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Abstract: With the explosive growth of micro-video applications, the transmission burden of fronthaul
and backhaul links is increasing, and meanwhile, a lot of energy consumption is also generated.
For reducing energy consumption and transmission delay burden, we propose a cell-free massive
multiple-input multiple-output (CF-mMIMO) system in which the cache on the access point (AP)
is used to reduce the load on the link. In this paper, a total energy efficiency (EE) model of a cache-
assisted CF-mMIMO system is established. When optimizing EE, forming the co-operation cluster
is critical. Therefore, we propose an energy-efficient joint design of content caching, AP clustering,
and low-resolution digital-to-analog converter (DAC) in a cache-assisted CF-mMIMO network based
on deep reinforcement learning. This scheme can effectively cache content in APs and select the
appropriate DAC resolution. Then, taking into account the channel state information and user
equipment (UE)’s content request preference, a deep deterministic policy gradient algorithm is used
to jointly optimize the cache strategy, AP clustering, and DAC resolution decisions. Simulation results
show that the energy efficiency of the proposed scheme is 4% higher than that of other schemes
without the resolution optimization and is much higher than that of the only AP clustering without
the joint design of content caching and channel quality.

Keywords: content caching; cell-free massive MIMO; energy efficiency; deep deterministic policy
gradient algorithm

1. Introduction

Due to the rapid development of smart devices such as smart phones, smart watches,
smart robots, and drones, mobile data traffic on wireless networks has experienced ter-
rible growth. IDC estimates that by 2023, there will be 48.9 billion connected devices
worldwide [1]. Such a large number of devices will not only generate exabytes of data but
will also require massive amounts of content, which will create unprecedented challenges
in the upcoming communications field. The capacity of a backhaul link has become the
bottleneck of a data-intensive network, and it is necessary to find an efficient way to reduce
the backhaul link load to meet the rapidly growing demand for mobile communication.

Caching is a well-known technique used to improve the performance of numerous
wired networks, such as content-centric networks [2–4]. In cellular networks, caching
frequently requesting content at the edge of the network can reduce backhaul costs, reduce
access latency and power consumption, and increase throughput. In [5], it is proposed
to replace the backhaul link by caching on base stations (BSs). By optimizing the cache
strategy, it is possible to serve more users within the limits of download time, which
significantly increases throughput. In [6], the caching in the BS can lighten the backhaul
traffic load. In order to minimize the overall energy consumption attributed to cache and
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data transmission including inter-BS and BS-to-server communications, Ref. [7] optimizes
the allocation of cache sizes for BSs and service gateways. With the goal of reducing the
overall energy consumption of the service, the caching strategy is fine-tuned in [8], where
the influence of multicast transmission is considered.

At the same time, to cater to the rising need for traffic data, more and more antennas
of base stations and smaller and smaller cell radius will inevitably cause more and more
inter-cells interference. To tackle this issue, many research efforts have been made to di-
minish inter-cell interference [9,10]. Two primary approaches exist: massive multiple-input
multiple-output (mMIMO) systems [11] and distributed systems [12]. Within mMIMO
systems, BS utilizes the spatial multiplexing yielded by an extensive array of antennas.
These antennas are coupled with precoding techniques that can substantially and efficiently
mitigate both intra-cell and inter-cell interference among user equipment (UEs). Nonethe-
less, the uniformity of service quality across all terminals is not guaranteed by the system.
The terminal near the BS can enjoy better service due to good channel conditions, while the
terminal located at the edge of the cell can only get inadequate quality of service. Within a
distributed system, multiple BSs or access points (APs) collaborate by exchanging service
data and channel state information (CSI), aiming to minimize inter-cell interference. But
distributed systems remain centered around individual cells. Multi-cell collaboration essen-
tially extends the coverage of a single cell. Edge effects continue to impact UE positioned
at the periphery of the cell. Therefore, the cell-free massive multiple-input multiple-output
(CF-mMIMO) technique has been introduced [13,14], which combines the strengths the
aforementioned two systems, namely robust interference cancellation and macro diversity
gain. Additionally, it has made some enhancements: (1) It shifts from a cell-centric service
model to a UE-centric service model, allowing for potential overlap between distinct AP
clusters. (2) There exists a substantial number of APs, wide coverage, and APs are closer to
the terminal. Thus, it completely eliminates the concept of a cell.

