
Citation: Yi, J.-B.; Nasrat, S.; Jo, M.-s.;

Yi, S.-J. A Software Platform for

Quadruped Robots with Advanced

Manipulation Capabilities. Sensors

2023, 23, 8247. https://doi.org/

10.3390/s23198247

Academic Editors: Yuanlong Xie,

Shiqi Zheng, Zhaozheng Hu and

Shuting Wang

Received: 12 September 2023

Revised: 28 September 2023

Accepted: 2 October 2023

Published: 4 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Software Platform for Quadruped Robots with Advanced
Manipulation Capabilities
Jae-Bong Yi , Shady Nasrat , Min-seong Jo and Seung-Joon Yi *

Department of Electrical Engineering, Pusan National University, Busan 46241, Republic of Korea;
niteofhunter@pusan.ac.kr (J.-B.Y.); shadyloai@pusan.ac.kr (S.N.); jominseong@pusan.ac.kr (M.-s.J.)
* Correspondence: seungjoon.yi@pusan.ac.kr; Tel.: +82-51-510-7917

Abstract: Recently, a diverse range of robots with various functionalities have become a part of our
daily lives. However, these robots either lack an arm or have less capable arms, mainly used for
gestures. Another characteristic of the robots is that they are wheeled-type robots, restricting their
operation to even surfaces. Several software platforms proposed in prior research have often focused
on quadrupedal robots equipped with manipulators. However, many of these platforms lacked
a comprehensive system combining perception, navigation, locomotion, and manipulation. This
research introduces a software framework for clearing household objects with a quadrupedal robot.
The proposed software framework utilizes the perception of the robot’s environment through sensor
inputs and organizes household objects to their designated locations. The proposed framework
was verified by experiments within a simulation environment resembling the conditions of the
RoboCup@Home 2021-virtual competition involving variations in objects and poses, where outcomes
demonstrate promising performance.

Keywords: quadruped robot; organize objects; mobile manipulation

1. Introduction

Robots have been developed from performing repetitive tasks solely in industrial
settings to becoming a part of our daily lives, thanks to advancements in software, sensors,
and processors. Notably, recent breakthroughs in machine learning have enabled robots to
adeptly perceive their surroundings and engage in natural language communication with
humans [1]. Consequently, we now encounter robots operating in diverse environments
such as city halls [2], museums [3–5], airports [6], and restaurants [7–9]. These robots offer
interactive and intelligent assistance without relying on specific infrastructures as well as
mere repetitive tasks.

However, most robots adopted in ordinary spaces have wheeled locomotion, which
presents challenges when encountering obstacles like stairs or thresholds. Moreover, the de-
sign of manipulators is often characterized by limited capabilities, primarily encompassing
basic gestures and actions.

Lately, studies have been conducted on home service robots designed as mobile
manipulators to create practical automated mobile manipulation systems for home
environments [1,10–12]. However, these investigations only focus on wheeled-type robots
equipped with manipulators. Several studies proposed frameworks to conduct grasp-
ing tasks with a manipulator mounted on quadruped robot [13,14]. However, many of
these frameworks did not include comprehensive tasks combining perception, navigation,
locomotion, and manipulation.

In this context, we introduce the software framework to enable a quadruped robot
to organize household objects to appropriate space in a domestic environment. Unlike
previous works [13,14] that perform just simple mobile manipulation with quadruped
robots, our research presents the method for delivering practical services through the
utilization of quadruped robots.

Sensors 2023, 23, 8247. https://doi.org/10.3390/s23198247 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23198247
https://doi.org/10.3390/s23198247
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4526-212X
https://orcid.org/0000-0002-4532-7475
https://orcid.org/0009-0007-3532-9016
https://orcid.org/0000-0002-3700-4967
https://doi.org/10.3390/s23198247
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23198247?type=check_update&version=2

Sensors 2023, 23, 8247 2 of 23

Compared to other platforms that performed similar tasks, a quadruped robot used
for this framework should also equipped with cameras, LiDAR, IMU, and a manipulator.
Figure 1 shows the feature comparison of the robot model to apply to the framework and
to Human Support Robots (HSRs) [15], which performed similar tasks in [1,10,11].

Figure 1. Feature comparison with a robot model for the framework and HSR.

The subsequent sections of this paper are structured as follows: Section 3 describes
the overall system of this framework. In Section 4, the method for object detection and
point cloud generation is detailed, involving a combination of machine learning techniques
including YOLOv7 [16], K-Nearest Neighbor (KNN) [17], and Random Sample Consensus
(RANSAC) [18], and the estimation of a grasp pose from a point cloud, accomplished
through its conversion into a height map, is presented. Moving to Section 5, navigation
strategies outlining how the robot plans its route to the designated area considering the posi-
tions of detected objects and LiDAR data are presented, and grasping methods, depending
on the situation, are addressed. The mathematical analysis of manipulation and locomotion
using Model Predictive Control (MPC) [19–22] are presented in Section 6. Section 7 show-
cases the experimental outcomes conducted within a simulation environment resembling
RoboCup@Home 2021—virtual. Lastly, the paper concludes by discussing future works in
Sections 8 and 9.

2. Related Work

Various service robots deployed in public places were presented in [4,6]. In [4], the
“Lindsey” robot, stationed at the Lincoln Museum, successfully operated autonomously as
a guide, providing informative tours to visitors. Despite its practical utility, the platform’s
lack of physical interaction capabilities limited its scope. A similar case is presented in [6],
where the “Spencer” robot facilitated passenger assistance and guidance at Dutch KLM
airports. However, this robot also lacks a manipulator for physical engagement. Address-
ing this limitation, refs. [1,10] introduced a modular software framework for home service
robots equipped with manipulators. This comprehensive framework encompassed navi-
gation, visual perception, manipulation, human–robot interaction, and natural language
processing. The framework incorporated deep-learning-based perception packages, such
as YOLOv3 and OpenPose, to perceive surroundings and combine them with manipulation
or navigation tasks using ROS middleware. Depending on its detected data, the framework
showed various manipulation skills implemented in robot competitions. This framework
showcased promising results in RoboCup@Home 2020 and World Robot Summit 2020
Partner Robot Challenge (WRS 2020 PRC) league using the Toyota HSR [15]. It is worth
noting that this system is primarily applicable to wheeled-type mobile manipulators.

