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Abstract: In the existing bearing remaining useful life (RUL)-prediction model based on deep learning,
the advantages and disadvantages of the extracted features are evaluated by the prediction accuracy;
thus, the analytical ability of the features is poor. At the same time, the change of working conditions
has a great influence on prediction accuracy. To overcome these limitations, a prediction method
of bearing RUL based on feature evaluation and deep transfer learning is proposed. The proposed
model can solve the above problems: (1) a method of feature evaluation and selection for bearing life
prediction based on trend consistency index was designed. (2) In this study, a domain adversarial
transfer model based on feature condition mapping is proposed to overcome the second limitation.
Experimental results show that this method is superior to the existing bearing evaluation and
prediction methods.

Keywords: bearing remaining useful life; transfer prediction; feature evaluation; different working
condition

1. Introduction

Rolling bearing is one of the key parts of mechanical equipment, and its reliability
directly affects the operational safety of the equipment [1]. Thus, it is of great significance
to predict the remaining useful life (RUL) of rolling bearing for the health evaluation of
the entire equipment [2–4]. Rolling bearing RUL-prediction methods can be divided into
model-based and data-driven methods [5,6]. The model-based method needs to make
assumptions about the bearing degradation process, but it is quite different from the actual
degradation process and requires artificial knowledge from experience, so the application
is still limited. Currently, with the rapid development of intelligent technology and deep
learning, data-driven methods have become a focus of research in academia and industry.

The data-driven bearing RUL prediction mainly includes two parts: feature extraction
and prediction model construction. The features extracted by traditional data-driven
bearing RUL methods are generally some statistical indicators, such as root mean square
and kurtosis [7–10]. Machine learning models are widely used in prediction models,
such as support vector machines [11], hidden Markov [12], Bayesian network [13], etc.
However, these methods need to extract degradation features based on expert knowledge
and experience and then select the appropriate machine learning model to predict based on
the changing trend of features. Recently, with the development of deep learning technology
and its strong nonlinear mapping learning ability, it has been introduced into rolling bearing
RUL prediction. This method extracts features adaptively from the original signal and
completes the prediction, which reduces the dependence of the intelligent prediction model
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on expert knowledge and avoids the workload of manual feature extraction. Ren [14]
proposed a bearing RUL-prediction method based on a deep convolution neural network
(CNN), which can significantly improve the prediction accuracy of bearings. Hu [15]
proposed a bearing RUL model based on a deep belief network and diffusion process
to improve the prediction accuracy and uncertainty. Chen [16] proposed a new depth
convolution autoencoder based on quadratic function, which can generate the health index
of bearing from the original vibration signal and can be better applied to RUL prediction.
Pei [17] proposed an adaptive prediction method for bearing mass data and prediction
uncertainty. The premise of the high prediction accuracy of the method based on deep
learning is that there are enough data, and the training and test data come from the same
distribution. If this condition is not satisfied, the performance of the deep learning method
will decline or even fail. However, in practical applications, it is difficult to collect enough
data with the same distribution, most of which are collected under different working
conditions. Transfer learning is considered to be an effective way to solve such problems.
Transfer learning is a learning process that uses the similarity between data or models
to apply the knowledge learned in the source domain to the target domain to solve the
problem of insufficient identically distributed data in the target domain. The current transfer
prediction is to extract the same or similar features in the source and target domain through
transfer learning to improve the prediction accuracy of the model. The key is to measure the
similarity or difference between the source and target domain. Chen [18] proposed a kind
of transfer convolution neural network to learn domain invariant features, using multi-core
maximum mean to reduce the distribution difference and achieved good prediction results.
Zhu [19] proposed a transfer learning method based on multilayer perceptron to solve the
problem of distribution difference and improve the prediction results. Mao [20] proposed
an RUL-prediction method based on deep feature representation and transfer learning and
introduced a transfer learning algorithm to adjust the features of the target bearing and
auxiliary bearing to improve the prediction accuracy.