The essence of the CF-mMIMO system is that the mMIMO system moves the AP
closer to the terminals through the integration of fronthaul links and a more frequent
utilization of the backhaul links. This will cause a sharp increase in the link load in the
CF-mMIMO system, which inevitably results in elevated energy consumption. Therefore,
traffic congestion in the fronthaul/backhaul link and high transmission energy consump-
tion constitute the bottlenecks that impede the practical implementation of CF-mMIMO
systems. The content caching technology proactively stores data in the cache device and
directly transmits the data to the terminal during peak hours without the need to obtain
data from the central processing unit (CPU) and core network via the fronthaul/backhaul
link. Because the requested content is concentrated in a limited number of popular files [15],
the cost associated with its caching is diminishing [16], so content caching proves to be a
cost-effective and effective technique in lessening the burden on the link. Building upon this
notion, a cache-assisted CF-mMIMO system is introduced in [17]. Moreover, we proposed
energy-efficient content of a data caching strategy in CF-mMIMO systems in [18], but only
research ideas were provided without experimental validation. Therefore, its total energy
efficiency (EE) maximization problem is non-deterministic polynomial-hard (NP-hard)
and necessitates solutions through inefficient and non-scalable methods. Additionally,
researchers have started to consider the joint optimization of user association and caching
strategies [19–21]. For example, in [19], the high-density satellite-UAV-terrestrial network
scenario is considered, and the initial combination optimization problem is effectively
solved using game theory and genetic algorithm for clustering and cache placement, re-
spectively. In [20], for a CF-mMIMO-assisted vehicle edge network, a Deep-Q-Network
(DQN) algorithm was proposed to optimize the cache decision for improving the network
capacity and content delivery performance. Moreover, two deep reinforcement learning
(DRL) methods, single-agent reinforcement learning and multi-agent reinforcement learn-
ing, were proposed to solve the joint optimization problem of user association and content
cache in CF-mMIMO in [21]. However, most existing research focuses on content caching
strategies in edge caching, without considering AP clustering strategies.
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On the other hand, a substantial quantity of modules of high-resolution analog-to-
digital converters (ADCs) and digital-to-analog converters (DACs) generate a lot of power
consumption. To avoid this, it is recommended to use low-resolution ADCs (1–3 bits)
in CF-mMIMO networks. This trade-off reduces power consumption while sacrificing
spectral efficiency (SE). The work of [22] shows that low-resolution ADCs have better EE
than high-resolution ADCs in the uplink of CF-mMIMO systems.

Creating a practical model for the total EE of a cache-assisted CF-mMIMO system,
one that is both straightforward to calculate and analyze, while also being amenable to
effective optimization, poses a significant challenge. To date, little research has been
conducted on cache-assisted CF-mMIMO systems with cache assistance, which encourages
the development of this study. The primary contributions of this paper can be outlined as
follows:

• In this paper, a new total EE model of a cache-assisted CF-mMIMO system is estab-
lished, which has the following advantages: the introduction of low-resolution DAC
can improve EE; UE-centric cache deployment can provide a better user experience;
and considering the influence of different resolution converters on EE, it is more
suitable for practical use;

• A deep deterministic policy gradient (DDPG) algorithm is proposed to solve the joint
optimization problem of content cache, AP clustering, and DAC resolution, and it can
find the global optimal decision for maximizing the EE performance in cache-assisted
CF-mMIMO networks;

• We compare and discuss the influence of DAC resolutions, the numbers of UEs, and
APs on the EE performance. Moreover, the proposed DDPG method is compared
with the benchmark methods, such as clustering based on signal-to-interference noise
ratio (SINR) and caching strategies based on content popularity. By exploiting the
intelligent design, its EE is not only significantly better than the benchmark (BM)
methods but also better than the DDPG method based on the joint content cache and
AP clustering.

The rest of the paper is organized as follows. In Section 2, we give a model for the
cache-assisted CF-mMIMO system. In Section 3, we propose the total EE model of the
cache-assisted CF-mMIMO system and formulate the optimization problem. In Section 4,
we present an approach based on DRL. The simulation results and discussion are provided
in Section 5. Conclusively, we summarize this paper in Section 6.

2. System Model

In this section, the signal model, cache model, and DAC resolution model of the
cache-assisted CF-mMIMO network are introduced. For the signal model, it describes the
transmitted signal in the cache-assisted CF-mMIMO network’s downlink channel. For the
cache model, a content cache mechanism is outlined to enhance the network’s EE. For the
low-resolution DAC model, the power consumption generated with different resolutions
and the effect on the signal transmission are explained.

2.1. Signal Model

Figure 1 depicts an example topology of a dynamic collaborative cluster serving UE in
a cache-assisted CF-mMIMO network. We consider a downlink CF-mMIMO, i.e., a cache-
assisted CF-mMIMO system encompassing of M single-antenna AP and K single-antenna
UE. Every AP is linked to the CPU via a fronthaul link, while the CPU itself connects to the
core network via backhaul links. All APs and UEs are distributed randomly across Sa area.
And we only focus on downlink transmissions in this paper.
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Figure 1. Caching-assisted cell-free massive MIMO model. 
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Figure 1. Caching-assisted cell-free massive MIMO model.

In time-division duplex (TDD) mode, all APs provide identical time/frequency re-
sources to each terminal. Let the channel linking the m-th AP and the k-th UE be

gmk = (dmk/d0)
−αhmk (1)

where dmk denotes the distance between the m-th AP and the k-th UE, d0 = minm,kdmk is
the reference distance, α represents the path-loss exponent (α ≥ 2), and hmk ∼ CN (0, 1)
denotes small-scale fading.

Let <k denote the set of APs serving the k-th UE and Cm represent the set of UE served
by the m-th AP. We make the assumption that each UE is ensured service from no more
than L(L < M) APs (i.e., |<k| ≤ L, ∀k). Therefore, the AP set for all services and the UE set
for all services can be represented as < = ∪K

k=1<k and C = ∪M
m=1Cm, respectively. Let qk

be a symbol emitted in the service AP for the k-th UE, where E[
∣∣qk
∣∣2] = 1 ,E[qk] = 0, ∀k and

E[qkq∗l ] = 0, ∀k 6= l (i.e., the symbols of distinct UE are not related). Then, the transmitted
signal of the m-th AP can be expressed as [14]

xm = ∑
k∈Cm

√
pmk ĝ∗mkqk (2)

where pmk signifies the power assigned to the k-th UE at the m-th AP subject to power
constraints, E[

∣∣xm
∣∣2] ≤ Pm is constrained by the maximum power Pm transmitted by the

m-th AP, and ĝmk denotes the channel estimation gmk at the m-th AP. This paper considers
perfect CSI (i.e., ĝmk = gmk, ∀m, k).

