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Abstract: Plant factory is an important field of practice in smart agriculture which uses highly
sophisticated equipment for precision regulation of the environment to ensure crop growth and
development efficiently. Environmental factors, such as temperature and humidity, significantly
impact crop production in a plant factory. Given the inherent complexities of dynamic models
associated with plant factory environments, including strong coupling, strong nonlinearity and multi-
disturbances, a nonlinear adaptive decoupling control approach utilizing a high-order neural network
is proposed which consists of a linear decoupling controller, a nonlinear decoupling controller and
a switching function. In this paper, the parameters of the controller depend on the generalized
minimum variance control rate, and an adaptive algorithm is presented to deal with uncertainties in
the system. In addition, a high-order neural network is utilized to estimate the unmolded nonlinear
terms, consequently mitigating the impact of nonlinearity on the system. The simulation results
show that the mean error and standard error of the traditional controller for temperature control
are 0.3615 and 0.8425, respectively. In contrast, the proposed control strategy has made significant
improvements in both indicators, with results of 0.1655 and 0.6665, respectively. For humidity control,
the mean error and standard error of the traditional controller are 0.1475 and 0.441, respectively. In
comparison, the proposed control strategy has greatly improved on both indicators, with results of
0.0221 and 0.1541, respectively. The above results indicate that even under complex conditions, the
proposed control strategy is capable of enabling the system to quickly track set values and enhance
control performance. Overall, precise temperature and humidity control in plant factories and smart
agriculture can enhance production efficiency, product quality and resource utilization.

Keywords: smart agriculture; plant factory; environmental control; adaptive decoupling controller;
high-order neural network

1. Introduction

The technologies and concepts of smart agriculture provide support and impetus to
plant factory technology. Plant factory is a specific application form of smart agriculture that
creates a suitable microclimate environment for crop growth through enclosed cultivation
systems, enabling year-round cultivation. The factors of microclimate environment include
the temperature, humidity, light and carbon dioxide concentration [1–4]. Among these
factors, to some extent, temperature and humidity play crucial roles for the efficient growth
of crops [5–7]. As for these two factors, temperature directly affects the vital activity of
the crops, and humidity affects the transpiration level of the crops. Therefore, it is very
necessary to achieve the controllability of environmental factors, specifically maintaining
appropriate temperature and humidity conditions, as this contributes to achieving high
yield and quality for various crops cultivated [8,9]. However, from a control perspective,
the dynamic models of environment exhibit inherent complexity characteristics by strong
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coupling, strong nonlinearity and multi-disturbances. As a result, conventional control
methods often struggle to meet the actual requirements of a plant factory. To address the
aforementioned challenges, this study investigates a dynamic microclimate model and
explores an advanced control approach to achieve precise control for environmental factors.

In recent years, a few scholars have developed the internal microclimate environment
model of plant factory. The development of the temperature model utilizes a simplified
model derived from thermodynamic equations [8]. An accurate temperature model of
plant factory was presented based on energy balance and identified using the experimental
data [9]. The large-leaf equation was initially utilized for establishing a crop transpiration
model. Simultaneously, it was proposed that crop transpiration serves as the primary
factor influencing the humidity balance [10]. The dynamic model was presented, utilizing
an HVAC system featuring a steam-powered humidifier and a hot/cold water-based
heater [11]. The model of temperature, humidity and carbon dioxide concentration was
studied from the perspective of plant physiology and thermodynamics based on the existing
research results of plant factories [12]. It should be noted that the abovementioned dynamic
model of plant factory is not comprehensive and has a limited application scope. Therefore,
describing the dynamic model of humidity and temperature in the plant factory under
different environmental conditions poses a significant challenge.

Over the past years, a large number of scholars have put forward advanced control
methods, including adaptive control [13,14], robust control [15,16], optimal control [17,18],
fuzzy control [19–21], feedforward control [22,23] and so on. However, it is frustrating that
these controllers belong to linear controllers, so they can achieve good control effects for
some linear systems or some weak nonlinear systems. As a matter of fact, the temperature
and humidity system of the plant factory exhibits inherent complexity characteristics by
strong nonlinearity. Therefore, there still exists a series of problems in applying traditional
control strategies to the environmental control of plant factories. The reasons for the above
problems are as follows:

(1) The temperature and humidity system inside the plant factory is a nonlinear dy-
namic system. Moreover, there is a cross effect and mutual coupling between these
two factors.

(2) The crop itself strongly interacts with the environment. The air moisture content in
the plant factory is primarily determined by the transpiration of crops. Therefore,
the humidity regulation is severely influenced by crops’ transpiration resulting in
deterioration of control performance.

(3) The uncertainty of parameters, such as the material properties of the plant factory, can
change due to significant variations in the external environment, which could affect
the indoor temperature and humidity of plant factory. Moreover, during the crop
cultivation process, the multi-disturbances, especially factors of external surroundings,
could enter the factory via the fresh air system or personnel entering/leaving, thus
disrupting the control effect of the system.

Aiming at the comprehensive complex characteristics of strong nonlinearity, parameter
uncertainty and strong coupling, the introduction of neural network into controller design
has received extensive attention. A new adaptive sliding-mode controller which can be
used in a single-input–single-output (SISO) nonlinear control system was designed [24].
An adaptive fuzzy output constrained control design method is proposed for multi-input–
multi-output (MIMO), stochastic, non-strict feedback, nonlinear systems [25]. To address
the input constraints of discrete nonlinear systems, an adaptive fuzzy control method
was proposed based on an observer [26]. Two neural networks are combined into an
adaptive controller for the purpose of resolving the nonlinear characteristics of the system
control input and the dynamic uncertainty of the model [27]. With the utilization of
neural networks, a nonlinear adaptive decoupling controller was designed to improve
the evaporation efficiency of the system [28]. Introducing the radial basis function (RBF)
network into the controller was designed [29]. After the introduction of the RBF neural
network, a new switching strategy was integrated [30].
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Given the aforementioned issues and building upon existing research results, four sce-
narios, namely, refrigeration, heating, dehumidification, and humidification, are modeled
and applied to various environmental conditions in the plant factory. After establishing
the plant factory model, a nonlinear adaptive decoupling control method using high-order
neural network is proposed to address the challenges associated with temperature and
humidity control in plant factories. The primary contributions are outlined as follows.

(1) This paper enriches the model to enhance its realism by developing a comprehensive
environmental model that captures the possible conditions that can occur in plant
factories. Building upon this foundation, the different environmental conditions in
the plant factory are fully considered, making it closer to reality.