Through transfer learning, the invariable or similar features in the source and target
domain are extracted from the vibration signals. How to evaluate and screen these features
quantitatively, reduce the information redundancy, and further make these features con-
ducive to improve the prediction accuracy of the bearings RUL is a problem worth studying.
Currently, the study of this kind of problem mainly includes a dimension reduction algo-
rithm and evaluation index. In the aspect of dimension reduction algorithm research, there
is principal component analysis [21], local preserving projection algorithm [22], and approx-
imate diagonalization of eigenmatrix [23]. Zhang B [24] and others generated candidate
prediction features by processing the time, frequency, and time–frequency domain of the
original condition monitoring the signal and defined three indicators of time correlation,
monotonicity, and robustness according to the trend and residual of the features.

Guo [25] extracted the time, frequency, and time–frequency domain features of bearing
signal in the study of bearing RUL prediction and selected the most sensitive feature from
the extracted feature set according to the monotonicity and time correlation measurement.
The filtering threshold was proposed to select the best feature subset. Wang F [26] studied
an RUL prediction method based on long short-term memory, which used time correlation,
monotonicity, and robustness to comprehensively evaluate the advantages and disadvan-
tages of features. Kang [27] proposed an adaptive method to determine the weight of each
evaluation index when studying the RUL-prediction method of rolling bearing. Berlin [28]
evaluated the time and frequency domain characteristics of bearing signals based on mono-
tonicity and sensitivity evaluation. Gu et al. [29] used four evaluation indexes of time
correlation, monotonicity, discreteness, and robustness to evaluate and screen the state
characteristics of the engine. In the process of bearing life prediction, Liu et al. [30] collected
the time domain, frequency domain, IMF component, Hilbert marginal spectrum feature,
and entropy feature of bearing and comprehensively evaluated the feature using three
indicators of time correlation, monotonicity, and robustness.
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Through the summary and analysis of the above literature, it can be seen that a lot
of study on the RUL of bearings based on deep learning has been performed at this stage.
The related research of bearing RUL transfer prediction and characteristic evaluation has
also been performed, but there are still the following limitations:

(1) In the existing feature evaluation research of bearing life prediction, the time and
frequency domain features of vibration signal are evaluated and screened, but the
feature extracted from the deep learning model is not evaluated. The automatic
feature extraction function of the deep learning model can reduce the complexity of
manual feature extraction. Using feature evaluation methods to evaluate this kind of
feature can reduce the influence of human factors and improve the interpretability of
deep features. Thus, it is valuable to evaluate the features extracted from the deep
learning model;

(2) Currently, the premise for deep learning to obtain high prediction accuracy in bearing
RUL is that there are enough data, and the training and test data come from the
same or similar distribution. If these conditions are not met, the performance of the
deep-learning-based prediction method will decline or even fail. However, in practical
application, the distribution of training data and test set (prediction data) is often
different due to the change of working conditions. The current transfer prediction
method based on maximum mean discrepancy and other domain adaptation is to
reduce the difference of the overall distribution of source and target domain data,
which may lead to the extracted features’ lack of prediction resolution.

The contributions of this study are as follows:
Aiming at the first limitation, a feature evaluation and screening method for bearing

life prediction based on a trend consistency index is proposed. The signal features extracted
from the deep transfer learning model are evaluated and screened, and the screened
features are used to predict the remaining service life of bearing. The effectiveness of
the proposed method is verified by comparing it with the prediction results obtained by
classical evaluation indexes (time correlation, monotonicity, and robustness).

Aiming at the second limitation, we propose a bearing RUL-prediction method based
on feature evaluation and deep transfer learning. The framework of the method includes
feature extraction and evaluation, prediction, and domain adaptation module. First, the
unsupervised deep learning model convolutional auto encode coding network model was
used to construct the feature extraction model to extract the source and target domain
features. Second, the domain adaptation module based on domain antagonism was used
to reduce the difference of feature extraction between the source and target domain, and
the feature condition mapping learning mechanism was added to improve the prediction
resolution. Then, a trend consistency index was added to evaluate the extracted features,
and the features with high scores were extracted according to the index scores. Finally, the
full convolution network model was constructed as the prediction model, and the filtering
features were input for prediction. The superiority of the proposed method was verified by
collecting data on bearing failures under different working conditions.