Several studies have been conducted regarding quadruped robots equipped with
manipulators. In [13], researchers detailed strategies that control a quadruped robot with
a Whole Body Control (WBC) framework for arm-mounted quadruped robots. In this
work, the author proposed two control modes: manipulation mode and loco-manipulation
mode. In the manipulation mode, the author used Hierarchical Quadratic Programming
(HQP) [23] to control the arm, legs, and base subject to the whole rigid-body dynamics of

Sensors 2023, 23, 8247 3 of 23

the robot. In the loco-manipulation mode, the author controlled the arm with PD control,
while the HQP controller controlled the base and the legs. It showed stable gaiting in
complex terrains with an arm-mounted quadruped robot. However, this approach did not
incorporate image or LiDAR data.

In [14], a comparable system was introduced. The framework was experimented
with the quadruped robots equipped with a five Degree of Freedom (DOF) manipulator,
front camera, and 3D LiDAR. Using Yolov5, it successfully detected an object to grasp in a
3D position. Additionally, it presented human following with LiDAR data. However, it
had limitations in addressing the manipulation of complex-shaped objects like bowls and
exclusively concentrated on object manipulation on the ground. Moreover, comprehensive
experimental testing of the system’s capabilities was lacking.

In [24], researchers outlined a methodology for grasping complex-shaped objects
utilizing an anthropomorphic robotic hand affixed to a seven-DOF arm through imitation
learning. By combining 3D reconstruction, KNN, and image recognition using a Residual
Neural Network (ResNet), the author realized an imitation learning framework that learns
how to grasp complex objects from humans. However, this system required a diverse
dataset for learning to grasp, encompassing RGB images, point clouds, and trajectories.

Certain studies have explored methods to grasp detected objects without requiring ad-
ditional learning [25,26]. In [25], researchers introduced a grasp pose estimation technique
based on 3D point cloud analysis, employing Principal Component Analysis (PCA) [27] and
RANSAC [18]. While this approach showed promising performance by focusing solely on
point cloud contour lines, it was limited in its applicability to objects with complex shapes.
Another study, outlined in [26], utilized a virtual gripper with a C-shape configuration to
determine the grasp pose. This approach accommodates complex-shaped objects; however,
due to the inherently random nature of the deduced grasping orientation, it demands a
high-DOF manipulator to secure the object effectively

3. System Overview

Figure 2 shows the simulation model used in this work and the schematics of the
framework designed to perform tidy-up tasks that require perception and mobile manipu-
lation with a quadruped robot. To execute the main functions, the model has the form of a
quadruped robot equipped with a front camera, gripper camera, LiDAR, and a low-DOF
manipulator. The framework is combined with multiple modules interconnected through
ROS [28] messages, which are divided into three blocks: perception, behavior control, and
joint control. The approximate role of each block is as follows, and Table 1 shows the
dimensions of the robot model used in the experiment.

Figure 2. Overview of the system.

Table 1. Dimensions of the robot.

Body Length Body Width Thigh Length Calf Length

0.419 m 0.2505 m 0.22 m 0.22 m

Sensors 2023, 23, 8247 4 of 23

3.1. Perception

The perception block is the initial step in our research workflow, encompassing the
object detection and grasp pose estimation modules. In the object detection module, we
employ a machine learning-based algorithm to process image data, generating point clouds
for each detected object. Subsequently, from these point clouds, we select the target point
cloud for grasping and derive the grasp pose for the respective object in the grasp pose
estimation module.

3.2. Behavior Control

The prior information required for joint control is derived in behavior control. By
combining LiDAR data and odometry with per-object point cloud and target object, which
is derived in the object detection module, the navigation module can generate the target
velocity of Center of Mass (COM) and current pose on the map. The current pose and
grasp pose are used to derive the control phase, which decides the robot’s control state
(e.g., walking or standing) and manipulation trajectory. The task planning module generates
the manipulator trajectory when the current grasp pose is appropriate.

3.3. Joint Control

The joint control block performs actual roles in moving the robot. The leg control mod-
ule employs the MPC-based method for precise and stable control. This method requires
IMU data, joint states (e.g., position and velocity), and odometry. This module is rooted
in [20], and we customize it to suit this research. On the other hand, the manipulator control
module utilizes position control using the numerical solution of the inverse kinematics.

4. Perception

In order to detect each object in 3D space, we employ a combination of machine
learning approaches, including Yolov7, KNN, and RANSAC. Initially, we select the target
object from among the detected objects using these methods. Subsequently, we estimate
the grasp pose of the chosen object by converting the point cloud into a height map.

4.1. Per-Object Point Cloud Generation

To obtain 3D information about the objects in determining which object to grasp and
estimating its grasp pose, generating point clouds for each object emerges as a preliminary
step. This endeavor follows the real-time detection of objects from 2D images. As illustrated
in Figure 3a, we employ YOLOv7 [16], using Deep Learning methodologies to detect objects
and outline their bounding boxes within RGB images in real-time. After object detection,
we segment the corresponding positions in the depth image. By projecting this segmented
data into 3D space via the intrinsic K matrix [29], point clouds for each object are derived,
as shown in Figure 3b.

(a) (b)

Figure 3. Object detection: (a) Detecting objects with YOLOv7 and (b) Point clouds per object.

Sensors 2023, 23, 8247 5 of 23

4.2. Filtering Outliers

Figure 4a reveals the presence of outliers causing distortions. To address this issue,
we deploy two machine learning techniques: KNN [17] and RANSAC [18]. Initially,
showcased in Figure 4b, we partition the point cloud into object and background segments
using KNN [17]. However, distinguishing between the object and background through
KNN [17] alone is challenging. To address this, considering the closer proximity of the
object’s centroid to the robot’s camera, we exclude the background by eliminating the
portion with a more distant centroid. This strategy yields a model devoid of background,
showcased in Figure 4c. Subsequently, by leveraging plane-fitting RANSAC [18], the
remaining outliers are filtered, aiding in the acquisition of plane normal vectors utilized for
predicting grasp directions. The culmination of these steps yields refined 3D models free
from outliers, as depicted in Figure 4d.

(a) (b) (c) (d)

Figure 4. Process of filtering outliers: (a) Original, (b) Part division, (c) Background removal, and
(d) Filtering outliers.