Accordingly, the k-th UE’s received signal can be expressed as [23]

rk = ∑
m∈<

gmkxm + wk

= ∑
m∈<k

gmkxm + ∑
m∈<c

k

gmkxm + wk

= ∑
m∈<k

∑
k′∈Cm

√
pmk′gmk ĝ∗mk′qk′ + ∑

m∈<c
k

gmkxm + wk

= ∑
m∈<k

√
pmkgmk ĝ∗mkqk︸ ︷︷ ︸

useful signal

+ ∑
m∈<k′

∑
k′∈C,k′ 6=k

√
pmk′gmk ĝ∗mk′qk′ + wk︸ ︷︷ ︸

interference plus noise

(3)
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where wk ∼ CN (0, σ2
w) signifies the noise at the k-th UE, and <c

k = <\<k is the other AP
set that does not serve the k-th UE.

2.2. Caching Model

We consider a limited file library CF = {c f1, c f2, · · · , c fF} with F content files. Let
CFm ⊂ CF be the set of content files cached in the m-th AP. Additionally, we make the
assumption that each AP has the capacity to cache a maximum of N(N < F) files, denoted
as |CFm| ≤ N, ∀m. Each UE makes content file requests independently or abandons the
request. The content file for the k-th UE request is represented by c fk ∈ CF, where c fk is
determined by the content preference vector for the k-th UE (arranged in descending order
of preference for all content files) and the distribution of content popularity (specified with
the Zipf distribution). To be more specific, in the content preference vector of the k-th UE,
the probability that c fk equals the content file of the i-th rank is i−β/∑F

j=1 j−β, where β is
the Zipf factor; Usually, set to β = 0.5, 1, 2. Each UE possesses a different, independent, and
time-invariant content preference vector.

We use Hmk to define the event that the content file requested by the k-th UE is cached
on its m-th service AP, i.e., c fk ∈ CFm, m ∈ <k. Therefore, the matching event of the k-th
UE Hk indicates that the file requested by the k-th UE is cached across all APs serving the
k-th UE, i.e., c fk ∈ CFm, ∀m ∈ <k. In case of a miss, there exist certain m ∈ <k APs that do
not cache the file of the k-th UE, i.e., c fk /∈ CFm, ∃m ∈ <k. In such scenarios, these APs will
necessitate requesting the content file c fk from the CPU/core network for joint AP transfer.
The network’s hit ratio is denoted as H = ∑k∈C 1Hk /|C|, where 1Hk signifies the indicator
function, and it is set to be 1 if the Hk event occurs; otherwise, it is set to 0.

2.3. Low-Resolution DAC Model

We adopt a low-resolution DAC with a binary-weighted current-oriented topology,
whose power consumption is composed of both static and dynamic components. The
power consumption of a DAC module with a resolution of b can be given as [24,25]

PDAC(b, Fs) = 1.5× 10−5 · 2b + 4.5× 10−12 · b · Fs (4)

where Fs is the sampling frequency.
Each AP’s antenna is connected to a low-resolution DAC, and the resulting signal has

α ∈ [0, 1] linear gain. Therefore, the transmitting signal of the m-th AP given in (2) is now
modified as

xm = αm ∑
k∈Cm

√
pmk ĝ∗mkqk (5)

where αm represents the linear gain of the m-th AP, and its expression is [22,26]

αm =


0.6366 , bm = 1
0.8825 , bm = 2

1− (π
√

3/2) · 2−2bm , bm ≥ 3
(6)

The received signal of k-th terminal provided by (3) is rewritten as

rk = ∑
m∈<k

αm
√

pmkgmk ĝ∗mkqk︸ ︷︷ ︸
useful signal

+ ∑
m∈<k′

αm ∑
k′∈C,k′ 6=k

√
pmk′gmk ĝ∗mk′qk′ + wk︸ ︷︷ ︸

interference plus noise

(7)
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3. The EE Model and Problem Formulation
3.1. The System Sum Rate

According to the Shannon theory, the achievable rate of the k-th UE can be expressed as

Rk = B log2

1 +

∣∣∣∣∣ ∑
m∈<k

αm
√

pmkgmk ĝ∗mk

∣∣∣∣∣
2

∑
k′∈C,k′ 6=k

∣∣∣∣∣ ∑
m∈<

αm
√

pmk′gmk ĝ∗mk′

∣∣∣∣∣
2

+ |wk|2

 (8)

where B is the bandwidth. Therefore, the overall achievable rate of the considered cache-
assisted CF-mMIMO network is given using

Rsum = ∑
k∈C

Rk (9)

3.2. Power Consumption

The overall power consumption of the network consists of four parts: (1) the transmis-
sion power of all service APs; (2) power consumption of DAC in all service APs; (3) the
power required by the AP to recover the lost content file from the CPU; and (4) the power
needed by the CPU to recover the lost content from the core network.

For (1), the total transmitted power of all service APs is represented by ∑m∈< Pm. For
(2), the sum of DAC power consumption in all service APs is given using ∑m∈< Pm

DAC,
where Pm

DAC indicates the power consumption of the DAC module with bm resolution
selected using the m-th AP.

