fi. This
property is crucial for distinguishing between colors of different brightness levels, such
as different shades of gray, since the brightness levels of some colors are directly linked to
the intensities of the reflected photons off of them. The stream of events originating from
the flicker change lasts well after the flicker transition is over; this means that if the light
intensity changes quickly, the DVS will not treat this intensity change as a single event, but
rather will continue outputting events for some time, such that the number of events is
proportional in some way to the change in intensity.

Suppose that the logarithm of the transmitted intensity of the flicker could be described
as a step function:

f (t) = au(t) + u0 (4)

The output current of a DVS pixel is approximated as:

IDVS(t) ∝ ae−bt (5)

The exponential form of the output current is implied from the discharge currents of the
capacitors in each DVS pixel. We assume the probability of a DVS pixel to register that an
event is proportional to the output current:

fDVS(t) ∝ IDVS(t) (6)

As long as IDVS(t) is above a certain threshold, the DVS sensor will only record events
when the log intensity change is sufficiently significant.
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Figure 3. DVS event counts for gray-scale flicker with decreasing gray-scale intensities, left to right.
The red dashed lines indicate the peak event count for each gray-scale flicker intensity, showing a
correlation between the intensity of the flicker and the number of events recorded.

The LTI approximation suggests that a sufficient description of the DVS response to
the flicker change is to take the number of events that occurred during the flicker change,
i.e., integrating over time. Therefore, we suggest the following criterion for characterizing
the DVS response to the flicker change:

Fλ1→λ2 ≈
∞∫

0

fDVS(t)dt ≈
τ∫

0

fDVS(t)dt (7)

We clip the integration at a finite time τ, chosen empirically, in order to approximate
the integral. It is approximated as the time difference between the instance of flicker change
and the moment when fDVS(t) has decayed enough. In this work, these moments are
identified by measuring the event count of the DVS pixels over an entire frame, with
respect to time. A flicker change triggers a local maximum in the event count over time,
which then decays proportionally to fDVS(t). An integration window τ is taken from the
frame where the event count is at a local maximum to the frame at which the total event
count equals the average event count over all frames. Noise and scattering are taken into
account when determining the integration windows.

A pixel of a particular color reflects different amounts of the incident’s photons
transmitted by the flicker, depending on their respective wavelengths. Thus, changing the
flicker’s color causes the object that the pixel represents to reflect a different amount of
light, and the observed intensity changes. This causes a reading of the DVS sensor. Based
on these readings, we suggest that it is possible to reconstruct the RGB color profile of the
observed scene.

The LTI integration approximation justifies using the LHS of Equation (7) as the
components of the feature vector; however, if we take noise into account, this approxi-
mation begins to break down, and the use of spatial correlation is needed for improved
approximation.

The exponential form of the DVS event count can be seen in Figure 4, which supports
our model of the DVS pixel response probability fDVS(t). The noisy response shown in
Figure 4 is a result of light scattering in addition to the inherent noise in the sensor.



Sensors 2023, 23, 8327 7 of 16

Figure 4. Number of DVS events in a frame vs. frame number. The measurements were recorded
while RGB flicker changes took place. The integration windows depict the frames with enough events
caused by a flicker color change.

5. Method-CNN Approach

The linear approach suffers from low SNR and low color fidelity. The shortcomings of
the linear estimator are due to several factors, but mainly the sensor noise (thermal noise is
significant for this sensor because it has a large surface area compared to modern CMOS or
DSLR sensors) and inherent nonlinearities of the device, which were ignored in the last
section’s analysis. The sensor in this work has a thermal noise of 0.03 events/pix/s at
25 ◦C [12]. An additional form of noise is shot noise, which is significant under low ambient
light conditions, such as in our setup. The low color fidelity of the linear approach suggests
that the LTI assumption falls short in yielding a highly accurate color reconstruction. Thus,
a different, more robust method should be employed for this problem. A natural solution
is a convolutional neural network, as is common in image processing settings. This method
uses a non-linear estimator for the color; in addition, it takes into account the inherent
spatial correlation in the DVS output to reduce output noise.