The remainder of the study is structured as follows. The proposed method is presented
in Section 2. Experimental details, results, and analysis are stated in Section 3. Finally,
conclusions are drawn in Section 4.

2. Proposed Method

A transfer prediction method of bearing RUL based on deep feature evaluation is
herein proposed. The framework of the method includes feature extraction, domain adapta-
tion, feature evaluation, and prediction module, as shown in Figure 1. The feature extraction
module was constructed by an unsupervised convolutional autoencoder network model.
The domain adaptation module consists of two layers of a fully connected neural network
using Wasserstein distance to measure the difference between different distributions. In the
feature evaluation module, the trend consistency index was used to select the features with
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high trend consistency to predict the bearing life. The prediction module is a three-layer
convolutional network.
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Figure 1. Feature Extraction Module.

The feature extraction module adopts the unsupervised learning deep convolutional
autoencoder network, and the network structure of the autoencoder is shown in
Figure 2. The convolutional autoencoder network model is composed of a three-layer
one-dimensional convolution layer and a three-layer one-dimensional deconvolution layer.
The hidden layer features of the autoencoder network were pooled to provide features for
the prediction and domain adaptation module. The parameters of the feature extraction
module are shown in Table 1. The loss function of the network is the mean square error,
and the specific formula is as given (??):

Lp =
∑n

i=1(yi − yi
p)2

n
(1)

where yi is the input value, and yi
p is the output value.

Table 1. Autoencoder network model parameters.

Module Layer Kernel Stride Activation
Function

Output
Dimension

Feature
extraction
module

Encoder

Input layer \ \ \ 1 × 1280 × 1 × 1
Convolution 1 20 × 1 × 64 8 × 1 Leaky_relu 1 × 160 × 1 × 64
Convolution 2 9 × 1 × 128 4 × 1 Leaky_relu 1 × 40 × 1 × 128
Convolution 3 9 × 1 × 256 4 × 1 Leaky_relu 1 × 10 × 1 × 256

Flatten \ \ \ 1 × 1 × 1 × 256

Decoder

Deconvolution 1 9 × 1 × 128 4 × 1 Leaky_relu 1 × 40 × 1 × 128
Deconvolution 2 9 × 1 × 64 4 × 1 Leaky_relu 1 × 160 × 1 × 64
Deconvolution 3 20 × 1 × 1 8 × 1 Leaky_relu 1 × 1280 × 1 × 1

Output layer \ \ \ 1 × 1280 × 1 × 1
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2.1. Domain Adaptation Module

The domain adaptation module uses the idea of a generative adversarial network
(GAN) to solve the problem of measuring the difference between the source and target
domain in domain adaptation. The source and target domain data with different working
conditions were input into the generator at the same time. The generator was used for
feature extraction, and then, the discriminator was trained through continuous adversarial.
When the discriminator cannot determine the source of the distribution of the feature
extracted by the generator, it can be considered that the feature extracted by the generator
is no longer different from the feature extracted by the target domain. The discriminator
consists of two layers of a fully connected neural network, and the number of neurons in
the last layer is 1. To avoid the instability of the original GAN training, the discriminator
module uses Wasserstein distance instead of Jensen–Shannon (JS) divergence to measure
the difference between different distributions.

1. Wasserstein distance

W
(

Pr, Pg
)
= sup
‖ fw‖

Ex∼Pr [ fw(x)]− Ex∼Pg [ fw(x)] (2)

where Pr and Pg is the probability distribution; fw(x) is the fitting function of Wasser-
stein distance. When fw satisfies the 1-Lipschitz constraint, the Wasserstein distance
between distributions can be approximately evaluated by adjusting the parameters
of fw.