For (3) and (4) in cache-assisted CF-mMIMO systems, all APs within a cluster must
concurrently transmit identical content to the terminal. Cache deployment results in three
scenarios are illustrated in Figure 2: (a) Every AP within the cluster has deployed the
required content. (b) Only some APs have deployed the required data. c) None of the APs
deployed the required content. In Scenario (a), no content is conveyed through either the
fronthaul or backhaul link. In Scenario (b), certain APs are required to transmit content via
the fronthaul link. In Scenario (c), all content is transmitted to the AP via the backhaul link
of the core network and the fronthaul link of the CPU.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 18 
 

 

2；7；9

2；4；5

2；6；8

2

Core
network

5；2；6

5；6；3

2；6；9

5

Core
network

7；5；3

3；4；6

1；3；7

8

Core
network

AP UE CPU Cache request

Fronthaul

Backhaul

Used

a b
c

 

Figure 2. Three scenarios in which content is requested during transmission.Green ar-

rows represent the access link between APs and UEs, red arrows represent the back-

haul/fronthaul links between the core network and CPU or APs and CPU. 

The fronthaul link is utilized for content transmission between the AP and the CPU, 

its power consumption is proportional to the cumulative SE sum, and its expression is [27] 

,

m

bh m bh k

k

P E R


=  , 
(10) 

where bhE  indicates the energy consumed for transmitting 1 Mbit of data over the fron-

thaul link. 

The m-th AP is used to transmit data 1 2, , Kq q q  via a fronthaul/backhaul link be-

tween the CPU and core network. Therefore, the fronthaul/backhaul power consumption 

depends on the SE, 1 2SE ,SE , SEK  . If the m-th AP serves only specific UEs, it merely 

transmits data related to these UEs. Therefore, the power consumption for the fron-

thaul/backhaul is contingent solely on the SE of these UEs. As shown in Figure 2, the cache 

power consumption is calculated with the user as the center, so the fronthaul power con-

sumption of the k-th cluster can be represented as 

,bh k bh kP E R= . (11) 

Similarly, the backhaul power generated by the k-th cluster’s backhaul link for trans-

ferring data between the core network and the CPU can be expressed as 

,bb k bb kP E R= , (12) 

where bbE
 indicates the energy consumed for transmitting 1 Mbit of data over a back-

link. Therefore, the power uploaded via the AP to the CPU in the k-th cluster can be rep-

resented as 

,

,

0 other

1

s

k

miss

kbh k mk
up

h k
m

b

P H
P 

 


= 






 ， 0

    ， 

, (13) 

Figure 2. Three scenarios in which content is requested during transmission.Green arrows represent
the access link between APs and UEs, red arrows represent the backhaul/fronthaul links between the
core network and CPU or APs and CPU.
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The fronthaul link is utilized for content transmission between the AP and the CPU,
its power consumption is proportional to the cumulative SE sum, and its expression is [27]

Pbh,m = Ebh ∑
k∈Cm

Rk (10)

where Ebh indicates the energy consumed for transmitting 1 Mbit of data over the fronthaul link.
The m-th AP is used to transmit data q1, q2, · · · qK via a fronthaul/backhaul link be-

tween the CPU and core network. Therefore, the fronthaul/backhaul power consumption
depends on the SE, SE1, SE2, · · · SEK. If the m-th AP serves only specific UEs, it merely
transmits data related to these UEs. Therefore, the power consumption for the fron-
thaul/backhaul is contingent solely on the SE of these UEs. As shown in Figure 2, the
cache power consumption is calculated with the user as the center, so the fronthaul power
consumption of the k-th cluster can be represented as

Pbh,k = EbhRk (11)

Similarly, the backhaul power generated by the k-th cluster’s backhaul link for trans-
ferring data between the core network and the CPU can be expressed as

Pbb,k = EbbRk (12)

where Ebb indicates the energy consumed for transmitting 1 Mbit of data over a backlink.
Therefore, the power uploaded via the AP to the CPU in the k-th cluster can be represented as

Pup
bh,k =

 Pbh,k , 0 < ∑
m∈<k

∣∣Hmiss
mk

∣∣/|<k| < 1

0 , others
(13)

where Hmiss
mk = |1− Hmk| represents the event that the UE content request provided by the

m-th AP is not cached on the m-th AP. The value is 1 if the event Hmiss
mk occurs, but it is 0

otherwise.
The energy consumption associated with the content requested by the AP from the

CPU in the k-th cluster can be expressed as

Pdown
bh,k = Pbh,k ∑

m∈<k

∣∣∣Hmiss
mk

∣∣∣ (14)

The backhaul power generated by the k-th cluster requesting content from the core
network can be denoted as

Pdown
bb,k = Pbb,k

⌊
∑

m∈<k

∣∣∣Hmiss
mk

∣∣∣/|<k|
⌋

(15)

Therefore, the fronthaul/backhaul power consumption of the k-th cluster can be
expressed as

PB,k = Pup
bh,k

+ Pdown
bh,k

+ Pdown
bb,k

(16)

So, the overall energy consumption can be expressed as

Ptotal = ∑
m∈<

(Pm + Pm
DAC) +

K

∑
k=1

PB,k (17)
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3.3. Problem Formulation

Our aim is to find a strategy that determines the AP clustering with <1,<2, · · · ,<K,
as well as the AP’s content cache CF1, CF2, · · · , CFM and its DAC resolution b1, b2, · · · , bM,
in order to maximize the system’s EE. The optimization problem can be expressed as

max Rsum
Ptotal

s.t. (C1) : |<k| ≤ M, ∀k ∈ C,
(C2) : |CFm| ≤ L, ∀m ∈ <,
(C3) : bm ∈ N+, ∀m ∈ <.