(2) As far as we know, there is almost no research on applying the nonlinear adaptive
decoupling control method using high-order neural network to plant factory. In
this paper, with the aim of improving the dynamic performance of the system while
ensuring system stability, a method is proposed that combines a linear adaptive
decoupling controller and a neural-network-based nonlinear adaptive decoupling
controller by using a switching mechanism. The generalized minimum variance
adjustment rate is used to design the generalized minimum variance controller, and
the projection algorithm with dead zone is used to identify the controller parameters
to achieve an adaptive system. To estimate the nonlinear term that has not been
mathematically modeled in the system, the paper makes use of the strong learning
ability of high-order neural networks.

2. System Description
2.1. Structural Design of Plant Factories

This paper focuses on a closed artificial light plant factory located in Liaoning province,
China. The structure of this plant factory is made up of PVC panels and has a total volume
of 16 m × 6 m × 3 m. Figure 1 shows the architecture of the plant factory, which includes a
cultivation rack consisting of six columns of 14 m × 0.2 m × 0.2 m each. Instead of natural
light, the plants in the factory are illuminated with LED lamps, the activation of which
is adjusted according to the light needs of the crops. To prevent any risk of burning or
scalding, the cultivation racks are positioned at a safe distance of 1.5 m away from the LED
light source for crop cultivation. Additionally, a high-throughput plant imaging system
measures the leaf area of the crops.
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Figure 1. External architecture of the plant factory (a), and internal architecture diagram (b).

The regulation of the plant factory environment is divided into four modes: heat-
ing/humidification, heating/dehumidification, cooling/dehumidification and cooling/
humidification. Two air conditioners, each with a power of 5.384 kW, are suspended at
the top of the plant factory. To control humidity, one dehumidifier and one humidifier
are located inside the factory. The temperature control system primarily relies on the
air conditioning system, which regulates the temperature by using a four-way valve to
switch the operating mode of the condenser and evaporator. Additionally, the ventilation
volume of the air conditioning system is adjusted to further control the temperature. The
temperature and humidity sensors are placed at a height of 1.5 m above the factory floor to
measure the necessary experimental data. The internal environmental diagram of the plant
factory is shown in Figure 2.
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2.2. Description of the Plant Factory Model

A schematic diagram of the energy balance of the plant factory has been drawn
according to various dynamic environmental conditions that may be encountered in the
plant factory, as shown in Figure 3. Inspired by the literature [31] and based on the first
law of thermodynamics, the heat balance and humidity balance of the plant factory are
established and expressed by Equations (1) and (2).

dTa

dt
=

Qlight + Qeq + QH + Qhw + Qv −Qplant −Qca

ρa ·V · Cap
(1)

dHa

dt
=

Wcrops + Whum + Wac + Wv −Wdh

ρa ·V
(2)
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In energy balance Equations (1) and (2), Ta(◦C) is the internal temperature of the plant
factory; Qlight(kJ/m2) is the energy generated for artificial light sources; Qeq(kJ/m2) is the
energy generated by the humidifier and dehumidifier during operation in the plant factory;
QH(kJ/m2) is the energy exchanged between the crop canopy and the air; Qhw(kJ/m2)
represents the energy brought by the hot air entering the plant factory from the air condi-
tioning system; Qv(kJ/m2) is the energy brought in (or taken out) by the new air ventilation
system; Qplant(kJ/m2) is the energy consumed by crop transpiration; Qca(kJ/m2) is the
energy generated to the plant factory when the air conditioner delivers cold air; ρa(kg/m3)
is the density of air in a plant factory; V(m3) is the internal volume of a plant factory;
Cap(kJ/(kg·◦C)) is the specific heat at constant pressure in a plant factory; Ha(kg/kg) is

the humidity ratio of the plant factory; Wplant(kg/s) is the impact of crop transpiration on
internal humidity, mainly represented by evaporation of crops; Wac(kg/s) is the moisture
content of the air supplied by the air conditioning; Whum(kg/s) is the moisture content
of the air supplied by the humidifier; Wv(kg/s) is the moisture content of the outside
air entering the plant factory during ventilation; Wdh(kg/s) is the moisture content of air
supplied by the dehumidifier.

(1) Heat balance equation for artificial light sources

This paper uses LED lamps as artificial light sources. The energy of artificial light
sources mainly enters the plant factory in the form of light radiation and heat dissipation.
The plant canopy absorbs light radiation, which is then converted into thermal energy.
Additionally, the heat dissipation of the light source can contribute to a slight increase in
the temperature within the plant factory. According to references [9,32], establishing the
energy balance equation for artificial light sources is expressed by Equation (3).

Qlight = Qdiss + Qrad = k1 · k2∑n
i=1 Pi · tw (3)

where Qdiss(kJ/m2) is the energy emitted by the LED lamps; Qrad(kJ/m2) is the energy
radiated by the LED lamps; k1 is the lighting utilization factor of LED lamps; k2 is the
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special compensation factor of LED lamps; n is the total number of LED lamps in the plant
factory; Pi(w) is the power of a single LED lamp; tw(h) is the working time of LED lamps.

(2) Heat balance equation for dehumidifier and humidifier

Qeq is composed of Qdh and Qhum, as shown in Equation (4). The heat generated by
the dehumidifier (Qdh) and humidifier (Qhum) during their operation is represented by
Equations (5) and (6).

Qeq = Qdh + Qhum (4)

Qdh = ρa · Cap · qdh · (Tdh − Ta) (5)

Qhum = ρa · Cap · qhum · (Thum − Ta) (6)

where Qdh(kJ/m2) is the energy generated by the dehumidifier during operation;
Qhum(kJ/m2) is the energy generated by the humidifier during operation; qdh(m3/s) is
the air flow rate of the dehumidifier; Tdh(◦C) represents the heat generated during the
operation of the dehumidifier; qhum(m3/s) is the air flow rate of the humidifier; Thum(◦C)
represents the heat generated during the operation of the humidifier.

(3) Crop canopy heat balance equation

According to Fick’s first diffusion law [33], the establishment of the crop canopy heat
balance equation is represented by Equation (7):

QH = A · H = A · LAI · ρa · Cap
(Tp − Ta)

ra
= AP · ρa · Cap

(Tp − Ta)

ra
(7)

where A(m2) is the internal ground area of a plant factory; H(kJ/m2) is the crop canopy and
air sensible heat exchange; LAI is the leaf area index of the crop; Tp(◦C) is the temperature
of the crop; Ap(m2) is the leaf area of the crop; ra is the boundary layer dynamic resistance
of crop leaves.

(4) Heat balance equation for conveying hot air

This article mainly uses air conditioning to achieve indoor temperature increase.
The heat balance equation for conveying hot air is established, which is represented by
Equation (8).

Qhw = ρa · Cap · qhw · (Thw − Ta) (8)

where qhw(m3/s) is the air flow rate when the air conditioner blows hot air; Thw(◦C) is the
heat generated during the operation of the air conditioner.