The Wasserstein distance between source domain feature distribution Phs and target
domain feature distribution Pht is as follows:

Lwd(xs, xt) =
1
ns ∑

xs∈Xs
D( fg(xs))− 1

nt ∑
xt∈Xt

D( fg(xt)) (3)

2. Conditional mapping constraints

fg(xs) = f
′
g(xs)− f

′
g(xs)� y (4)
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where f ’
g(xs) is the mapping function in source domain of the feature extraction

module.y is the label. The � symbol represents the dot product operation symbol,
where xs and xt are the data samples from the source domain and the target domain,
respectively; D(x) is the mapping function of the domain discrimination module; and
fg(x) is the mapping function of the feature extraction module.

To satisfy the 1-Lipschitz constraint, the gradient penalty Lgrad is imposed on θd.

Lgrad

(
ĥ
)
=
(∥∥∥∇ĥ fd

(
ĥ
)∥∥∥

2
− 1
)2

(5)

where ĥ = εhs + (1− ε)ht. ∇ is a gradient differential operator.
Wasserstein distance can be calculated approximately by the following formula.

LW = max
θd

{
Lwd − γLgrad

}
(6)

where γ is the penalty coefficient.
Thus, the objective function of the feature extraction model of transfer learning based

on domain confrontation can be written as follows:

LO = min
θg ,θc

{
Lp + max

θd

[
Lwd − γLgrad

]}
(7)

2.2. Prediction Module

The prediction module is constructed by a full convolution neural network, which
reduces the number of training parameters using the weight sharing and local connection
characteristics of the convolution layer. Increasing the number of layers of the network can
improve the nonlinear mapping ability. Thus, the multilayer CNN is used as the prediction
model for experimental verification. The structure of the model is shown in Figure 3. The
model has three network layers, and the last layer is the full connection layer, which is used
to output the life prediction value rh. Finally, the weighted smoothing method is used to
smooth the prediction results.
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The RUL percentage label y is used in model training yh. It represents the percentage
of RUL at the current time in the total life. The calculation formula is as follows:

yh =
L− h
L− 1

(8)

where L represents the total number of times of data acquisition for the corresponding
bearing; h represents the h-th data acquisition for the corresponding bearing.
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2.3. Feature Evaluation Module

(1) Design idea of trend consistent life prediction evaluation index

Time correlation, monotonicity, and robustness play an active role in the quantitative
evaluation and screening of bearing signal features. However, when the selected features
are input into the bearing life prediction model, the consistency of the same feature in the
trend of different bearings will have an impact on the bearing life prediction, and these
three classic feature evaluation indicators are not the same. The consistency of this trend is
not directly considered.

In the time direction, the same signal feature should be consistent in the trend between
different bearings. The higher the degree of consistency, the higher the prediction result.
Otherwise, the lower the prediction result. To evaluate the trend consistency and select
the features with higher trend consistency to predict the bearing life and improve the
prediction accuracy, a new calculation method was designed; that is, with the help of
correlation calculation formula, the trend consistency of the same feature among different
bearings was calculated, and the trend consistency life prediction evaluation index is
thus proposed.

(2) Construction method of trend consistent life-prediction evaluation index

First, the extracted features were smoothed. Second, the features were compressed
using normalization and down-sampling methods. Then, the correlation between features
was calculated using the correlation calculation formula. Then, the mean value of a group
of calculated correlation values was taken for processing. Finally, the score of the trend
consistency index was obtained.

Suppose the r feature sequence of the i bearing is Xi
r = (Xi

r(t1), Xi
r(t2), . . . , Xi

r(tk)). The
trend term after exponential weighted moving smoothing is XT

i
r = (XT

i
r(t1), XT

i
r(t2), . . . ,

XT
i
r(tk)).

The main calculation process of the trend consistency index is as follows:
Step 1: The trend terms of the same feature series of different bearings are normalized

(0–1) and dimensionally reduced. Without changing the trend of feature change, the same
feature of different bearings has the same data length. The trend term XT

i
r of the feature

sequence is Zi
r =

(
Zi

r(1), Zi
r(2), . . . , Zi

r(s)
)

after normalization and down-sampling. The
main calculation formula of down-sampling is as follows:

Zi
r(f) =

tk=R((b+1)×m)

∑
tk=R(b×m)

XT
i
r(tk)

÷G(f) (9)

G(f) = (R((f + 1)×m)− R(f×m) + 1) (10)

m = K/s (11)

where s means that the time length of XT
i
r is divided into s intervals averagely, which is

also the total number of features after down-sampling; M is the length of each interval; R
(·) is an upward rounding function; G (f) is the length of the f interval; X is the value of the
feature after the f-th interval down-sampling.