4.3. Probing Direction Decision

Depending on the object’s state, such as on the floor or the table, and properties, the
robot should determine its probing direction to estimate a grasp pose of the object in the
easy-to-grasp posture. The robot employs a gripper-mounted camera to probe the object
vertically when the object is positioned on the floor, as exemplified in Figure 5a. However,
for objects on the table, the probing direction requires prediction. This prediction entails
adopting the posture depicted in Figure 5b for object assessment. Within this configuration,
the robot employs the plane-fitting RANSAC [18] to compute the normal vector of the
object’s point cloud. If the z-coordinate of this normal vector surpasses a predetermined
threshold, the robot concludes that vertical probing is ideal and proceeds to generate a
corresponding height map. Conversely, horizontal probing is deemed more suitable if the
z-coordinate falls below the threshold. In this case, the robot repositions its manipulator to
the configuration shown in Figure 5c and adjusts its position to a grasp-appropriate point.
Subsequently, with the manipulator reoriented, the robot employs its body-mounted front
camera to create a height map for the object’s horizontal probing assessment.

(a) (b) (c)

Figure 5. Setting probing posture in probing area: (a) Vertical-floor, (b) Vertical-table, and (c) Horizontal.

Sensors 2023, 23, 8247 6 of 23

4.4. Height Map Creation

The construction of a height map, derived from the point cloud data, is executed
through distinct coordinate configurations according to the robot’s chosen probing direction.
In instances where the robot decides on horizontal probing, the x and y coordinates of
the height map are extracted from the point cloud’s y and z coordinates, respectively.
Conversely, for vertical probing, the x and y coordinates of the height map are derived
from the point cloud’s x and y coordinates, correspondingly. The height values assigned
to the height map are drawn from the z-coordinates of the point cloud when probing
vertically, while horizontal probing utilizes the x-coordinates for height value determination.
A detailed explanation is given in Algorithm 1, and Figure 6 shows the result.

Algorithm 1 Height map creation

1: x_coords← removeDuplicate(target_point_cloud.x)
2: y_coords← removeDuplicate(target_point_cloud.y)
3: z_coords← removeDuplicate(target_point_cloud.z)
4: y_unit← y_coords.size / HEIGHT_MAP_SIZE
5: if probing_pose is horizontal then
6: x_unit← z_coords.size / HEIGHT_MAP_SIZE
7: creteria_height← max(target_point_cloud.x)
8: else
9: x_unit← x_coords.size / HEIGHT_MAP_SIZE

10: creteria_height← min(target_point_cloud.z)
11: end if
12: for i← 1 to target_point_cloud.size do
13: height_map_x← rank(target_point_cloud.y[i], y_coords)
14: if probing_pose is horizontal then
15: point_height← creteria_height – target_point_cloud.x[i]
16: height_map_y← rank(target_point_cloud.z[i], z_coords)
17: else
18: point_height← target_point_cloud.z[i] – creteria_height
19: height_map_y← rank(target_point_cloud.x[i], x_coords)
20: end if
21: for j← 1 to HEIGHT_MAP_SIZE do
22: if height_map_x ≥ x_unit ∗ (j – 1) and height_map_x ≤ x_unit ∗ j then
23: for k← 1 to HEIGHT_MAP_SIZE do
24: if height_map_y ≥ y_unit ∗ (k – 1) and height_map_y ≤ y_unit ∗ k then
25: height_map_num(j, k)← height_map_num(j, k) + 1
26: height_map_sum(j, k)← height_map_sum(j, k) + point_height
27: end if
28: end for
29: end if
30: end for
31: end for
32: height_map← height_map_sum / height_map_num

4.5. Grasp Pose Prediction

The height map derived in Section 4.4 is used to predict grasp pose. From this map,
we select grasp candidates and select grasp pose among them, considering contact pose
inclination and distance to the center of the height map. Subsequently, we convert the
grasp pose, initially represented in the height map, into the 3D space.

Sensors 2023, 23, 8247 7 of 23

Figure 6. Height map.

4.5.1. Selecting Grasp Candidates

The primary step in the prediction process involves the selection of grasp candidates
extracted from the height map. As illustrated in Figure 7, this procedure requires trans-
forming the gripper to fit the height map and subsequently evaluating each element in
conjunction with the gripper configuration to ascertain its graspability. A point is con-
sidered a graspable candidate when the height of the coordinate situated at the center
of the gripper exceeds the height of the locations where the gripper’s tips are positioned
by a predefined margin. However, within this evaluation, if the slopes present within
the gripper’s region exhibit a gradient lower than a specified threshold, the coordinate is
classified as ungraspable. Comprehensive details of this operational phase are presented in
Algorithm 2.

Algorithm 2 Selecting grasp candidates

1: for i← 1 to HEIGHT_MAP_SIZE do
2: for j← 1 to HEIGHT_MAP_SIZE do
3: left_tip_pos← i + gripper_width_half _height_map
4: right_tip_pos← i – gripper_width_half _height_map
5: left_tip_diff ← height_map(i, j) – height_map(left_tip_pos, j)
6: right_tip_diff ← height_map(i, j) – height_map(right_tip_pos, j)
7: if left_tip_diff or right_tip_diff > GRASPABLE_HEIGHT then
8: grasp_pos_found← false
9: for k← right_tip_pos to i – 1 do

10: right_height_slope← height_map(k + 1, j) – height_map(k, j)
11: if right_height_slope ≥ GRASPABLE_HEIGHT_VAR then
12: for l← i + 1 to left_tip_pos do
13: left_height_slope← height_map(l – 1, j) – height_map(l, j)
14: if right_height_slope ≥ GRASPABLE_HEIGHT_VAR then
15: grasp_pos_candidates.add({i, j})
16: right_tip_contact_poses.add({k, j})
17: left_tip_contact_poses.add({l, j})
18: grasp_pos_found← true
19: break
20: end if
21: end for
22: end if
23: if grasp_pos_found then
24: break
25: end if
26: end for
27: end if
28: end for
29: end for

Sensors 2023, 23, 8247 8 of 23

(a) (b) (c)

Figure 7. Selecting grasp candidates: (a) Ungraspable position, (b) Graspable position, and (c) Grasp can-
didates.

4.5.2. Getting Contact Pose Inclination

While candidates might meet the criteria outlined in Section 4.5.1, addressing potential
slipping issues arising from unaccounted contact pose inclinations is essential. To ad-
dress this concern, we engage neighboring contact coordinates around the present contact
coordinate to ascertain inclinations. This involves determining slopes based on contact
coordinates adjacent to the existing contact coordinate, thus enabling the derivation of
contact pose inclinations. Algorithm 3 details the precise steps.