The input to the network is 288 frames (32 frames for each of the nine flicker transitions)
from the DVS, selected to contain the most information about the flicker transition. Since
the network is fully convolutional, different spatial resolutions can be used for the input,
but the output must be of an appropriate size.

Looking at the output of the DVS, a few things are clear. First, it is sparse; second, it is
noisy; and third, there are a lot of spatial and temporal correlations between pixels. This
matches previous findings regarding the DVS event stream [12]. In addition, the linear
approximation has problems distinguishing between different shades of gray (among other
problems); using the spatial and temporal correlations of the data will help produce better
results and deal with a certain design flaw of the sensor. It seems that certain pixels respond
because neighboring pixels respond, not because they sense a change in photon flux. This
is non-linear behavior that cannot be accounted for using a simple linear approximation
(see Figure A1 in Appendix A).

5.1. CNN Architecture

The network architecture is fully convolutional and inspired by U-Net [36] and Xcep-
tion [37]. Similar to U-Net, this network consists of a contracting path and an expanding
path. However, it also includes several layers connecting the contracting and expanding
parts that are used to add more weights that improve the model.



Sensors 2023, 23, 8327 8 of 16

Each layer in the contracting path reduces the spatial dimensions and increases the
number of channels using repeated Xception layers [37] based on separable convolution.
Each layer in the expanding path increases the spatial dimensions and reduces the channels
using separable transposed convolutions. In the end, we move back to the desired output
size (in our case, it will be the same as the input size), and the channels will be reduced
to three channels (one for each RGB color). The path connecting the contracting and
expanding layers does not change the data sizes.

5.2. Loss Function

The loss function is a weighted average of the MS-SSIM [38] and L1 norm.

L(Y, Ŷ) = 0.8||Ŷ−Y||1 + 0.2LMS-SSIM(Ŷ, Y) (8)

where Ŷ and Y represent the reconstructed and real images, respectively. The coefficients
of the different components of the loss function were tuned using hyperparameter opti-
mization. Other losses were tested, including the L2 loss and L1 loss, which only compares
the hue and saturation (without the lightness) of the images, or only the lightness without
the hue and saturation; however, none outperformed the loss we chose.

The SSIM index is a distortion measure that is supposed to more faithfully represent
how humans perceive distortions in images, assuming that the way visual perception works
depends significantly on extracting structural information from an image. It is helpful for
us because the linear approach (despite being noisy and not producing the most accurate
colors) seems to be able to produce images that have the same structures as the original
ones.

5.3. Training

Data labels are acquired using a dual-sensor apparatus composed of DVS and RGB
sensors. For the RGB sensor, we used a Point Grey Grasshopper3 U3 camera, with a
resolution of 1920 × 1200 (2.3 MP), fps of 163, and 8-bit color depth for each of its 3 color
channels. A calibration process yields matching sets of points in each of the sensors using
the Harris Corner Detector algorithm, which is then used to calculate a holography that
transforms the perspective of the RGB sensor to the perspective of the DVS sensor.

The calibration process assumes that the captured scene is located in a dark room on a
plane at a distance of 14′′ from the DVS sensor. Therefore, training data are taken on 2D
scenes to preserve calibration accuracy. Each training sample contains a series of frames,
most of which hold the responses of the scene to the changes in the flicker, and a minority
of the frames are background noise frames before the changes in the flicker. For example,
in the case of an RGB flicker with three intensities, we use 32 frames per color and intensity,
totaling 288 frames.

6. Experimental Results
6.1. Linear Approach

Some linear reconstructions are shown in Figure 5: The linear approach is shown to
reconstruct color, although it is very noisy. This is the result of the pixel-wise approach
implemented here, where the spatial correlation between the colors of neighboring pixels
is ignored. The fact that noise causes neighboring pixels to experience different event
readout patterns causes neighboring pixels to have different feature vectors. Therefore,
their reconstructed colors are not similar. This can be rectified by considering the spatial
correlation between neighboring pixels, as the CNN approach does.
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Figure 5. Left: X-Rite color matrix. Right: color reconstruction using the 9-flicker (3 colors, 3 intensi-
ties) linear approach.