Step 2: The correlation Formula (9) is used to calculate the correlation between the
same feature series of different bearings. The calculation results of the correlation value qij

r
of the same feature sequence between two bearings are arranged as follows:

qr =


q12

r q13
r · · · q1n

r

q22
r · · · q2n

r
. . .

...
q(n−1)n

r

 (12)
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where n is the total number of bearings.
q12

r represents the correlation value between the first bearing’s r feature sequence Z1
r

and the second bearing’s R feature sequence Z2
r .

Step 3: The results calculated in step 2 are processed by means, and the score q is
obtained. The calculation process is shown in the following formula:

Qr =

(
i=(n−1),j=n

∑
i=1,j=2

qij
r

)
÷ E(i < j) (13)

where E is the total number of qij
r in qr.

The calculated mean value meets the requirements of the range from 0 to 1, so the final
score of the trend consistency index of the r-th feature sequence is Q, and the closer q is to
1, the more consistent the trend performance of the same feature on different bearings. The
prediction of residual life is helpful to obtain better prediction accuracy using the feature of
high consistency score of this trend.

2.4. Model Training

The verification process of the bearing RUL-prediction feature selection method based
on the trend consistency index mainly includes the following four steps:

Step 1: Data preprocessing. First, the original vibration signal at each time point is
transformed into a frequency domain signal by fast Fourier transform, and the training and
test set are divided according to certain rules.

Step 2: Feature extraction. The unsupervised convolutional autoencoder network
model is used to construct the feature extraction model, and the GAN-based domain
adaptive module is used to reduce the distribution difference between the source and target
domain data to train the feature extraction network. After the training, the training and
test set are input into the network simultaneously to obtain the corresponding feature set.

Step 3: Evaluation and screening features. According to the index evaluation steps,
the trend consistency index is used to evaluate the features of the training set; according to
the score of the index, the high-quality features of the trend consistency index are extracted.

Step 4: Predict bearing RUL. The multilayer full convolution network model is used
as the prediction model, and the high-quality feature set of the training set is used to train
the network; after the training, the high-quality feature set of the test set is input to obtain
the prediction value of the model.

3. Experimental Verification

The experimental results and analysis are divided into five parts. First, the experimen-
tal data are explained. Second, the model feature extraction is tested and analyzed. Third,
the influence of domain adaptation on feature distribution is analyzed. Fourth, the trend
consistency index of feature evaluation is calculated and analyzed. Fifth, the influence of
index scores on the prediction results is analyzed. Finally, the prediction of bearing RUL
based on different evaluation methods is compared and analyzed.

3.1. Experimental Data

The experimental data are vibration acceleration data collected from the accelerated
life bench test of rolling bearing, which comes from the PHM data challenge [31] held by the
Institute of Electrical and Electronics Engineers (IEEE) in 2012. The accelerated life test of
rolling bearing is shown in Figure 4. The data set contains the full life-cycle vibration data of
17 rolling bearings under three working conditions, including 7 bearings under the first and
second working conditions and 3 bearings under the third working condition, as shown
in Table 2. The data acquisition method was used to collect 2560 vibration accelerations
every 10 s until the vibration acceleration in the data description reaches the set threshold,
and the bearing failure condition is stopped. In this study, bearing dataset 1 is the source
domain, and bearing dataset 2 and 3 are target domain, respectively.
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Table 2. Bearing data set.