(18)

where constraint (C1) indicates that the count of APs within the AP cluster of each UE
cannot exceed the maximum number of connections M. Constraint (C2) requires that the
amount of content cached on each AP must not exceed its maximum capacity number L.
Constraint (C3) means that the resolution of each DAC is a positive integer.

To maximize the EE performance, the design for trade-offs is needed. First, AP clusters
based on channel quality and high-resolution DAC can select better channels to get the best
SE. In contrast, an AP cluster based entirely on cached content and low-resolution DAC
can avoid the energy consumption of the fronthaul/backhaul link, reducing the energy
consumption of the DAC module. In addition, in large networks, solving this issue is
complicated due to the large number of APs and UEs. To solve this problem, we developed
deep reinforcement learning-based content caching, AP clustering, and DAC resolution
co-selection strategies, which will be elaborated upon in the Section 4.

4. Deep Reinforcement Learning Method

In this section, we will describe how the DDPG algorithm solves the combined predica-
ment of AP clustering, caching, and selecting DAC resolution. Three basic components
(action, state, and reward) are defined in reinforcement learning (RL) problems.

4.1. Action, State, and Reward

In slot t, action at encompasses the processes of clustering, caching, and selecting reso-
lution. Let amk,t ∈ {0, 1}, amc f ,t ∈ {0, 1}, and amb,t ∈ {0, 1} represent the status of m-th AP
and k-th UE service, the cf file cache, and the b bit resolution switch, respectively, where “1”
indicates that the service or cache is successful or enabled and “0” indicates that the service or
cache is not served, there is no cache, or it is disabled. So, action at can be defined as

at ,
{

acl
t , aca

t , ares
t

}
(19)

The sets acl
t =

{
amk,t : m ∈ M, k ∈ K

}
, aca

t =
{

amc f ,t : m ∈ M, c f ∈ CF
}

, and

ares
t =

{
amb,t : m ∈ M, b ∈ N+

}
contain aggregate results representing the t-th time slot for

clustering, caching, and selecting resolution, respectively.
Similarly, the action at uniquely determines the sets CFm, bm, <k and Cm, i.e., CFm ={

c f : amc f ,t = 1, c f ∈ CF
}

, bm =
{

b : amb,t = 1, b ∈ N+
}

, <k =
{

m : amk,t = 1, m ∈ M
}

,

and Cm =
{

k : amk,t = 1, k ∈ K
}

.
The state considered in RL should be the set of information that the CPU can collect to

compute the reward. In this article, the state of the t-th slot is characterized as the collection
of channel gain Gt =

{
gmk,t : m ∈ M, k ∈ K

}
, the action of the preceding time slot, and

the historical record of file requests for each UE. Define the history set of user requests as
et =

{
ekc f ,t : k ∈ K, c f ∈ CF

}
, where ekc f ,t = ∑t

t′=1 1c fk,t′=c f
is the cf file download from the

k-th UE request as of time t. So, the state can be denoted as

st , {Gt, at−1, et} (20)
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According to the objection function of the optimization problem (18), the reward
function of the t-th slot is defined as

r(st, at) ,
Rsum,t

Ptotal,t
(21)

where Rsum,t and Ptotal,t are given in (9) and (17), correspondingly, and the extra subscript t
is given to emphasize the dynamic behavior. It is worth noting that the total achievable
rate Rsum,t is contingent upon the channel conditions Gt, the clustering outcome acl

t , and
the result ares

t of the selection resolution, while the overall power Ptotal,t is contingent upon
the caching result aca

t and the result ares
t of the selection resolution.

4.2. Deep Deterministic Policy Gradient Approach

DDPG algorithm utilizes an actor–critic network architecture. Moreover, each network
is accompanied by its respective target network, resulting in a total of four networks
within the DDPG algorithm, namely, the actor network µ(·|θµ) , critic network Q(·

∣∣θQ) ,
target actor network µ′(· | θµ′) , and target critic network Q′(· | θQ′) . Each network updates
according to its own update rules, maximizing cumulative expected returns. Figure 3 gives
the schematic diagram of the DDPG algorithm.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 18 
 

 

Update the   
of critic

Evaluation-Network

Target-Network

  State
Actor-
value

  State
Actor-
value

Find out the action to 
maximize the value of the 

action

Evaluates the 
Actor-Value

ts

1ts +

( | )ts
 

1( | )ts
 


+


( , | )Q

t tQ s a 

1 1( , | )Q

t tQ s a + +
 

Update the      of Actor

q Q=

ty r Q = +

2( )y q−



Q

 

Figure 3. The principle of DDPG algorithm. 