We also checked the criticality of transmitting light at multiple intensities for distin-
guishing between various shades of colors, by solely recording the DVS responses to three
flicker changes. The result is shown in Figure 6.

Figure 6. X-Rite matrix reconstruction with a single intensity flicker. The gray colors are almost indistin-
guishable and the color fidelity has deteriorated, compared to the three-intensity linear reconstruction.

Figure 5 shows that using three intensities enables the differentiation between the
gray colors in the X-Rite color matrix. However, as seen in Figure 6, using a flicker that
transmits RGB light in a single intensity makes the gray colors almost indistinguishable,
and is detrimental to the accuracy of the reconstruction. All gray colors have RGB values
proportional to (1, 1, 1), i.e., a gray color has the same value in each RGB channel, indicating
the proportion coefficient, or the intensity. Since the DVS output is binary in essence,
different gray colors on the scene will respond similarly to the color changes in a flicker
with a single intensity. Training with such a setup will result in intensity-mismatched
reconstructions. As seen in Figure 3, the number of events recorded depends on the
intensity of the flicker relative to the intensity of the scene. Therefore, one can quantify
the relative intensity of each pixel by recording its responses to different flicker intensities.
Thus, multiple intensities allow us to mitigate the aforementioned problem by measuring
the relative intensity of each actual pixel on the scene to the projected intensity of the flicker.

6.2. CNN Approach

Figure 7 shows some of our color reconstruction results on 3D scenes that are 14′′ away
from the DVS sensor (distance is measured from the DVS lens to the center of the 3D scene).
The resulting reconstruction shows high fidelity and low noise. Thus, this solution is viable
for the color reconstruction of 3D and 2D scenes. Small details might not be resolved by
this approach due to the smoothing effect of the CNN.
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Figure 7. Our model’s reconstruction of the 3D scene. Left: The original images, right: our CNN-
based model reconstructions. The RMSE score for the top right image is 45 and for the bottom right
is 47.

6.2.1. Robustness

Training data have been captured under fixed lab conditions; in particular, the captured
scene is at a distance of 14′′ from the DVS sensor, and the scene is situated in a dark room.
Therefore, the robustness of the system to changes in these conditions is shown.

The robustness to changes in the ambient brightness has been studied by using a light
source behind the flicker, directed at the scene, which is an extended color matrix. The
flicker obstructs some of the incident light from the light source and, therefore, regional
intensity variance in the scene has been observed. The light intensity at the scene plane
is taken as the average intensity measured at the corners of the color matrix. As seen in
Figure 8, brighter ambient light causes worse color reconstruction. The saturation of the
scene by enough ambient light causes the flickering color and intensity changes to have a
less significant change in the incident intensity measured by the DVS pixels and, therefore,
fewer events are recorded.

Distance robustness is also studied, where the color matrix was situated in a dark
room, with the same ambient brightness as in the training sessions. Measurements were
taken, starting at a distance of 14′′ from the DVS and increasing by 2′′ increments. As seen
in Figure 9, the reconstruction capabilities of the CNN approach are not limited to the fixed
training distance but allow for a distance generalization.
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Brightness [lux] Normalized Loss
0.4 1

10.8 1.13
21.2 1.18
39.2 1.29

Figure 8. Top: Reconstruction for different ambient light conditions. RGB ground truth is shown
in the leftmost picture. Bottom: relative loss for each reconstruction. The loss is calculated in
Equation (8).

Figure 9. Our CNN-based model reconstruction results for different distances. Distances from left to
right: 5.08 cm, 11.176 cm, 17.272 cm, 23.368 cm, 29.464 cm, and 35.56 cm.

6.2.2. Ablation Study

As part of our analysis and comparison between the different presented methods
(linear and CNN), we examined the architecture complexity. In order to accomplish this,
we trained several variations of the network with different depths on the same data (and
the same number of epochs), and we obtained the following results shown in Figure 10.

Figure 10. Our neural network normalized the loss across varying numbers of layers. We offer this
analysis (without formal proof) as an interpretation of the DVS non-linearity degree.