Load (N) 4000 4200 5000
Speed (rpm) 1800 1650 1500

Case

Bearing Dataset1 Bearing Dataset2 Bearing Dataset3
Bearing 1_1
Bearing 1_2
Bearing 1_3
Bearing 1_4
Bearing 1_5
Bearing 1_6
Bearing 1_7

Bearing 2_1
Bearing 2_2
Bearing 2_3
Bearing 2_4
Bearing 2_5
Bearing 2_6
Bearing 2_7

Bearing 3_1
Bearing 3_2

3.2. Feature Extraction

In the process of experimental verification, any bearing is selected from the bearing
dataset 2 target domain data set as the test set, and the other six bearings are selected as
the training set. Taking bearing2_3 2–3 as an example, the effectiveness of the method is
illustrated. The original vibration and frequency domain signal of the first 0.1 s sample of
bearing 2_3 are shown in Figures 5 and 6, respectively.
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After the training of the feature extraction model, 320 feature sequences of bearing 2_3
were obtained. Two feature sequences were randomly selected to show the effect of feature
extraction. The first and 320 feature sequences selected are shown in Figures 7 and 8.
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It can be seen from Figure 8 that the feature extraction model can extract different
features from the test set, indicating that the extracted features are diverse.

3.3. Domain Adaptation

It can be seen from Figures 9 and 10 that the probability density distribution of
data extraction features in the source and target domain is quite different before transfer
learning. After transfer learning, the consistency of probability density distribution of
features was significantly improved, and the difference was reduced. This shows that the
feature extracted by transfer learning is insensitive to the change of working conditions,
which is conducive to the RUL-prediction model to achieve higher prediction accuracy.
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3.4. Calculation and Analysis of Trend Consistency Index in Feature Evaluation

In the feature evaluation, the extracted features of the training set were evaluated,
and due to the length of limitation, the calculation process of bearing 1-1 and bearing 2_1
in the training set is shown in the form of pictures. The trend terms of the first feature
sequence of bearings 1_1 and 2_2 are shown in Figures 11a and 11c, respectively. After
normalization and down-sampling in step 1, the feature sequences of the three bearings are
shown in Figures 11b and 11d, respectively. From the comparison of the two results before
and after normalization and down-sampling, it can be seen that this step does not change
the changing trend of the feature sequence and achieves the purpose of the first step. After
the correlation calculation in the second step, the correlation values of all bearing features
are arranged as shown in Table 3.

According to the results obtained in step 2, we calculated the data in Table 3 using the
calculation method in step 3. Finally, the trend consistency index score of the first feature
sequence was obtained, and the score is 0.683.

Each bearing feature set has 256 feature sequences. According to the above process,
256 score values were obtained, as shown in Figure 12.
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Figure 11. Trend items bearing 3_2 characteristics. (a) Trend term of bearing 1_1 feature. (b) Trend
term of bearing 1_1 feature after down-sampling. (c) Trend term of bearing 2_1 feature. (d) Trend
term of bearing 2_1 feature after down-sampling.

Table 3. Correlation value of the same feature.

1-1 1-2 1-3 1-4 1-5 1-6 1-7 2-1 2-3 2-4 2-5 2-6 2-7

1-1 1 0.934 0.855 0.825 0.896 0.936 0.935 0.711 0.828 0.891 0.051 0.935 0.763
1-2 0.934 1 0.892 0.895 0.789 0.876 0.827 0.599 0.78 0.838 0.104 0.837 0.817
1-3 0.855 0.892 1 0.918 0.67 0.807 0.761 0.402 0.89 0.792 0.152 0.75 0.921
1-4 0.825 0.895 0.918 1 0.637 0.772 0.705 0.407 0.756 0.772 0.137 0.717 0.855
1-5 0.896 0.789 0.67 0.637 1 0.929 0.916 0.871 0.769 0.813 0.024 0.95 0.554
1-6 0.936 0.876 0.807 0.772 0.929 1 0.894 0.799 0.842 0.847 0.029 0.933 0.716
1-7 0.935 0.827 0.761 0.705 0.916 0.894 1 0.697 0.826 0.902 0.079 0.96 0.69
2-1 0.711 0.599 0.402 0.407 0.871 0.799 0.697 1 0.568 0.559 0.278 0.774 0.328
2-3 0.828 0.78 0.89 0.756 0.769 0.842 0.826 0.568 1 0.744 0.002 0.829 0.844
2-4 0.891 0.838 0.792 0.772 0.813 0.847 0.902 0.559 0.744 1 0.242 0.876 0.687
2-5 0.051 0.104 0.152 0.137 0.024 0.029 0.079 0.278 0.002 0.242 1 0.02 0.147
2-6 0.935 0.837 0.75 0.717 0.95 0.933 0.96 0.774 0.829 0.876 0.02 1 0.68
2-7 0.763 0.817 0.921 0.855 0.554 0.716 0.69 0.328 0.844 0.687 0.147 0.68 1
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Figure 12. Trend consistency score of full feature sequence.