Algorithm 3 Getting contact pose inclination

1: for i← 1 to HEIGHT_MAP_SIZE do
2: for j← 1 to HEIGHT_MAP_SIZE do
3: vicinity_pose_x.empty()
4: vicinity_pose_y.empty()
5: if tip_contacted_pos.is_exist({i, j}) is true then
6: for k← –VICINE_RANGE to VICINITY_RANGE do
7: for l← –VICINE_RANGE to VICINITY_RANGE do
8: if tip_contacted_pos.is_exist({i + k, j + l}) is true then
9: vicinity_pose_x.add(i + k)

10: vicinity_pose_y.add(j + l)
11: end if
12: end for
13: end for
14: vicinity_pose_x_diff ← vicinity_pose_x.max – vicinity_pose_x.min
15: vicinity_pose_y_diff ← vicinity_pose_y.max – vicinity_pose_y.min
16: tip_pose_inclination.add(atan2(vicinity_pose_y_diff , vicinity_pose_x_diff))
17: end if
18: end for
19: end for

4.5.3. Selecting Grasp Pose in Height Map

Following determining the contact pose inclinations, depicted in Figure 8, a subsequent
filtering process is implemented to address candidates within low inclination regions. From
the remaining candidates, the one closest to the center of the height map is selected as the
prime candidate. In cases where multiple candidates share the same distance to the center,
the selection prioritizes the candidate within the narrowest area.

Sensors 2023, 23, 8247 9 of 23

(a) (b) (c)

Figure 8. Selecting grasp pose: (a) Getting contact inclination, (b) Filtering candidates, and (c) Select-
ing grasp pose.

4.5.4. Grasp Pose Transition

Concluding the prediction process, the final step is translating the grasp pose de-
termined within the height map to a comprehensive 3D pose, accomplished through
Algorithm 4. This process effectively reverses the steps undertaken in Algorithm 1, utiliz-
ing derived variables such as x_coords, y_coords, and z_coords from the earlier algorithm.

The outcome of Algorithm 4 is showcased in Figure 9, where the position of the arrow
symbolizes the grasp pose. At the same time, its orientation represents the derived grasp
direction, facilitated by utilizing the normal vector from the plane-fitting RANSAC [18].
This step finalizes the prediction procedure, ensuring accurate grasp pose representation in
three-dimensional space.

Algorithm 4 Grasp pose transition

1: if probing_pose is horizontal then
2: grasp_pos_3d.x← creteria_height – height_map(grasp_pos_2d.x, grasp_pos_2d.y)
3: else
4: grasp_pos_3d.z← height_map(grasp_pos_2d.x, grasp_pos_2d.y) + creteria_height
5: end if
6: grasp_pos_idx_horizontal← grasp_pos_2d.y ∗ y_unit
7: grasp_pos_idx_vertical← grasp_pos_2d.x ∗ x_unit
8: grasp_pos_3d.y← y_coords[grasp_pos_idx_horizontal]
9: if probing_pose is horizontal then

10: grasp_pos_3d.z← z_coords[grasp_pos_idx_vertical]
11: else
12: grasp_pos_3d.x← x_coords[grasp_pos_idx_vertical]
13: end if

(a) (b)

Figure 9. Grasp pose in 3D point cloud: (a) Drill and (b) Bowl.

Sensors 2023, 23, 8247 10 of 23

4.6. Rotation of an Object on The Floor

When dealing with objects situated on the floor, achieving an optimal grasp is facili-
tated when the object’s orientation aligns with the gripper’s wrist angle. To achieve this
alignment, we leverage the line-fitting RANSAC [18] when probing objects on the floor.
As illustrated in Figure 10, the direction of the object’s normal vector corresponds to the
desired gripper angle. To accommodate this alignment, we perform a z-axis rotation of the
object’s point cloud according to the normal vector, preceding the grasp pose prediction
step. The final execution involves the robot grasping the object using the gripper positioned
in alignment with the object’s orientation, thus optimizing the grasping process for objects
located on the floor.

Figure 10. Rotation of an object on the floor.

5. Behavior Control

Before engaging in robot control at the joint level, managing and directing the robot’s
behavior is essential. Based on the detection information discussed in Section 4, the robot
performs Navigation and decides grasping form.

5.1. SLAM

In preparation for organizing objects, the robot initiates its process by determining
its position and comprehending its immediate environment. This initial phase involves
the creation of a spatial map using ROS’s SLAM package known as gmapping.Through
manual guidance within the designated area, the robot creates a map using LiDAR data and
odometry, as illustrated in Figure 11a. As the locomotion algorithm used in this framework
generates less staggering in gaiting, additional compensations are not required.

(a) (b)

Figure 11. SLAM and navigation: (a) SLAM and (b) Navigation.

5.2. Navigation

For precise navigation to predetermined positions within the map established in
Section 5.1, the robot’s movement is facilitated by utilizing the ROS package associated
with navigation, known as amcl. While this package has proven effective, it is employed
primarily for transporting the robot to designated search or deposit zones due to limita-
tions in accurately approaching goal poses. Figure 11b exemplifies the process involving
this package.

Sensors 2023, 23, 8247 11 of 23

5.3. Approaching

The robot’s initial task involves identifying graspable objects. By employing a camera
attached to the gripper, the robot scans the floor while maintaining the posture displayed in
Figure 12a. Upon detecting object centroids within its body frame of reference, the robot adjusts
its movement toward the nearest object. Yet, when the proximity to this object falls below
a defined threshold, TARGETING_DIST, it is categorized as a target_object. Subsequently,
the robot repositions itself to a probing_area, which ensures accessibility by the gripper, as
illustrated in Figure 5. Conversely, the robot reconfigures its manipulator to resemble the
stance depicted in Figure 12b in scenarios where no floor objects are detected. This alternative
posture is employed for surveying objects on a table using the front camera, following a
procedure analogous to that used for the floor. Algorithm 5 offers a comprehensive breakdown
of this operational phase.

(a) (b)

Figure 12. Searching postures: (a) Searching floor object posture and (b) Searching table object posture.