The DDPG algorithm is well-suited for multi-task learning, aligning with the objec-

tives of this paper. This algorithm enhances training stability by adopting a deterministic 

strategy, which means it directly outputs a specific action value instead of a probability 

distribution. The algorithm is trained using an experience replay buffer to store past ex-

periences and then to randomly sample from it. This approach breaks the data correlations 

and ensures that the data conform to an independent distribution, thereby reducing pa-

rameter update variance and enhancing convergence speed. Additionally, experiences can 

be reused, resulting in high data utilization. DDPG leverages neural networks to represent 

policies (actor) and value functions (critic), making it suitable for high-dimensional state 

spaces and capable of learning from vast amounts of perceptual data. In comparison to 

the widely used DQN, DDPG is particularly apt for continuous action spaces. Further-

more, employing actor networks can improve training efficiency, and having more target 

actor networks and target critic networks helps prevent potential overestimation issues 

present in DQN. 

Algorithm 1 primarily revises the parameters of the actor network and critic network. 

The actor network adjusts the weight   by aiming to maximize the cumulative antici-

pated reward. The critic network adjusts the weight Q  by seeking to minimize the dis-

crepancy between the evaluation value and the target value. Regarding the update process 

of the target network, a soft update method is adopted, which can also be called exponen-

tial average motion. That is, the learning rate (or momentum)   is introduced, and the 

weighted average of the previous target network parameters and the current correspond-

ing network parameters are subsequently applied to update the target network. Algo-

rithm 1 summarizes the whole DDPG algorithm process. 

Algorithm 1 DDPG Algorithm Procedure 

1: Actor–critic network parameter   and Q  initialization 

2: Set the same parameters    and Q   in the target network 

3: for plot = 1 to Plot do 

4:     for timeslot = 1 to T do 

5:         Generate action ta  through the actor network ( | )ts
   

6:         Get rewards ( ),t tr s a  and next status 1ts +  according to the action ta  

7:         Get the target value q  through the critic network ( , | )Q

t tQ s a   

8:         Use the target network 1 1( , | )Q

t tQ s a 


+ +
   to get the separate target value y  

9:         The gradient is determined by the target value q  of the actor–critic network 

Figure 3. The principle of DDPG algorithm.

The DDPG algorithm is well-suited for multi-task learning, aligning with the objectives
of this paper. This algorithm enhances training stability by adopting a deterministic strategy,
which means it directly outputs a specific action value instead of a probability distribution.
The algorithm is trained using an experience replay buffer to store past experiences and
then to randomly sample from it. This approach breaks the data correlations and ensures
that the data conform to an independent distribution, thereby reducing parameter update
variance and enhancing convergence speed. Additionally, experiences can be reused,
resulting in high data utilization. DDPG leverages neural networks to represent policies
(actor) and value functions (critic), making it suitable for high-dimensional state spaces
and capable of learning from vast amounts of perceptual data. In comparison to the widely
used DQN, DDPG is particularly apt for continuous action spaces. Furthermore, employing
actor networks can improve training efficiency, and having more target actor networks and
target critic networks helps prevent potential overestimation issues present in DQN.

Algorithm 1 primarily revises the parameters of the actor network and critic network.
The actor network adjusts the weight θµ by aiming to maximize the cumulative anticipated
reward. The critic network adjusts the weight θQ by seeking to minimize the discrepancy
between the evaluation value and the target value. Regarding the update process of the
target network, a soft update method is adopted, which can also be called exponential
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average motion. That is, the learning rate (or momentum) τ is introduced, and the weighted
average of the previous target network parameters and the current corresponding network
parameters are subsequently applied to update the target network. Algorithm 1 summarizes
the whole DDPG algorithm process.

Algorithm 1 DDPG Algorithm Procedure

1 : Actor–critic network parameter θµ and θQ initialization
2 : Set the same parameters θµ′ and θQ′ in the target network
3: for plot = 1 to Plot do
4: for timeslot = 1 to T do
5 : Generate action at through the actor network µ(st|θµ)
6 : Get rewards r(st, at) and next status st+1 according to the action at
7 : Get the target value q through the critic network Q(st, at

∣∣θQ)

8 : Use the target network Q′(st+1, a′t+1

∣∣∣θQ′ ) to get the separate target valuey
9 : The gradient is determined by the target value q oftheactor–criticnetwork
and the target network target value y
10: Update parameters θµ and θQ in the network of actors and critics according
to the gradient
11: Update parameters θµ′ and θQ′ in the target network according to the
parameters θµ and θQ in the actor and critic network and the learning rate τ

12: end for
13: end for

4.3. Computational Complexity

In the DDPG algorithm, the input dimension of the neural network is denoted as
Input , M(3K + N + 1) + KN, the output dimension is denoted as Output , M(K +
N + b), and the number of model parameters is denoted as Number , 5Input(Input +
1) + 9Output(Output + 1) + 10Iuput ∗Output, determined by the neural network’s layer
count and layer size. The experience pool’s size is Batch = 128, and it holds states, actions,
rewards, and next states, resulting in a complexity of O(Batch ∗ (2K(M + N + b) + K(M +
N + 1) + 1) + Number). The decision-making process for actions has a time complexity of
O(K + 2M), thus leading to the complexity of O(timeslot ∗ (Number + K + 2M)), where
timeslot stands for the number of training iterations.