(5) Heat balance equation for building the structure and ventilation system

When establishing the heat balance equation, it is essential to take into account the
heat entering the plant factory through both the building structure and the ventilation
system, as indicated in Equation (9).

Qv = cr · Ab · (Tb − Ta) + ρa · Cap · q f · (Tout − Ta) (9)

where cr is the heat transfer coefficient of the wall; Ab(m2) is the internal wall area of the
plant factory; Tb(◦C) is the temperature of the PVC panels; q f (m3/s) is the air flow rate of
the outside air entering the inside of the plant factory; Tout is the outside temperature.

(6) Crop transpiration model

This paper employs the method described in reference [34] to calculate the amount of
heat released through crop transpiration, represented by Equation (10):

Qplant = APλE (10)
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where λ(kJ/g) is the latent heat of water evaporation; E(g/m2s) is the evaporation rate.
According to references [34,35], represented by Equation (11):

λE = Rn
(1 + e−KLAI)

1 + β
(11)

where Rn(w/m2) is the net adiation intensity of crop canopy; K is the decay coefficient of
LED lamps; β is the Bowen ratio. By substituting Equation (11) into Equation (10), the heat
released from crop transpiration can be obtained, as represented by Equation (12):

Qplant = APλE = APRn
(1 + e−KLAI)

1 + β
(12)

Combined with the experimental conditions in this study, β can be expressed by
Equation (13):

β = γ
Tp − Ta

e0RHin(exp
(
17.4Tp/239 + Tp

)
− exp

(
17.4Tp/239 + y1

)
)

(13)

where γ(kPa/◦C) is the thermometer constant; e0(kPa) is the saturated water vapor pres-
sure of the air in the factory at 0 ◦C; RHin is the relative humidity inside the plant factory.

(7) Heat balance equation for conveying cold air

This article mainly uses air conditioning to achieve indoor temperature decrease. While
delivering cool air into the plant factory, the air conditioning controls the ventilation rate to
achieve the desired temperature regulation. The energy balance equation for conveying
cold air is established, which is represented by Equation (14).

Qca = ρa · Cap · qca · (Tca − Ta) (14)

where qca(m3/s) is the air flow rate when the air conditioner blows cold air; Tca(◦C) is the
heat generated during the operation of the air conditioner.

(8) Humidity balance equation for crops

The humidity brought into the plant factory by the crops [32] through transpiration is
shown in Equation (15):

Wcrops = AP · E (15)

(9) Humidity balance equation for humidifier

The increase in humidity in the plant factory is mainly affected by crop transpiration
and a humidifier. The effect of soil and nutrient solution evaporation can be ignored
compared to the effect of crop transpiration and a humidifier. The formula for crop
transpiration has been given in the previous text. The humidity content of the air supplied
by the humidifier is given by Equation (16).

Whum = ρa · qhum · (Hhum − Ha) (16)

where Hhum(kg/kg) is the humidity ratio of the supply air of the humidifier.
According to thermodynamics, the relationship between the humidity ratio and rela-

tive humidity in a plant factory is given by Equation (17):

Ha =
622RHinP0

P− RHinP0
(17)

where P(Pa) is standard atmospheric pressure; P0(Pa) is the water vapor partial pressure
at different temperatures. Each temperature has a corresponding value for P0.
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(10) Humidity balance equation of dehumidifier

This paper mainly uses a dehumidifier to reduce the humidity in the plant factory.
The humidity balance equation for the dehumidifier is established and represented by
Equation (18).

Wdh = ρa · qdh · (Hdh − Ha) (18)

where Hdh(kg/kg) is the humidity ratio of the supply air of the dehumidifier.

(11) Humidity balance equation for air-conditioning

The delivery of cold or hot air by the air conditioning system to the indoor environment
has varying effects on the humidity content of the indoor air. The balance equations for
two different scenarios are given by Equations (19) and (20).

Wca = ρa · qca · (Hca − Ha) (19)

Whw = ρa · qhw · (Hhw − Ha) (20)

where Hca(kg/kg) represents the humidity ratio of the cold air supplied by the air condi-
tioning system; Hhw(kg/kg) represents the humidity ratio of the hot air supplied by the air
conditioning system.

(12) Humidity balance equation for the new air ventilation system

The exchange of air between the plant factory and the outside during operation is
a disturbance factor that can potentially impact the stable operation of the plant factory
environment. The formula for indoor humidity disturbance is given by Equation (21):

Wv = ρa · q f · (Hout − Ha) (21)

where Hout(kg/kg) is the humidity ratio of the outside air.
Define

Ta = y1, Ha = y2, qhw = u1, qca = u2, qhum = u3, qdh = u4.

The plant factory temperature model, represented by Equation (22), can be obtained
by substituting Equations (3), (5)–(9), (12) and (14) into Equation (1). The plant factory hu-
midity model, represented by Equation (23), can be obtained by substituting Equations (11),
(16), (19)–(21) into Equation (2). The parameter meanings, values and unit in the equation
can be found in Table 1.

.
y1 = [APRn(1− e−KLAI)/ρaVCap]/{1 + [γ(Tp − y1)]/[e0Py2/(622P0+

P0y2)(exp
(
17.4Tp/239 + Tp

)
− exp

(
17.4Tp/239 + y1

)
)]} − [(u1 + u2 + u3+

u4 + q f )/V + AP/(raV) + (cr Ab)/(ρaVCap)]y1 + (cr Ab)/(Thwu1 + Tcau2+

Thumu3 + Tdhu4)/V + k1k2∑n
i=1 Pitw + (cr Abtb)/(ρaVCap) + (APTP+

q f Tout)/V

(22)

.
y2 = [APRn(1− e−KLAI)/(ρaλV)]/{1 + [γ(tp − y1)]/[e0Py2/(622P0 + P0y2)

(exp
(
17.4Tp/239 + Tp

)
− exp

(
17.4Tp/239 + y1

)
)]} − ((u1 + u2 + u3 + u4+

q f )/V)y2 + (Hhwu1 + Hcau2 + Hhumu3 + Hdhu4 + q f Hout)/V

(23)
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Table 1. Parameter meaning of temperature and humidity model of plant factory.