Algorithm 5 Approaching

1: searching_mode.manipulator← floor_searching
2: searching_mode.camera← gripper_camera
3: if isObjectExist(searching_state) is false then
4: searching_mode.manipulator← table_searching
5: searching_mode.camera← front_camera
6: probing_area_type← FLOOR_PROBING_AREA
7: else
8: probing_area_type← TABLE_PROBING_AREA
9: end if

10: while target_object.centroid not in probing_area do
11: object_clouds← searchObjects(searching_state)
12: if target_object_id is null then
13: closest_object← getClosestObject(object_clouds)
14: traceObject(closest_object.centroid)
15: if closest_object.dist ≤ TARGETING_DIST then
16: target_object_id← closest_object.object_id
17: end if
18: else
19: target_object← getTragetObject(object_clouds, target_object_id)
20: moveToProbingArea(target_object.centroid, probing_area_type)
21: end if
22: end while

5.4. Grasping an Object

The act of grasping is executed with variations contingent upon the object’s specific
situation, as demonstrated in Figure 13. Despite these variations, the fundamental grasping

Sensors 2023, 23, 8247 12 of 23

process can be categorized into three distinct stages: probing, transitioning to a grasp-ready
pose, and actual grasping.

(a)

(b)

(c)

Figure 13. Grasping an object differently depending on the situation: (a) Grasping an object on
the floor, (b) Grasping an object on the table horizontally, and (c) Grasping an object on the table
vertically.

Upon reaching an area conducive to grasping, the robot initiates the probing stage,
which adapts according to the specific scenario. After probing, the robot adjusts the
positioning of its COM and manipulator to align the grasp pose within the object with
the gripper’s front. In the ensuing stage, when the grasp direction is vertical, the robot
adjusts its COM along the z-axis by flexing its knee, effectively facilitating object grasping.
Conversely, for horizontal grasp directions, the robot shifts its manipulator along the x-axis
to the object’s location, preventing any potential collision between the gripper and the
object. However, when the object’s distance exceeds the manipulator’s operational range,
the robot compensates by moving its COM along the x-axis. Algorithm 6 comprehensively
describes this process.

Algorithm 6 Grasping an object

1: if grasp_ready_phase then
2: moveCOM(–grasp_pos_3d.y)
3: if grasp_orientation is vertical then
4: gripper_pose.x← grasp_pose_3d.x
5: gripper_pose.z← grasp_pose_3d.z + GRASP_READY_Z
6: if centoid_grasp_pose_diff _dist ≥ ROLL_THRESHOLD then
7: gripper_roll← atan2(centoid_grasp_pose_diff .y, centoid_grasp_pose_diff .x)
8: else
9: gripper_roll← line_fitting_RANSAC(filtered_point_cloud).normal

10: end if

Sensors 2023, 23, 8247 13 of 23

Algorithm 6 Cont.

11: else
12: gripper_pose.x← GRASP_READY_X
13: gripper_pose.z← grasp_pose_3d.z
14: end if
15: else if grasp_phase then
16: if grasp_orientation is vertical then
17: grapper_pos.z← grasp_pos_3d.z + COM_MOVE_Z
18: com_pose.z –= COM_MOVE_Z
19: else
20: if grasp_pos_3d.x ≤ MANIPULATOR_X_LIM then
21: grapper_pos.x← grasp_pos_3d.x
22: else
23: grapper_pos.x← MANIPULATOR_X_LIM
24: com_pose.x += (grasp_pos_3d.x – MANIPULATOR_X_LIM)
25: end if
26: end if
27: end if

6. Joint Control

To facilitate the execution of desired robot behaviors, control at the joint level should be
performed. The robot’s motion control comprises two essential components: Manipulator
Control and Leg Control. The robot controls its manipulator with position control with a
numerical solution of inverse kinematics and controls its leg with the MPC-based method.
Table 2 shows the dimensions of the manipulator.

Table 2. Dimensions of the manipulator.

d1 d2 d3 d4 d5

0.06 m 0.25 m 0.06 m 0.21 m 0.1 m

6.1. Manipulator Control

To ensure minimal impact on the robot’s gaiting, the manipulator integrated onto the
quadruped robot is designed to be lightweight. Achieving this objective involves employing
a low-DOF manipulator, effectively reducing the weight of its actuators. As depicted in
Figure 14, a four-DOF manipulator configuration has been adopted for object grasping.
Utilizing these parameters, we can define Ttr(x, y, z) as a translational transform and Rx, Ry,
and Rz as rotational transforms around the x, y, and z axes, respectively. Consequently, the
solution for the arm’s forward kinematics can be deduced as follows:

Tmanipulator = Ttr(0, 0, d1)Ry(θ1)Ttr(0, 0, d2)Ry(θ2)Ttr(d4, 0, d3)Ry(θ3)Rx(θ4)Ttr(d5, 0, 0) (1)

(a) (b)

Figure 14. Manipulator configuration and model: (a) Arm configuration and (b) Robot model.

Sensors 2023, 23, 8247 14 of 23

Inverse Kinematics

To obtain the inverse kinematics solution for a target transform Tmanipulator, we first
calculate the relative wrist position (x′, 0, z′).

T′manipulator = Ttr(0, 0, –d1)TmanipulatorTtr(–d5, 0, 0) (2)

[
x′ 0 z′ 1

]T = T′manipulator
[
0 0 0 1

]T (3)

Using the components in Figure 15, we can obtain θ1 and θ2 with following equation.

d6 =
√

x′2 + z′2 (4)

d7 =
√

d2
3 + d2

4 (5)

θ1 =
π

2
– a cos(

d2
1 + d2

6 – d2
7

2d1d6
) – a tan 2(z′, x′) (6)

θ2 = π – a cos(
d2

1 + d2
7 – d2

6
2d1d7

) – a tan 2(d4, d3) (7)

Figure 15. Arm configuration without the gripper and base.

As all joints without θ4 are moved in the y-axis, the gripper’s roll is the same with θ4.
Now that we know θ1, θ2, and θ4, we can obtain θ3 with following equation:

Ry(θ3) = Ttr(–d4, 0, –d3)Ry(–θ2)Ttr(0, 0, –d2)Ry(–θ1)T′manipulatorRx(–θ4) (8)

θ3 = a cos(Ry(θ3)11) (9)

6.2. Leg Control

In Leg Control, we adopted a framework rooted in MPC, introduced in [20]. Consid-
ering its current state and desired pose, this framework derives the appropriate Ground
Reaction Force (GRF) with MPC. To adopt this framework as the Leg Control module, we
adjusted several components to fit this work.