5. Simulation Results
5.1. Simulation Settings

In this section, we conduct a comparison and analysis of (1) the EE performance of
the proposed RL method with three different BM strategies (called BM1, BM2, and BM3),
(2) the convergence behavior of DDPG algorithm, (3) the effect of DAC resolutions on the
EE, (4) the impact of the number of UE-associated AP on the EE, and (5) the influence of
UE and AP quantity on the EE. The BM strategies are given as follows:

• BM1: clustering policy based on the SINR (l ≤ L APs to which the k-th UE is connected
is the l with the highest SINR) and caching policy based on local popularity (in the UE
served by the m-th AP, the most popular N files are cached on the m-th AP);

• BM2: clustering strategy based on SINR (same as BM1) and caching strategy based on
network popularity (caching the N most popular files across all UEs in all APs);

• BM3: cache-based clustering strategy (each UE is connected to l ≤ L APs, and its
cache is the content request that best matches each UE in the previous slot) and
network-based caching strategy (same as BM2).

The computational complexity of BM strategies is all equal to O(K(M + N + 1)),
with BM2 having the minimum time complexity of O((M log2 M) ∗ (KN log2 N)), BM3
following with O((KM log2 M) ∗ (KN log2 N)), and BM1 having the maximum complexity
of O((M log2 M) ∗ (MKN log2 N)). Although the complexity of the BM strategy is lower
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than that of DDPG algorithm, the optimization effect of the DDPG algorithm is much better
than that of the BM strategy.

We contemplate a situation where APs and UEs are randomly distributed within the
region of Sa = 1 km2, one AP is located at the reference coordinate (0, 0). Both the positions
of UEs and APs remain constant during the training phase. We set the number of APs and
UEs to be M = 10 and K = 5, correspondingly, the cache size to |CFm| ≤ 2 for each AP,
the number of files to |CF| = 10, and the DAC resolution to bm ≤ 5. Refer to [14,28–32] for
other system settings and parameters, which are summarized in Table 1.

Table 1. The simulation parameters.

Parameters Value

Bandwidth B 20 MHz
Maximum DL transmit power Pm 1000 mW

Energy consumption of fronthaul link Ebh 0.25× 10−3 Joule/Mbit
Energy consumption of backhaul link Ebb 15Ebh

Thermal noise power per UE σ2
w 7.457× 10−13 W

Path-loss exponent α 2
Zipf distribution factor β 1

5.2. Numerical Results Analysis

Figure 4 shows the convergence of RL+DAC and RL in Algorithm 1, where the EE
values versus training episodes are demonstrated. The diagram is trained 1000 times and
then fused together. When the BM strategy is compared at the 10th episode of training, it
can be seen that the EE of RL+DAC and RL proposed after the 26th episode of training is
better than that of other BM strategies. The EE of RL+DAC also completely outperformed
the RL algorithm after about the 150th episode of training. Note that in Algorithm 1,
RL+DAC assumes that each AP employs a distinct ADC resolution, which sacrifices some
computational time in exchange for the improved performance. In contrast, RL employs
the same ADC resolution for all APs, thereby reducing the algorithm’s complexity.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 18 
 

 

Table 1. The simulation parameters. 

Parameters Value 

Bandwidth B 20 MHz 

Maximum DL transmit power mP  1000 mW 

Energy consumption of fronthaul link bhE  30.25 10−  Joule/Mbit 

Energy consumption of backhaul link bbE  15 bhE  

Thermal noise power per UE 
2

w  137.457 10−  W 

Path-loss exponent   2 

Zipf distribution factor   1 

5.2. Numerical Results Analysis 

Figure 4 shows the convergence of RL+DAC and RL in Algorithm 1, where the EE 

values versus training episodes are demonstrated. The diagram is trained 1000 times and 

then fused together. When the BM strategy is compared at the 10th episode of training, it 
can be seen that the EE of RL+DAC and RL proposed after the 26th episode of training is 
better than that of other BM strategies. The EE of RL+DAC also completely outperformed 
the RL algorithm after about the 150th episode of training. Note that in Algorithm 1, 
RL+DAC assumes that each AP employs a distinct ADC resolution, which sacrifices some 
computational time in exchange for the improved performance. In contrast, RL employs 
the same ADC resolution for all APs, thereby reducing the algorithm’s complexity. 

 

Figure 4. The convergence of Algorithm 1. 

Figure 5 illustrates the impact on total EE of changes in the relative positions of APs 
and UEs over time. It can be easily observed that the total EE of the RL+DAC and RL 
algorithms are always better than that of other BM strategies. In BM schemes, we find that 
when each UE is attended to by a single AP at moments 0, 3, 4, 7, 8, 10, and 11, their total 
EE values are higher than others. When each UE is attended to by three AP at moments 1, 
5, 6, and 9, the total EE performance is the highest. What this means is that one UE does 
not choose more AP services to get a better EE performance. Furthermore, the increasing 
of the number of UEs will result in a greater number of UEs being served by the APs. 
Consequently, this necessitates APs to make trade-offs when selecting DAC resolution 
with the RL+DAC algorithm, significantly diminishing the SE improvement for UEs. 

Figure 4. The convergence of Algorithm 1.

Figure 5 illustrates the impact on total EE of changes in the relative positions of APs
and UEs over time. It can be easily observed that the total EE of the RL+DAC and RL
algorithms are always better than that of other BM strategies. In BM schemes, we find that
when each UE is attended to by a single AP at moments 0, 3, 4, 7, 8, 10, and 11, their total
EE values are higher than others. When each UE is attended to by three AP at moments 1,
5, 6, and 9, the total EE performance is the highest. What this means is that one UE does



Sensors 2023, 23, 8295 12 of 17

not choose more AP services to get a better EE performance. Furthermore, the increasing
of the number of UEs will result in a greater number of UEs being served by the APs.
Consequently, this necessitates APs to make trade-offs when selecting DAC resolution with
the RL+DAC algorithm, significantly diminishing the SE improvement for UEs. When there
is an abundance of UEs, this effect becomes nearly equivalent to the average SE achieved
in the case of employing the same low resolution at each AP.
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Figure 5. The total EE versus times.