Parameter Meaning Value Range Unit

k1 The illumination utilization coefficient of artificial light sources 0.97
k2 The special permissive coefficient of artificial light sources 1
Pi Power of a single artificial light source 50–300 w
n Total quantity of artificial light sources 0–8
tw Working time of artificial light sources 0–4 h
Rn Net radiation intensity of crop canopy 0–350 w/m2

K The decay coefficient of LED lamps 0–1
γ Thermometer constant 0.0646 kPa/◦C
e0 The saturated water vapor pressure of the air in the factory at 0 ◦C 0.6107 kPa
TP Leaf temperature 15–28 ◦C

LAI Crop leaf area index 0.125
AP Leaf area 12 m2

V Internal volume of a plant factory 288 m3

A Internal ground area of a plant factory 96 m2

ρa Density of air in a plant factory 1.199 kg/m3

Cap Specific heat at constant pressure in a plant factory 1.009 kJ/(kg·◦C)
P Standard atmospheric pressure 101,325 Pa
P0 The water vapor partial pressure at different temperatures Pa
cr Heat transfer coefficient of wall 0.002–0.003
Ab Internal wall area of a plant factory 132 m2

tb Temperature of inner wall of a plant factory 12–28 ◦C
q f Fresh air flow rate for personnel entry and exit, ventilation 0–1 m3/s

Hhw The humidity ratio during the supply of hot air 14–19 g/m3

Hca The humidity ratio during the supply of cold air 16–21 g/m3

Hdh The humidity ratio of the supply air of the dehumidifier 13.05 g/m3

Hhum The humidity ratio of the supply air of the humidifier 25 g/m3

Thw Hot air supply temperature 25–35 ◦C
Tca Cold air supply temperature 10–20 ◦C

Thum Temperature during the operation of the humidifier 20–25 ◦C
Tdh Temperature during the operation of the dehumidifier 15–30 ◦C

3. Nonlinear Adaptive Decoupling Control Based on Switching Mechanism
3.1. Nonlinear Decoupling Control Strategy

Currently, the majority of plant factories utilize conventional controllers, such as PID
controllers, to regulate the temperature and humidity levels within the environment. How-
ever, these traditional methods cannot handle the strong nonlinearity, strong coupling and
parameter uncertainty in the environmental system. This paper proposes a multi-model-
based nonlinear adaptive decoupling control method combining with a high-order neural
network to accurately control the environmental factors in plant factories. Using the similar
approach [28], the system of plant factory can be described as shown in Equation (24):

y(k + 1) = −Ai(z−1)y(k) + Bi(z−1)u(k) + vi[x(k)] (i = 1, 2 . . . m) (24)

y(k) = [y1(k), . . . yn(k)]
T ∈ Rn (25)

u(k) = [u1(k), . . . un(k)]
T ∈ Rn (26)

where y(k) and u(k) are n-dimensional input and output vectors; the quantity of known
working points is represented by m. Make

Ai(z−1) = I + z−1 Ai(z−1) (27)

Bi(z−1) = Bi(z−1) + Bi(z−1) (28)
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Bi(z−1) is a diagonal polynomial matrix with respect to z−1, Bi(z−1) is a polynomial
matrix with diagonal elements equal to zero with respect to z−1. Ai(z−1) and Bi(z−1) are
n × n dimensional polynomials with orders na and nb with respect to z−1. Then, Ai(z−1)
and Bi(z−1) are expressed in the form of Equations (29) and (30):

Ai(z−1) = I + Ai1z−1 + · · ·+ Aiρz−ρ + · · ·+ Aina z−na (29)

Bi(z−1) = Bi0 + Bi1z−1 + · · ·+ Biρz−ρ + · · ·+ Binb z−nb (30)

where I is the identity matrix; Ai1 . . . Aina and Bi1 . . . Binb are coefficient matrices; Aiρ and
Biρ are the coefficient of z−ρ.

vi[x(k)] = [vi1(x(k)), vi2(x(k)), . . . vin(x(k))]T ∈ Rn (31)

vi[x(k)] = Ai(z−1)y(k + 1)− Bi(z−1)u(k) (32)

x(k) = [yT(k), . . . , yT(k− ns + 1), uT(k), . . . , yT(k−ms)] (33)

where vi[x(k)] is an unknown continuously differentiable vector-valued nonlinear function
that can be represented by Equations (31) and (32), and ‖ vi[x(k)] ‖≤ 4; 4 is a known
positive real number. x(k) represents the input–output data vector of the system. Therefore,
Equation (30) can be rewritten in the form shown in Equation (34):

y(k + 1) = −Ai(z−1)y(k) + Bi(z−1)u(k) + Bi(z−1)u(k) + vi[x(k)] (34)

For the multivariate nonlinear control equation described by Equation (24) at the
i-th operating point, we propose a nonlinear decoupling control strategy that integrates a
feedback controller, a decoupling compensator and a nonlinear compensator, as shown in
Figure 4. Here, Hi(z−1), Ri(z−1) and Gi(z−1) are the feedback controller parts of the system.
These are diagonal polynomial matrices with respect to z−1, which are used to control
the system output y(k) to track the reference input w(k). The decoupling compensator
Hi(z−1) is a polynomial matrix with zero diagonal elements. It is used to eliminate the
effect of coupling terms in the linear model. The nonlinear compensator Ki(z−1) is a
diagonal polynomial matrix with respect to z−1, which is used to remove the effect of
nonlinear terms on the closed-loop system.
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Figure 4. Schematic diagram of nonlinear decoupling control method.
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As shown in Figure 4, the control variable u(k) can be represented by Equation (35)
as follows:

u(k) = Hi
−1

(z−1){Ri(z−1)w(k)− Gi(z−1)y(k)− Hi(z−1)u(k)−Ki(z−1)vi[x(k)]} (35)

By substituting the control variable u(k) into Equation (34), we obtain the equation for
the closed-loop system, as depicted in Equation (36).

[Hi(z−1)Ai(z−1) + z−1Bi(z−1)Gi(z−1)]y(k + 1) = Bi(z−1)R(z−1)w(k)+

[Hi(z−1)Bi(z−1)− Bi(z−1)Hi(z−1)]u(k) + [Hi(z−1)− Bi(z−1)Ki(z−1)]vi[x(k)]
(36)

where
[
Hi(z−1)Ai(z−1) + z−1Bi(z−1)Gi(z−1)

]
, Bi(z−1)Ri(z−1) and [Hi(z−1)− Bi(z−1)

Ki(z−1)] are all polynomial matrices;
[

Hi(z−1)Bi(z−1)− Bi(z−1)Hi(z−1)
]

is a polyno-

mial matrix with zero diagonal elements. By choosing appropriate Hi(z−1), Ri(z−1)
and Gi(z−1), it is possible to achieve system output y(k) that tracks reference input
w(k) and eliminate steady-state errors as much as possible. By selecting the appropri-
ate Hi(z−1), it is possible to eliminate

[
Hi(z−1)Bi(z−1)− Bi(z−1)Hi(z−1)

]
influence on

the system and minimize the impact between different loops. By selecting the appropriate
Ki(z−1), the influence of nonlinearity caused by vi[x(k)] on the system can be minimized
by [Hi(z−1)− Bi(z−1)Ki(z−1)]vi[x(k)].