6.2.1. COM Controller

As the Navigation module returns the target velocity, we adjust the desired pose with
this value. When the target velocity is returned, the desired pose is adjusted as follows.

ptarget(t + ∆t) = ptarget(t) + vtarget∆t (10)

Sensors 2023, 23, 8247 15 of 23

Ωtarget =

0 –ωtarget_x –ωtarget_y –ωtarget_z

ωtarget_x 0 ωtarget_z –ωtarget_z
ωtarget_y –ωtarget_z 0 ωtarget_x
ωtarget_z ωtarget_y –ωtarget_x 0

 (11)

qtarget(t + ∆t) = (I +
1
2

Ωtarget∆t)qtarget(t) (12)

Subsequently, we set VEL_LIMIT in FSM the same as an absolute value of the tar-
get velocity.

6.2.2. Gait

In navigation, we adopt trotting as a gaiting form. As shown in Figure 16, the trot-
ting phase is divided into four phases: swing_FLRR, stance_FLRR, swing_FRRL, and
stance_FRRL. The desired GRF in swing phases (swing_FLRR and swing_FRRL) is half of
the body mass, and the desired GRF in stance phases (stance_FLRR and stance_FRRL) is a
quarter of the body mass. Since the leg mass is less than 10% of the robot’s total mass, the
legs’ inertia effect could be neglected.

(a) (b) (c) (d)

Figure 16. Gaiting with four phases: (a) swing_FLRR, (b) stance_FLRR, (c) swing_FRRL,
(d) stance_FRRL.

6.2.3. Parameters

The parameters used in Leg Control should be adjusted to fit the environment of this
work. Table 3 shows the parameters used in this work. In this table, Ru, Q, Nhor, Tsw, Tst,
and Tpred represent input weight matrix, pose weight matrix, expectation horizon, swing
foot time, stance foot time, and prediction time, respectively.

Table 3. Parameters.

Parameter Value

Ru [0.1 0 0; 0 0.1 0; 0 0 0.1]
Qp [100,000 0 0; 0 150,000 0; 0 0 100,000]
Qṗ [100 0 0; 0 100 0; 0 0 100]
QR [5000 0 0; 0 5000 0; 0 0 5000]
Qω [2 0 0; 0 4 0; 0 0 3]
Nhor 6
Tsw 0.3
Tst 0.1

Tpred 0.03
Note: Tsw, Tst, and Tpred have the unit [s].

Sensors 2023, 23, 8247 16 of 23

6.2.4. Finite State Machine

This segment defines the robot’s reference state utilized in the MPC framework. Under
normal circumstances, we presume that the robot’s initial posture and velocity mirror the
current state, aiming to refine its velocity by controlling acceleration to achieve the intended
pose. Nevertheless, when the current velocity’s trajectory diverges from the desired pose,
we adapt the planned velocity to align with the desired pose’s direction, bypassing the
current state’s influence. Algorithm 7 provides an intricate breakdown of this process,
incorporating parameters such as ADJUST_VEL_THRESHOLD, FEED_BACK_VEL, and
PLANNED_ACC, all of which are denoted as positive numerical values.

Algorithm 7 Finite state machine

1: now_planned_pose← current_pose
2: now_planned_vel← current_vel
3: for i← 1 to EXPECTATION_HORIZON do
4: pose_diff ← desired_pose – now_planned_pose
5: if pose_diff .abs < ADJUST_VEL_THRESHOLD then
6: now_planned_vel← 0
7: now_planned_pose← desired_pose
8: else
9: if pose_diff ∗ now_planned_vel < 0 then

10: if now_planned_vel < 0 then
11: now_planned_vel← FEED_BACK_VEL
12: else
13: now_planned_vel← –FEED_BACK_VEL
14: end if
15: else
16: if now_planned_vel2

2ACCEL < pose_diff .abs then
17: now_planned_vel –= PLANNED_ACC ∗ Tpred ∗ pose_diff .sign
18: else if now_planned_vel.abs ≤ VEL_LIMIT then
19: now_planned_vel += PLANNED_ACC ∗ Tpred ∗ pose_diff .sign
20: end if
21: end if
22: now_planned_pose += now_planned_vel ∗ Tpred
23: end if
24: planned_vel[i]← now_planned_vel
25: planned_pose[i]← now_planned_pose
26: end for

6.2.5. Swing Foot Trajectory

Given the dynamic nature of the desired foot placement position, varying based on
the specific leg position (front, rear, left, or right), we employ Algorithm 8 to establish the
swing foot trajectory.

Algorithm 8 Swing foot trajectory

1: TIME_CONST ← Tsw
2 + EXTRA_DIST

2: if is_front then
3: desired_swing_foot_pos.x← BODY_LENGTH_HALF
4: foot_pos_des.x← (now_lin_vel.x – HIP_JOINT_Y ∗ ωz) ∗ TIME_CONST
5: foot_pos_des.y← (now_lin_vel.y + SHOULDER_LENGTH ∗ ωz) ∗ TIME_CONST
6: else
7: desired_swing_foot_pos.x← –BODY_LENGTH_HALF
8: foot_pos_des.x← (now_lin_vel.x + HIP_JOINT_Y ∗ ωz) ∗ TIME_CONST
9: foot_pos_des.y← (now_lin_vel.y – SHOULDER_LENGTH ∗ ωz) ∗ TIME_CONST

Sensors 2023, 23, 8247 17 of 23

Algorithm 8 Cont.

10: end if
11: if is_left then
12: desired_swing_foot_pos.y← HIP_JOINT_Y
13: else
14: desired_swing_foot_pos.y← –HIP_JOINT_Y
15: end if
16: xy_pos_traj_elem← 0.5(1 – cos(π

Tsw
t))

17: desired_swing_foot_pos.x += foot_pos_des.x ∗ xy_pos_traj_elem
18: desired_swing_foot_pos.y += foot_pos_des.y ∗ xy_pos_traj_elem
19: desired_swing_foot_pos.z = TROT_FOOT_HEIGHT ∗ sin(π

Tsw
t)

7. Experiment

The experimental evaluation was conducted using Gazebo [30], an open-source 3D
robotic simulator integrated within the ROS framework [28]. However, we found a slipping
problem when grasping an object with the gripper, so we adopted gazebo_grasp_plugin
to solve it. The experimental setup, as illustrated in Figure 17, closely emulated the
configuration resembling the Robocup@Home 2021-virtual league environment. As is
customary in the competition, shown in Figure 18, this experiment encompassed object
classification tasks. The system’s speed and accuracy were assessed by placing objects in
predefined positions. To run the simulation and YOLOv7 simultaneously, we used the
desktop equipped with an AMD Ryzen 7 5800X, 32 GB of RAM, and an NVIDIA GeForce
RTX 3090.