Figure 6 depicts the correlation between the number of UEs and the mean SE, where
the number of APs is M = 10. As illustrated in Figure 6, the mean SE of UEs diminishes
as the quantity of UEs increases and then tends to be stable. This phenomenon arises due
to the escalation in the quantity of UEs, leading to a gradual intensification of inter-UE
interference. Ultimately, the average SE will become stable. Furthermore, the upsurge
in the number of UEs will result in a greater number of UEs being served by the APs.
Consequently, this necessitates APs to make trade-offs when selecting DAC resolution
within the RL+DAC algorithm, significantly diminishing the SE improvement for UEs.
When there is an abundance of UEs, this effect becomes nearly equivalent to the average
SE achieved when each AP in the RL algorithm utilizes the same low resolution.
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Figure 7 explores the influence of the number of UEs on the total EE, where the number
of APs is M = 10. As observed in Figure 7, the overall trend of the total EE decreases as
the quantity of UEs increases and then tends to stabilize. This is because the growth of the
number of UEs in the early stage is approximately proportional to the energy consumed
by the system, and the existence of inter-UE interference will slow the growth of its sum
achievable rate, so its total EE continues to decline. When the number of UEs is large,
all APs are already serving UE, and augmenting the number of UEs will not lead to an
elevation in the power consumption of AP activities, resulting in a smaller increase in
total power consumption, so the total EE will tend to balance. It also indirectly validates
the result of Figure 6: the increase in the number of UE does not always guarantee better
overall system performance. In other words, the higher the number of UE, the interference
between UEs will be particularly significant. Note: the total EE of K = 3 UEs in Figure 7
is lower than the total EE of K = 4. This is due to the different location of AP and UE,
which will lead to different channel conditions, so that the total EE will produce a certain
range fluctuation when the quantity of UE is determined. When the quantity is smaller, the
fluctuation due to the different effects of the location will be greater.
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Figure 7. The relationship between the number of UEs and the total EE.

Figure 8 shows the correlation between the quantity of APs and the sum achievable
rate, where the number of UEs is set as K = 5. It is readily noticeable that the sum achievable
rate firstly increases with the number of APs and then tends to be stable. This is because
when the number of APs is small, the UE selects the APs with better channel conditions,
so that the rate can be increased. Nevertheless, in scenarios where the number of APs is
large, the augmentation for the number of APs brings about a gradual intensification of
interference between APs. Consequently, when the number of APs is already relatively
high, further increasing the number of APs will not lead to an increase in the sum achievable
rate; in fact, it might even decrease it. Moreover, as depicted in Figure 8, the curves for BM1
(l = 3) and BM2 (l = 3) overlap due to their shared clustering policies, distinct caching
strategies, and the fact that the sum achievable rate is solely contingent on SINR and not
influenced by caching.

Figure 9 shows the impact of the total quantity of AP on the total EE, where the
quantity of UE is K = 5. The simulation diagram also indirectly verifies the result of
Figure 8, i.e., the more AP, the overall system performance is not necessarily better. At the
same time, it illustrated from Figure 9 that when the quantity of APs is 16, the total EE of
the system is the highest. Because as the quantity of APs increases, so does their power
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consumption, and when their sum achievable rate increases slowly, their total EE will begin
to decrease. In addition, note that the sum achievable rate and total EE of 20 for the number
of AP in Figures 8 and 9 do not strictly follow the trend. This is caused by fluctuations due
to the randomness of the positions of APs and UEs.
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In Figure 10, the impact of low-resolution DAC on the total EE is demonstrated, and
it can be observed that when b ≥ 6, the total EE decreases as the resolution b increases.
This means that resolution b will achieve a better total EE performance in the interval
[1, 5], and the RL+DAC resolution in the figure is bm ≤ 5, ∀m ∈ <, which has the best total
EE. Therefore, this also validates the wisdom of limiting the resolution range to b ≤ 5
in our RL+DAC algorithm design. In addition, with the increasing resolution b, its total
EE decreases faster and faster because in Formula (4), part of the DAC module’s power
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consumption increases exponentially with the increase in resolution b, while in Formulas
(6) and (8), with the resolution b > 5, it becomes evident that the sum achievable rate tends
to be stable.
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In this paper, an innovative and practical total EE model of a cache-assisted CF-
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of content cache, AP clustering, and low-resolution DAC is carried out, and then, a DRL
algorithm (i.e., DDPG method) is proposed. Numerical results show that the total EE of
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Abbreviations
The following abbreviations are used in this manuscript:

AP Access Point
EE Energy Efficiency
mMIMO Massive Multiple-Input Multiple-Output
CF-mMIMO Cell-free Massive Multiple-Input Multiple-Output
DDPG Deep Deterministic Policy Gradient
BS Base Station
DAC Digital-to-Analog Converter
UE User Equipment
CPU Central Processing Unit
BM Benchmark
SE Spectrum Efficiency
DRL Deep Reinforcement Learning
CSI Channel Statement Information
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