To provide a more intuitive representation of the system control method, the control
variable u(k) can also be written in the form shown in Equation (37):

uρ(k) = 1
hρρ(z−1)

{rip(z−1)wρ(k)− gip(z−1)yρ(k)− [hi
ρ1(z

−1)uρ(k) + · · ·+

hi
ρ,ρ−1(z

−1)uρ−1(k) + hi
ρ,ρ+1(z

−1)uρ+1(k) + · · ·+ hi
ρn(z−1)un(k)]

−kiρ(z−1)viρ[x(k)]} (ρ = 1, 2 . . . n)

(37)

where the diagonal elements of Ri(z−1), Gi(z−1) and Ki(z−1), denoted as riρ(z−1), giρ(z−1)

and kiρ
(
z−1), respectively, correspond to the i-th diagonal element. hi

ρ,ς(z−1) represents the
ρ-th row and ς-th column element of the polynomial matrix Hi(z−1).

Hi(z−1) = Hi(z−1) + Hi(z−1) (38)

From Equation (37), it can be seen that the control variable uρ(k) of the ρ-th control
loop is only related to the reference input wρ(k), the output yρ(k), the control variables
u1(k), u2(k), . . . uρ−1(k), uρ+1(k + 1), . . . un(k) of other loops, as well as the nonlinear term
viρ[x(k)].

3.2. Parameters Selection
Due to the complex characteristics of the controlled object, a minimum variance control

method is proposed to design the controller in this paper. The performance index shown in
Equation (39) is introduced, which is similar to the one in [36]:

J =‖ Pi(z−1)y(k + 1)− Ri(z−1)w(k) + Qi(z−1)u(k)+Si(z−1)u(k)+Ki(z−1)vi[x(k)] ‖
2 (39)

where w(k) is a reference vector; Ri
(
z−1), Qi

(
z−1) and Ki

(
z−1) are diagonal polynomial

matrices with respect to z−1; Pi(z−1) is a weighted polynomial and Si(z−1) is a non-diagonal
polynomial matrix with respect to z−1. The Diophantine equation is introduced as shown
in Equation (40).

Pi(z−1) = Fi(z−1)Ai(z−1) + z−1Gi(z−1) (40)

Since matrix multiplication is required when solving the Diophantine equation for
multivariable systems, the concept of pseudo-commutation matrix [37] is introduced.
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There exist unique solutions, Fi(z−1) and Gi(z−1), that minimize the performance index in
Equation (39). Therefore, the optimal control rate can be represented by Equation (41):

[Fi(z−1)Bi(z−1) + Qi(z−1)]u(k) = Ri(z−1)w(k)− Gi(z−1)y(k)−

[Fi(z−1)Bi(z−1) + Si(z−1)]u(k)− [Fi(z−1) + Ki(z−1)]vi[x(k)]
(41)

By left-multiplying Equation (41) with Bi(z−1) and left-multiplying Equation (34) with
[Fi(z−1)Bi(z−1) + Qi(z−1)], we obtain Equation (42):

[Pi(z−1)Bi(z−1) + Qi(z−1)Ai(z
−1)]y(k + 1) = Bi(z−1)Ri(z−1)w(k)+

[Qi
(
z−1)Bi

(
z−1)− Bi(z−1)Si(z−1)]u(k) + [Qi

(
z−1)−

Bi(z−1)Ki(z−1)]vi[x(k)]

(42)

By left-multiplying Equation (34) with Gi(z−1) and left-multiplying Equation (41) with
Ai(z−1), we obtain the closed-loop system equation as shown in Equation (43):

{Pi(z−1)Bi(z−1) + Ai(z−1)[Qi(z−1) + Si(z−1)]}u(k) = Ai(z−1)Ri(z−1)

w(k) + [Pi(z−1) + Ai(z−1)Ki(z−1)]vi[x(k)]
(43)

In order to eliminate steady-state errors and achieve static decoupling of the system,
the following equations, as shown in Equations (44)–(46), should be satisfied when selecting
the weighting matrices Pi(z−1), Qi(z−1), Ri(z−1), Ki(z−1) and Si(z−1).

Pi(1)Bi(1) + Qi(1)Ai(1) = Bi(1)Ri(1) (44)

Qi(1)Bi(1) = Bi(1)Si(1) (45)

Qi(1) = Bi(1)Ki(1) (46)

Additionally, in order to ensure stability of the closed-loop system, it is also necessary
to meet the condition specified in Equation (47).

det{Pi(z−1)Bi(z−1) + Ai(z−1)[Qi(z−1) + Si(z−1)]} 6= 0, |z| ≥ 1 (47)

Define

Hi
(
z−1) = Fi

(
z−1)Bi

(
z−1)+ Qi

(
z−1), Ri

(
z−1) = Ri

(
z−1), Gi

(
z−1) = Gi(z−1)

Hi
(
z−1) = Fi(z−1)Bi(z−1) + Si(z−1), Ki

(
z−1) = Fi(z−1) + Ki(z−1)

The nonlinear decoupling controller can be represented by Equation (48):

Hi(z−1)u(k) = Gi(z−1)w(k)− Gi(z−1)y(k)− Hi(z−1)u(k)− Ki(z−1)vi[x(k)]} (48)

A linear decoupling controller can be obtained if the nonlinear terms are not taken
into consideration, which is represented by Equation (49):

Hi(z−1)u(k) = Gi(z−1)w(k)− Gi(z−1)y(k)− Hi(z−1)u(k) (49)

3.3. Adaptive Control Algorithm

In the equation described by Equation (34), if Ai(z−1) and Bi(z−1) are both known,
and the nonlinear part vi[x(k)] has a relatively small impact on the system, using the
generalized minimum variance control method can complete the tracking of set points.
However, during the actual operation of the plant factory, the parameters will vary with
the material properties. This requires the parameters of the controller to also change
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accordingly. Therefore, this paper uses the following identification algorithm to identify the
system parameters. Let M1i denote the linear estimation model of the system, represented
as Equation (50):

ŷ1(k + 1) = θ̂T
1i(k)φ(k) (50)

φ(k) = [y(k), . . . , y(k− ns + 1), u(k), . . . , u(k−ms)]
T (51)

where φ(k) is the input–output data vector of the system; θ̂1i(k) is the estimated value of
the parameters θ of the system obtained through parameter identification at time k. In
this paper, the projection algorithm with dead zone as shown in Equations (52) and (53) is
employed to identify the parameters in each sampling period.