An additional component that is worthwhile to study involves the use of different
intensities for the flicker (we used three colors with three different intensities). A pertinent
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issue arises: what would happen to the reconstruction if we only used 1 intensity for the
flicker? To that end, we trained the same network architecture for two different datasets.
The first set utilized a flicker of three colors, each with three different light intensities, and
the second contained the same images, but this time used a three-color flicker with a single
intensity per color. In Figure 11, we can see that the reconstruction failed to produce the
right colors.

Figure 11. Using the DVS response for different flicker intensity levels significantly improved the
reconstruction quality. Left: Our CNN-based model reconstruction using 3 different intensities and 3
different colors. Right: The same model’s reconstruction using a single intensity and 3 colors.

As shown in Figure 12, comparing our results to those of [29], one can see that our
method is superior in terms of color reconstruction accuracy, at least on the X-Rite color
matrix. The perceived colors of the X-Rite color matrix and the respective MSE values
are calculated using 4-point averages of the images from [29] and our reconstruction of
the same color matrix. In addition, in contrast to color filter array (CFA)-based color
reconstructions, our methods keep the spatial resolutions of the resulting reconstructions
close to the native resolution of the DVS sensor.

Perceived Color Our MSE MSE of Paul et al. 2017
(4,138,122) 6368 17476
(111,129,39) 749 8157
(180,135,18) 662 43097
(165,32,42) 566 13030

(144,3,8) 734 19043
(68,69,64) 237 9269

Figure 12. Left to Right: X-Rite color matrix, reconstruction by [29], our linear reconstruction, our
CNN reconstruction.
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The method presented in [29] uses DAVIS (dynamic and active vision sensor) pixels
with CFA, which means it uses more sensors to create the same resolution pixel as in
our method.

7. Discussion

The system described in this work manages to create a colored image using the
protocol that we presented. However, it has its limitations: the reconstruction accuracy
depends heavily on ambient light conditions; if different ambient light conditions are
taken into account during training, the reconstruction will be less sensitive to ambient
light conditions; finally, the flicker’s intensity and dynamic range affect the reconstruction
quality. That being said, the system has the ability to reconstruct color from images outside
the training data, as can be seen in Figure 7. One can overcome the latter limitation by
changing the intensity levels of the flicker. In addition, our system does not allow the color
reconstruction of a nonstationary scene since the response time of the DVS pixels to a flicker
color change is nonzero. Therefore, the time it takes for a flicker cycle to be performed
limits the timescale of changes in the scene using our approach. The critical distinction lies
between events generated by flicker changes and those prompted by movements within
the scene. An optical flow algorithm combined with a CNN can be used to overcome
this limitation.

Using a DAVIS sensor would also most likely improve the performance and ease the
calibration method (the active pixels could be used to create a regular still image used
for calibration). In addition, since the DVS has no sense of absolute light intensity (only
relative), using a DAVIS sensor could improve the performances of different ambient
light conditions.

8. Conclusions

This paper presents a novel approach for reconstructing colors from a dynamic vision
sensor (DVS) using an RGB flicker. The flicker’s color is changed in a non-continuous fash-
ion, allowing us to determine the spectral data of the scene. Two methods for reconstruction
were proposed, with the convolutional neural network (CNN) approach having higher
fidelity and less graininess than the linear method. This implementation outperforms a
color filter array (CFA)-based reconstruction since the latter reduces the spatial resolution
and only samples wavelengths at a few specific wavelengths, while a light flicker allows for
sampling wavelengths anywhere on the optical spectrum without a decrease in the spatial
resolution. As a future direction, we suggest extending the algorithm to diffuse the color
information of pixels over time, for example, by utilizing optical flow maps. To encourage
future research we share our code on GitHub.
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Appendix A

Figure A1 depicts our experiment analyzing the spatiotemporal response to a
delta function.

https://github.com/khencohen/DVSColorReconstruction
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Figure A1. Example of non-linear behavior in the form of a wavelike ripple of events that should
not occur.

Figure A2 shows the event-sparsity response.

Figure A2. DVS pixel responses for different pixels, showing that the responses are sparse and that
not all pixels respond simultaneously.
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