Figure 17. Simulation model and environment.

(a)

Figure 18. Cont.

Sensors 2023, 23, 8247 18 of 23

(b)

Figure 18. Object classification tasks: (a) Classifying an object on the floor and (b) Classifying an
object on the table.

7.1. Objects

A set of eighteen distinct objects was utilized during the experimental phase, as
illustrated in Figure 19. These objects include a baseball, bowl, brick, clamp, coffee can,
Rubik’s cube, cup, driver, Lego, marker, padlock, cracker, spoon, sugar, tennis ball, tomato
soup, and toy gun. These objects are drawn from the YCB object dataset, an official selection
used in the Robocup@Home. Throughout the experiment, the objects’ configurations were
modified within the environment.

Figure 19. Objects used in the experiment.

7.2. Tasks

The experiment was structured around two main tasks: opening drawers and clas-
sifying objects. As depicted in Figure 20, the drawers were positioned in three distinct
configurations: left, right, and top. At the outset of the experiment, the initial step involved
manipulating the manipulator to open these drawers. Once the drawer-opening task was
completed, the robot proceeded to the object classification phase.

Figure 20. Opening drawer.

Sensors 2023, 23, 8247 19 of 23

Object classification was executed through the deposition of objects into designated
areas corresponding to specific categories. These categories encompassed orientation-based
items (e.g., marker, spoon), food items (e.g., coffee can, sugar, tomato soup, and cracker),
tools (e.g., driver, clamp, and padlock), shape items (e.g., baseball, tennis ball, cup, and
brick), task items (e.g., Rubik’s cube, toy gun, and Lego), and kitchen items (e.g., bowl,
mug). The classification process was facilitated by arranging objects in the appropriate area
corresponding to their respective categories. This classification was performed within an
area divided into six distinct sections, as illustrated in Figure 21: pencil case (orientation-
based items), tray (foods), drawer (tools), green box (shape items), black box (task items),
and small box (kitchen items).

For a comprehensive visual representation of the experiments, all corresponding
video recordings can be accessed at the link https://www.youtube.com/playlist?list=PLB1
pUAsYGpRGpUhJ0qVN3_Y0EIwi5TMcz, (accessed on 1 October 2023).

(a) (b) (c)

(d) (e) (f)

Figure 21. Object classification sections: (a) Pencil case, (b) Tray, (c) Drawer, (d) Green box, (e) Black
box, and (f) Small box.

7.3. Results

The experiment was repeated across five distinct environments, each involving ten
objects from the selection shown in Figure 19. The outcomes of these trials are summarized
in Table 4, providing details such as the number of successful attempts, the number of
failures, the success rate, and the duration taken for each test. However, as the opening
of the drawers succeeded in all experiments, it is not described in the table. Notably, the
average success rate across all trials amounted to 96%. Moreover, the success rates for all
environments consistently exceeded 80%, underscoring the system’s robust performance
across varying contexts. Comparatively, our system exhibited longer task execution times
in certain scenarios, such as turning in place, walking sideways, and setting a grasp-ready
pose, when compared to a wheeled robot. In particular, our platform required more than
3 min to complete the tasks with six fewer objects than [10], which utilized a wheeled robot
(HSR) for a similar experiment.

https://www.youtube.com/playlist?list=PLB1pUAsYGpRGpUhJ0qVN3_Y0EIwi5TMcz
https://www.youtube.com/playlist?list=PLB1pUAsYGpRGpUhJ0qVN3_Y0EIwi5TMcz

Sensors 2023, 23, 8247 20 of 23

Table 4. Results.

Trial Objects Success Num Failure Num Success Rate Time

1 Rubik’s cube, clamp, marker, cracker, spoon, Lego, coffee can,
baseball, bowl, cup 10 0 100% 19:07

2 tennis ball, bowl, driver, padlock, spoon, sugar, tomato soup,
toy gun, mug, brick 8 2 80% 18:55

3 tennis ball, mug, driver, toy gun, padlock, coffee can, Rubik’s
cube, tomato soup, bowl, brick 10 0 100% 20:48

4 tennis ball, bowl, padlock, Lego, marker, cracker, brick, mug,
tomato soup, Rubik’s cube 10 0 100% 19:59

5 marker, mug, tomato soup, Rubik’s cube, clamp, driver, cup,
bowl, coffee can, baseball 10 0 100% 18:10

Average 9.6 0.4 96% 19:24

8. Discussion

In this work, we proposed a mobile manipulation framework to organize household
objects with quadruped robots. As described in Section 7, the model used in the experiment
shows high stability and accuracy in locomotion and manipulation. Additionally, when
estimating an object’s grasp pose by combining machine learning algorithms, it selected an
appropriate grasp pose in real time for the objects used in the experiment, even for chal-
lenging objects such as bowls, toy guns, and cups. However, when comparing its spending
time with previous experiments using wheeled robots [10], the system’s operational speed
is relatively time-consuming.

Although this work successively reaches the goal of developing a framework to
organize household objects with a quadruped robot, it is essential to acknowledge that
these accomplishments were obtained exclusively within a simulation environment without
tasks executed on uneven terrains, a significant advantage inherent to quadruped robots.
Furthermore, the experiment required only mobile manipulation skills without Human–
Robot Interaction (HRI) required for the robots used in ordinary places.

To address these limitations, in the following works, we plan to conduct experiments
in real-world environments using physical hardware, including scenarios with uneven
terrains. Simultaneously, we will committed to optimizing the framework to reduce task
completion times and expanding its capabilities to include HRI functionalities.

9. Conclusions

This study introduces a comprehensive robotic framework that effectively performs
household tasks through the integration of a quadruped robot equipped with perception,
navigation, manipulation, and body control. The system’s reliability is underscored by a
successful experiment that attests to its high accuracy. However, this research was confined
to simulation-based experiments, and task execution times were relatively extended.