θ̂1i(k) = θ̂1i(k− 1) +
µ1(k)φ(k− 1)eT

1i(k)
1 + φT(k− 1)φ(k− 1)

(52)

µ1(k) = {
1 if ‖ e1(k) ‖ > 4∆
0 else

(53)

The error value of the linear model in the equation can be represented by Equation (54):

e1(k) = y(k)− ŷ1(k) = y(k)− θ̂T
1i(k)φ(k) (54)

Suppose that, at time k, the coefficient matrices Ai(z−1) and Bi(z−1) of the system
are estimated based on the estimated model Equation (50) and the identification algo-
rithm Equation (52), respectively, and the estimates are Ah

i (z
−1) and Bh

i (z
−1). By cal-

culating the corresponding Pi(z−1), Qi(z−1), Ri(z−1) and then substituting these esti-
mates into Equation (49), the linear adaptive decoupling controller C11 can be obtained by
Equation (55):

Hi(z−1)u(k) = Gi
h
(z−1)w(k)− Gi

h
(z−1)y(k)− Hi

h
(z−1)u(k) (55)

For weak nonlinear systems, using linear adaptive controllers can achieve control
requirements. However, in the case of the microclimate environment of a plant factory
exhibiting strong nonlinearity, the numerical values of the nonlinear component vi[x(k)]
tend to be large. In such circumstances, relying solely on linear system controllers becomes
challenging to meet the control requirements. Therefore, neural network estimates are
used to estimate nonlinear terms, and linear terms are combined to approximate the
original control system. The system’s nonlinear estimation model M2i can be represented
by Equation (56):

ŷ2(k + 1) = θ̂T
2i(k)φ(k) + v̂i[x(k)] (56)

Since the nonlinear part vi[x(k)] in y(k) is an uncertain term within the system, a
high-order neural network estimation is employed to handle it. The algorithm shown in
Equations (57) and (58) is utilized to identify the parameter θ.

θ̂2i(k) = θ̂2i(k− 1) +
µ2(k)φ(k− 1)eT

2i(k)
1 + φT(k− 1)φ(k− 1)

(57)

µ2(k) = {
1 if ‖ e2(k) ‖> 4∆
0 else

(58)

The calculation error of the nonlinear model in the equation can be represented by
Equation (59):

e2(k) = y(k)− ŷ2(k) = y(k)− θ̂T
2i(k)φ(k)− v̂i[x(k)] (59)
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Based on the high-order neural network estimation of the nonlinear term vi[x(k)],
the nonlinear adaptive decoupling controller C21 can be obtained by Equation (60). The
structure diagram of the adaptive control algorithm is shown in Figure 5.

Hi

(
z−1
)

u(k) = Gi
l
(

z−1
)

w(k)− Gi
l
(

z−1
)

y(k)− Hi
l(

z−1
)

u(k)−Ki
l
(z−1)v̂i[x(k)] (60)
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3.4. Switching Control 
A linear model obtained through the identification algorithm is used for designing a 

linear controller. Nevertheless, such linear controllers frequently fall short of achieving 
desired outcomes in practical microclimate environments. Conversely, relying exclusively 
on a nonlinear model to describe the system and design a corresponding nonlinear con-
troller poses challenges in maintaining system stability throughout its operation. In fact, 
it is often difficult to determine whether the characteristics of the plant factory environ-
ment are linear or nonlinear at the current moment. Therefore, inspired by the literature 
[38], the switching control as shown in Figure 6 is introduced to ensure the stable opera-
tion of the system and to provide better control performance. The switching control strat-
egy adopted in this paper needs to switch between the generalized minimum variance 
linear controller and the nonlinear decoupling controller. The generalized minimum var-
iance linear controller is used to ensure the stable operation of the system, and the nonlin-
ear decoupling controller compensates for the nonlinear part in the model, reducing the 
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Figure 5. Schematic diagram of nonlinear adaptive decoupling control algorithm.

3.4. Switching Control

A linear model obtained through the identification algorithm is used for designing
a linear controller. Nevertheless, such linear controllers frequently fall short of achieving
desired outcomes in practical microclimate environments. Conversely, relying exclusively
on a nonlinear model to describe the system and design a corresponding nonlinear con-
troller poses challenges in maintaining system stability throughout its operation. In fact, it
is often difficult to determine whether the characteristics of the plant factory environment
are linear or nonlinear at the current moment. Therefore, inspired by the literature [38],
the switching control as shown in Figure 6 is introduced to ensure the stable operation
of the system and to provide better control performance. The switching control strategy
adopted in this paper needs to switch between the generalized minimum variance linear
controller and the nonlinear decoupling controller. The generalized minimum variance
linear controller is used to ensure the stable operation of the system, and the nonlinear
decoupling controller compensates for the nonlinear part in the model, reducing the impact
of unmolded nonlinear parts on the output and achieving an excellent control performance
of the system.

The linear model contained in the switching mechanism in the figure is represented
by Equation (61):

ŷ1(k + 1) = Ai(z−1)y(k) + Bi(z−1)u(k) + Bi(z−1)u(k) (61)

The nonlinear model contained in the switching control in the figure is represented by
Equation (62):

ŷ2(k + 1) = Ai(z−1)y(k) + Bi(z−1)u(k) + Bi(z−1)u(k) + v̂i[x(k)] (62)
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Selecting a suitable switching function allows the system to select the optimal control
method based on the current system characteristics at time k. The switching mechanism is
represented by Equations (63)–(65):

Ji(k) = ∑n
i=1

µi(l)[e2
i (l)− 16∆2]

1 + φ(l − 1)Tφ(l − 1)
+ α∑k

l=k−N+1 [1− µi(l)]e2
i (l) (63)

µi(k) = {
1 if |ei(k)| > 4∆
0 else

(64)

ei(k) = y(k)− ŷi(k) (i = 1, 2) (65)

In the equation, N is a positive integer, α is a positive constant, e1(k) is the error value
of the linear model and e2(k) is the error value of the nonlinear model. When the value of
i is 1, a linear controller is used to predict the system output, and when the value of i is 2,
a nonlinear controller is used to estimate the system output. During this process, model
parameters are automatically renewed by the identification algorithm mentioned above.
When the system starts to operate, J1(k) and J2(k) are calculated in turn, and the controller
corresponding to the minimum is selected to act on the controlled object.

3.5. High-Order Neural Network for Unmolded Dynamics

High-order neural network (HONN) is a type of neural network that can approxi-
mate the given nonlinear function with arbitrary accuracy within a specified compact set.
Compared with neural networks that only have summing units between layers and require
increasing the number of intermediate nodes to solve nonlinear problems, HONN has fewer
hidden layer nodes and fewer parameters to be adjusted when estimating non-limiting
terms. Therefore, this article chooses HONN for the controller design. The structure of
HONN can be represented by Equations (66)–(69):

Gnn(W, z) = WTψ(z), W ∈ Rl×n ψ(z) ∈ Rl (66)

ψ(z) = [ψ1(z), ψ2(z), . . . ψl(z)]
T (67)
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z = [z1, z1, z1 . . . zl ]
T ∈ Ωz ⊂ Rq (68)

ψi(z) = ∏j∈Ii

[
ψ
(
zj
)]µj(i) (i = 1, 2, 3 . . . l) (69)

where Gnn(W, z) is the output of the neural network; W is the weight of the neural network;
z is the input of the neural network; l is the number of hidden layer nodes of the neural
network; q is the number of input values of the neural network; {Ii} is the unordered
subset of {1, 2, 3 . . . q}; µj(i) is a non-negative integer; and ψ(zj) is the S function.