It can be seen from Figure 12 that the score of the 23rd feature sequence is the highest,
while the score of the 22nd feature sequence is the lowest. To verify whether the score is
reasonable, the trend items of the 22nd, and 23rd characteristic series of bearing 1_1 and 2_1
after down-sampling are listed, respectively, as shown in Figures 13 and 14. By comparing
Figures 13 and 14, we can see that the more similar the trend is, the higher the index score is,
while the more different the trend is, the lower the index score is. The above phenomenon
shows that the calculation method of the trend consistency index is reasonable.
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Figure 13. Trend term of the 22nd characteristic sequence of bearings 1_1 and 2_1 after down-
sampling.



Sensors 2023, 23, 8254 14 of 19

Sensors 2023, 23, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 14. Trend term of the 23rd characteristic sequence of bearings 1_1 and 2_1 after down-sam-
pling. 

The 256 scores calculated from 256 feature sequences were normalized, and the cal-
culation results are shown in Figure 15. The threshold value was selected as 0.5, and the 
feature with a normalized score above 0.5 was retained. 

 
Figure 15. Normalized Score of Trend Consistency of Full Feature Sequence. 

According to the sequence number obtained above, the features corresponding to the 
sequence number were extracted in the feature set of the training and test set, which are 
the high-quality features considered by the trend consistency index. 

From the above calculation process, it can be seen that the trend consistency index 
score of the feature series is relative, and the feature series with a high score is more con-
sistent in different bearings than the feature series with a low score. 

  

0 10 20 30 40 50 60 70 80 90 100
Time

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Bearing1-1
Bearing1-2

0 50 100 150 200 250
Features sequence number

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 14. Trend term of the 23rd characteristic sequence of bearings 1_1 and 2_1 after down-
sampling.

The 256 scores calculated from 256 feature sequences were normalized, and the cal-
culation results are shown in Figure 15. The threshold value was selected as 0.5, and the
feature with a normalized score above 0.5 was retained.
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Figure 15. Normalized Score of Trend Consistency of Full Feature Sequence.

According to the sequence number obtained above, the features corresponding to the
sequence number were extracted in the feature set of the training and test set, which are
the high-quality features considered by the trend consistency index.

From the above calculation process, it can be seen that the trend consistency index
score of the feature series is relative, and the feature series with a high score is more
consistent in different bearings than the feature series with a low score.



Sensors 2023, 23, 8254 15 of 19

3.5. Influence of Index Score on Prediction Results

To explain the influence of feature scores on the prediction results, high-quality feature
sets with scores above 0.5 and common feature sets with scores below 0.5 were used for
training and prediction, respectively. Taking bearing 2_2 and 3_3 as test sets randomly, the
prediction results corresponding to their high-quality and common feature sets are shown
in Figures 16 and 17, respectively.
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Figure 16. Prediction results of two kinds of feature sets of bearing 2_2.
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Figure 17. Prediction results of two types of feature sets of bearing 3_3.