For any nonlinear function, there exists an ideal weight matrix W* that yields the
output of the neural network in the form depicted by Equation (70).

Gnn(W, z) = W∗Tψ(z) + ζz (70)

where ζz is the estimation error of the neural network. The estimation error of the neural
network can be reduced by gradually increasing the number of network nodes, and ζz can
approach zero when l is sufficiently large. For all z ∈ Ωz ⊂ Rq, there exists an ideal matrix
represented by Equation (71) that minimizes ‖ ζz ‖, namely:

W∗ = arg min
W∈Ωw

{ sup
z∈Ωz

|G(z(k))−WTψ(z(k))|} Ωz ∈ Rq, Ωw ∈ Rl×q (71)

In this paper, the nonlinear term vi[x(k)] can be presented by Equation (72):

v̂i[x(k)] = W∗Tψ(z) + ζz

= arg min
W∈Ωw

{ sup
z∈Ωz

|G(z(k))−WTψ(z(k))|}T
ψ(z) + ζz Ωz ∈ Rq, Ωw ∈ Rl×q (72)

4. Simulation Results

This paper focuses on the microclimate environment of a plant factory and takes sweet
peppers as the experimental subject to carry out a set-point tracking experiment, parameter
uncertainty experiment and multi-disturbance experiment. To validate the robustness
and adaptability of the control algorithm proposed, a nonlinear adaptive decoupling
controller is adopted to control the internal environment of the factory. Nonlinear adaptive
decoupling controllers are used to control the internal environment of the plant factory to
verify the robustness and adaptability of the proposed control algorithm.

Sweet peppers are widely cultivated worldwide due to their high nutritional and
economic value. The principles for setting the temperature and humidity during the
cultivation process in the plant factory are as follows.

(1) Significant temperature differences for the microclimate environment can promote
thicker stems, denser leaves, increased leaf area, and improved absorption and utiliza-
tion of light energy by plants. In general, higher temperatures during the daytime
are beneficial for photosynthesis and nutrient absorption, promoting energy accu-
mulation and plant growth. Lower temperatures at night help plants to respire,
distribute nutrients, enhance root growth, boost metabolic activity and strengthen
their disease resistance.

(2) Crop humidity requirements vary at different growth stages. Higher humidity is
needed during seed germination and seedling stages, and it can gradually be reduced
as crops grow and develop.

(3) From an energy utilization perspective, control systems should operate at a reasonable
level that meets environmental demands. Excessive high or low temperatures, as well
as excessive high or low humidity, can increase equipment load and operational costs.

In this paper, the ripening stage of sweet peppers is considered in the experiment. It
is important to avoid excessively high or low temperatures. When the temperature drops
below 13 ◦C or exceeds 32 ◦C, it is not conducive to crops development. The optimal range
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of humidity during the ripening stage for crops development is 60–70%. The temperature
and humidity settings for simulating the growing environment of the crops throughout
a 24 h period are presented in Table 2. The 24 h period was divided into 10 segments
for conducting simulation experiments. Set-point tracking experiments are conducted
from 06:00 a.m. to 20:00 p.m. Parameter uncertainty experiments and multi-disturbance
experiments are implemented from 20:00 p.m. to 06:00 a.m. The experimental design is
as follows.

Table 2. 24 h Setting values of temperature and humidity for plant factory.

Time Temperature (◦C) Relative Humidity (%)

00:00–06:00 15 60
06:00–07:00 20 65
07:00–08:00 20 60
08:00–09:00 26 70
09:00–10:00 28 70
10:00–12:00 30 70
12:00–14:00 28 65
14:00–16:00 23 70
16:00–18:00 20 60
18:00–24:00 15 60

From 06:00 a.m. to 07:00 a.m., the internal temperature of the factory is set to 20 ◦C,
and the relative humidity is set to 65%. During this period, the air conditioner blows
out warm air (u1), and the humidifier (u3) works. From 07:00 a.m. to 08:00 a.m., the
temperature setting inside the factory remains unchanged, and the relative humidity is
set to 60%. During this period, the air conditioner still blows out warm air (u1), and the
dehumidifier (u4) works. From 08:00 a.m. to 12:00 a.m., the temperature set values are
increased gradually from 26 ◦C to 30 ◦C, and the relative humidity is set to 70%. At this time,
the air conditioner blows warm air (u1), and the humidifier (u4) works. From 12:00 a.m. to
16:00 p.m., the temperature set value drops from 28 ◦C to 23 ◦C, and the relative humidity
drops from 70% to 65% and then returns to 70%. During this process, the air conditioner
exhales cold air into the plant factory (u2), and the dehumidifier (u4) and humidifier (u3)
worked from 12:00 a.m. to 14:00 p.m. and 14:00 p.m. to 16:00 p.m., respectively. From
16:00 p.m. to 06:00 a.m., the relative humidity inside the plant factory is set to 60%, and
the temperature gradually decreases from 23 ◦C to 15 ◦C. At this time, the air conditioner
blows cold air into the plant factory (u2), and the dehumidifier (u4) works continuously.

After the system reaches steady operation, parameter uncertainty experiments are
implemented. At 20:00, the heat transfer coefficient (cr) of the PVC panels is changed to
verify if the system can quickly regain stability. To assess the control performance of the
system under multi-disturbances, the plant factory undergoes a simulation of ventilation
operation where air from the outside is introduced into the facility from 00:00 a.m. to
06:00 a.m. The ventilation rate (q f ), outside temperature (Tout) and outside humidity (Hout)
are set to random values within a certain range to simulate the multi-disturbances in
actual situations.

The parameters of the controller are designed as follows: After Euler transforma-
tion, the initial operating point is: A11(z) = (0.1038z− 0.1038)/(z2 − 1.9985z + 0.9985),
A12(z) = (−0.002841z+ 0.002837)/(z2− 1.9985z+ 0.9985), A21(z) = (0.03792z− 0.03792)/
(z2 − 1.9985z + 0.9985), A22(z) = (0.02841z− 0.02837)/(z2 − 1.9985z + 0.9985). The order
of the system is: na = 2, nb = 2. The parameters of the nonlinear adaptive decoupling
controller are set as follows: the number of hidden layers is 12. The parameters of the
switching mechanism are α = 1 and ∆ = 0.01.

For comparison, the traditional PID control method is adopted. The control effect
of temperature tracking using the traditional PID control strategy is shown in Figure 7,
and the control result of temperature using the traditional PID control strategy in parame-
ter uncertainty experiment and multi-disturbance experiment is shown in Figure 8. The
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control effect of humidity tracking using the traditional PID control strategy is shown
in Figure 9, and the control result of humidity using the traditional PID control strat-
egy in parameter uncertainty experiment and multi-disturbance experiment is shown in
Figure 10. Figures 11–14 show the corresponding responses of control inputs using the
traditional PID control strategy. The control effect of temperature tracking effect by nonlin-
ear adaptive decoupling control strategy is shown in Figure 15, and the control result of
temperature by nonlinear adaptive decoupling control strategy in parameter uncertainty
experiment and multi-disturbance experiment is shown in Figure 16. The control effect of
humidity tracking by nonlinear adaptive decoupling control strategy is shown in Figure 17,
and the control result of humidity by nonlinear adaptive decoupling control strategy in
parameter uncertainty experiment and multi-disturbance experiment is shown in Figure 18.
Figures 19–22 show the responses generated by the control inputs when using a nonlinear
adaptive decoupling control strategy.
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Figure 20. Volume flow rate of cold air (u2) under the nonlinear adaptive decoupling control strategy.
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As observed from Figures 7–10, it is evident that the traditional PID control exhibits
considerable fluctuations, and the tracking effect is not good. Additionally, when the
temperature and humidity change, the tracking time is relatively prolonged and some-
times there exists a steady-state error. Furthermore, the temperature has a substantial
overshoot and takes a considerable amount of time to return to the steady state when the
parameter changes. Moreover, the system shows larger fluctuations when subjected to
multi-disturbances.

From Figures 15–18, it shows that by using the nonlinear adaptive decoupling control
strategy proposed in this paper, the tracking time is significantly shortened, and the
fluctuations in humidity are noticeably reduced when the temperature set point is changed.
Similarly, when the humidity set point is adjusted, the system demonstrates the ability
to promptly track the new set point, while minimizing the impact on temperature. This
achieves a good decoupling effect. In the case of parameter uncertainty, the temperature
and humidity values exhibit smaller overshoots and can quickly recover the set point
during this period. When facing multi-disturbances, the temperature and humidity values
fluctuate within a small range around the set point. Therefore, adopting the nonlinear
adaptive decoupling control strategy can mitigate the effects of uncertainty on the system.

In a plant factory, the control system plays a vital role in regulating environmental
parameters. Through control system optimization, timely activation of temperature and
humidity regulation, devices can respond to the plant’s growth requirements and exter-
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nal environmental changes, while minimizing energy consumption. The control system
self-adjusts to prevent unnecessary continuous operation once the system reaches the
desired set point. Experimental results demonstrate that employing a high-order neural-
network-based nonlinear adaptive decoupling control strategy reduces equipment working
time compared to the traditional PID control method. The equipment can reach the set
point more quickly. Moreover, under the influence of parameter uncertainties and multi-
disturbance, the high-order neural-network-based nonlinear adaptive decoupling control
strategy minimizes control variable fluctuations, mitigating the occurrence of excessively
high or low temperatures and alleviating the equipment burden. In summary, employing a
high-order neural-network-based nonlinear adaptive decoupling control strategy enables
achieving desired control effects more efficiently, leading to reduced operational costs and
equipment energy consumption.

To assess the control performance of both the traditional PID method and the proposed
nonlinear adaptive decoupling control, the mean error and standard error are introduced
as evaluation metrics. Table 3 shows the control results of the two controllers for the
environmental temperature and humidity under different conditions. Through comparison,
the proposed nonlinear adaptive decoupling control exhibits smaller numerical values in
both evaluation metrics.

Table 3. Comparison of control performance between traditional PID method and nonlinear adaptive
decoupling control method.

Methods
Temperature Error (◦C) Humidity Error (kg/kg)

Mean Standard Mean Standard

Conventional PID 0.3615 0.8425 0.1475 0.4410
Nonlinear adaptive decoupling control 0.1655 0.6665 0.0221 0.1541

The feasibility and adaptability of the proposed control algorithms in a plant factory
have been confirmed through experiments that track the set values of temperature and hu-
midity, experiments with parameter uncertainties and experiments with multi-disturbances.
Precise regulation of temperature and humidity in complex situations that may arise in
a plant factory enables the provision of optimal growth conditions, meets different crop
requirements for environmental temperature and humidity, promotes healthy growth and
increases yields. This regulation also eliminates limitations imposed by natural environ-
mental conditions on crop production. Additionally, it can optimize the production cycle of
crops by controlling temperature and humidity variations at different stages. This allows
for the acceleration or delay of plant growth and development, as well as the advancement
or postponement of harvest time. This eliminates seasonal and geographical restrictions,
resulting in more stable and sustainable agricultural production. Overall, a plant factory
serves as essential components of smart agriculture and holds significant potential for
sustainable agricultural development. They provide an efficient, resource-saving and
high-quality agricultural production mode through the implementation of innovative
technologies and environmental control methods.

5. Conclusions

This paper specifically investigates a plant factory environment system that is charac-
terized by nonlinearity, strong coupling and multiple disturbances. Based on the energy
balance, a nonlinear dynamic equation describing the temperature and humidity environ-
ment model of the plant factory is established, and corresponding control methods are
introduced. A nonlinear adaptive decoupling control strategy using high-order neural
network is proposed, which utilizes the powerful learning abilities of the high-order neu-
ral network to address nonlinear functions, so that the system can reduce nonlinearity
impact on system. To meet the requirements of temperature and humidity regulation, a
generalized minimum variance controller is designed. The mean error and standard error
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of the traditional controller for temperature control are 0.3615 and 0.8425, respectively.
In contrast, the proposed control strategy has made significant improvements in both
indicators, with results of 0.1655 and 0.6665, respectively. For humidity control, the mean
error and standard error of the traditional controller are 0.1475 and 0.441, respectively. In
comparison, the proposed control strategy has greatly improved on both indicators, with
results of 0.0221 and 0.1541, respectively. The simulation results show that this control
strategy can achieve tracking of the set value in a short time and has good robustness
and adaptability. Simultaneously, in the case of parameter uncertainty and encountering
multi-disturbances, the system exhibits less overshoot and only shows minor fluctuations.
Therefore, the proposed method enables accurate regulation of microclimate environmental
factors within a plant factory to fulfill the growth requirements of crops, consequently
enhancing crop productivity and quality.
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