From the results of Figures 16 and 17, it can be seen that the prediction effect of the
feature with a high score of trend consistency index is better than that of the feature with a
low score, which shows that the more consistent the trend performance of the same feature
on different bearings is, the better the prediction effect that will be obtained.
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3.6. Comparative Analysis of Bearing RUL Prediction Results

Three typical and trend consistency indicators were used to evaluate and screen
features, respectively. The high-quality feature sets obtained from each evaluation were
used for training and prediction, and four groups of prediction results were obtained. To
better illustrate the prediction effect of this method, 256 feature sequences were used for
training and prediction, and a group of prediction results using full feature sequences
was obtained.

The mean absolute error was used as the evaluation standard of prediction error, and
the calculation formula is shown in Formula (14).

MAE =
1
H

H

∑
h=1
|(yh − rh)| (14)

where H is the total number of predicted values of corresponding bearings.
Taking bearings 1_1~1_7 as the source domain and the six bearings in bearings 2_1~2_7

as the target domain, one bearing was selected as the test set in turn. According to this
division method, the mean error of prediction is shown in Table 4.

Table 4. The predicted results of the experiment.

Case Full Feature
Sequence Time Correlation Monotonicity Robustness Trend

Consistency

2_1 0.217 0.228 0.238 0.227 0.194
2_2 0.127 0.126 0.124 0.132 0.128
2_3 0.208 0.196 0.200 0.201 0.188
2_4 0.26 0.265 0.271 0.268 0.177
2_5 0.262 0.274 0.271 0.275 0.251
2_6 0.257 0.241 0.229 0.207 0.156
2_7 0.304 0.335 0.297 0.296 0.253
3_1 0.189 0.186 0.183 0.191 0.147
3_2 0.175 0.198 0.198 0.209 0.170
3_3 0.180 0.146 0.165 0.24 0.069

Composite mean 0.2179 0.2195 0.2176 0.2246 0.173
Error reduction

ratio 20.5% 21% 20.3% 22.8% /

From the statistical results in Table 4, it can be seen that the prediction effect of the
trend consistency index is better than the other three indexes in the test sample, which
shows that the trend consistency index can effectively select the high-quality feature set,
which is conducive to reducing the prediction error from the feature set extracted by the
deep learning model. Compared with the other prediction results, the comprehensive
average of the errors is reduced by 20.5%, 21%, 20.3%, and 22.8%, which shows that the
feature evaluation method is suitable for the signal features extracted by the deep learning
model and can improve the interpretability of such features to a certain extent.

To show the prediction effect more intuitively and comprehensively, bearing 2-2 and
bearing 3-3 were taken as examples to show the prediction results when they are used
as test sets, respectively. The prediction results are shown in Table 5. It can be seen
that the prediction accuracy of the trend consistency index is higher than that of the full
feature series.
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Table 5. Prediction experimental results of bearing 2-2 and bearing 3-3.

Index Bearing 2_2 Bearing 3_3
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4. Conclusions

To address the problem of feature extraction and evaluation in bearing life prediction,
a method of bearing RUL transfer prediction based on deep feature evaluation is proposed,
which adopts a feature evaluation and screening method based on the trend consistency
index. Finally, the bearing RUL can be predicted. The conclusions are as follows:
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(1) A feature extraction method based on transfer learning is proposed. The feature ex-
tracted by transfer learning is helpful to reduce the distribution difference of bearings
under different working conditions and to build a prediction model to improve the
prediction accuracy. The overall prediction accuracy is improved by 3.1%;

(2) The trend consistency index is proposed to evaluate and screen the signal feature.
Compared with the three classical indexes, the comprehensive average error obtained
by this index is reduced by 21%, 20.3%, and 22.8%, respectively, which shows that this
index can effectively screen out the signal features that are conducive to reducing the
prediction error of bearing residual service life and provides new ideas for the signal
feature evaluation method;

(3) When the signal feature evaluation method is applied to the signal feature extracted
by the depth transfer model, the comprehensive average error of the index prediction
is reduced by 20.5% compared to the case without feature evaluation, which shows
the applicability of the method to such features and can increase the interpretability
of such features to a certain extent.

For transfer prediction, different evaluation indexes are used to achieve better pre-
diction results on some bearings, and the trend consistency index is integrated with other
indexes to further improve the prediction accuracy.
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