In our future work, we plan to transition from simulation-based experiments to
real-world experimentation employing an actual quadruped robot PADWQ [31], shown in
Figure 22, developed at the Pusan National University. Additionally, we will also expand its
functionality, such as Natural Language Processing (NLP), pose estimation, human tracking,
etc., to encompass a wider array of general-purpose tasks, including HRI. Furthermore,
our ongoing efforts will focus on scenarios that involve various terrains, including stairs or
thresholds, while concurrently working to reduce task completion times.

Sensors 2023, 23, 8247 21 of 23

Figure 22. Physical hardware platform for future work.

Author Contributions: Conceptualization, J.-B.Y. and S.-J.Y.; methodology, J.-B.Y.; software, J.-B.Y.;
validation, J.-B.Y.; formal analysis, J.-B.Y.; investigation, J.-B.Y.; resources, S.-J.Y.; data curation, J.-B.Y.;
writing—original draft preparation, J.-B.Y.; writing—review and editing, S.N., M.-s.J. and S.-J.Y.;
visualization, J.-B.Y.; supervision, S.-J.Y.; project administration, S.-J.Y.; funding acquisition, S.-J.Y. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the 2022 BK21 FOUR Program of the Pusan National Uni-
versity, the Police-Lab 2.0 Program (www.kipot.or.kr, accessed on 1 October 2023) funded by the
Ministry of Science and ICT (MSIT, Republic of Korea), the Korean National Police Agency (KNPA,
Republic of Korea) (No. 082021D48000000), and the Korea Institute for Advancement of Technology
(KIAT) grant funded by the Korean Government (MOTIE) (P0008473, HRD Program for Industrial
Innovation).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are unavailable due to privacy.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DOF Degree of Freedom
KNN K-Nearest Neighbor
RANSAC Random Sample Consensus
HSR Human Support Robot
HQP Hierarchical Quadratic Programming
WBC Whole Body Control
PCA Principal Component Analysis
COM Center of Mass
MPC Model Predictive Control
GRF Ground Reaction Force
NLP Natural Language Processing
HRI Human–Robot Interaction

www.kipot.or.kr

Sensors 2023, 23, 8247 22 of 23

References
1. Yi, J.B.; Kang, T.; Song, D.; Yi, S.J. Unified Software Platform for Intelligent Home Service Robots. Appl. Sci. 2020, 10, 5874.

[CrossRef]
2. Hansen, S.T.; Hansen, K.D. Public Relation Robots—An Overview; Association for Computing Machinery: New York, NY, USA,

2020; pp. 284–286. [CrossRef]
3. Daczo, L.D.; Kalova, L.; Bonita, K.L.F.; Lopez, M.D.; Rehm, M. Interaction Initiation with a Museum Guide Robot—From the Lab into

the Field; Springer: Berlin/Heidelberg, Germany, 2021; pp. 438–447. [CrossRef]
4. Duchetto, F.D.; Baxter, P.; Hanheide, M. Lindsey the Tour Guide Robot—Usage Patterns in a Museum Long-Term Deployment.

In Proceedings of the 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN),
New Delhi, India, 14–18 October 2019; pp. 1–8. [CrossRef]

5. Okano, S.; Matsuhira, N.; Shimokawara, E.; Yamaguchi, T.; Narita, M. Employing Robots in a Museum Environment: Design and
Implementation of Collaborative Robot Network. In Proceedings of the 2019 16th International Conference on Ubiquitous Robots
(UR), Jeju, Republic of Korea, 24–27 June 2019; pp. 224–227. [CrossRef]

6. Triebel, R.; Arras, K.; Alami, R.; Beyer, L.; Breuers, S.; Chatila, R.; Chetouani, M.; Cremers, D.; Evers, V.; Fiore, M.; et al. SPENCER:
A Socially Aware Service Robot for Passenger Guidance and Help in Busy Airports; Springer: Berlin/Heidelberg, Germany, 2016;
Volume 113, pp. 607–622. [CrossRef]

7. Langedijk, R.M.; Odabasi, C.; Fischer, K.; Graf, B. Studying Drink-Serving Service Robots in the Real World. In Proceedings
of the 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), Naples, Italy,
31 August–4 September 2020; pp. 788–793. [CrossRef]

8. Naik, L.; Palinko, O.; Kollakidou, A.; Bodenhagen, L.; Krüger, N. An interactive drink serving social robot: Initial System
Implementation. In Proceedings of the IROS 2020 Workshop: Robots for Health and Elderly Care: An Honest Discourse on the
Gap Between Research and Practical Application, Virtual, 29 October 2020.

9. Chen, C.S.; Lin, C.J.; Lai, C.C. Non-Contact Service Robot Development in Fast-Food Restaurants. IEEE Access 2022,
10, 31466–31479. [CrossRef]

10. Kang, T.; Song, D.; Yi, J.B.; Kim, J.; Lee, C.Y.; Yoo, Y.; Kim, M.; Jo, H.J.; Zhang, B.T.; Song, J.; et al. Team Tidyboy at the WRS 2020: A
modular software framework for home service robots. Adv. Robot. 2022, 36, 836–849. [CrossRef]

11. Yi, J.B.; Yi, S.J. Mobile Manipulation for the HSR Intelligent Home Service Robot. In Proceedings of the 2019 16th International
Conference on Ubiquitous Robots (UR), Jeju, Republic of Korea, 24–27 June 2019; pp. 169–173. [CrossRef]

12. Kang, T.; Kim, J.; Song, D.; Kim, T.; Yi, S.J. Design and Control of a Service Robot with Modular Cargo Spaces. In Proceedings of
the 2021 18th International Conference on Ubiquitous Robots (UR), Gangneung, Republic of Korea, 12–14 July 2021; pp. 595–600.
[CrossRef]

13. Xin, G.; Zeng, F.; Qin, K. Loco-Manipulation Control for Arm-Mounted Quadruped Robots: Dynamic and Kinematic Strategies.
Machines 2022, 10, 719. [CrossRef]

14. Guo, J.; Chai, H.; Li, Y.; Zhang, Q.; Wang, Z.; Zhang, J.; Zhang, Q.; Zhao, H. Research on the Autonomous System of the Quadruped
Robot with a Manipulator to Realize Leader-following, Object Recognition, Navigation and Operation. IET Cyber-Syst. Robot.
2022, 4, 376–388. [CrossRef]

15. Yamamoto, T.; Terada, K.; Ochiai, A.; Saito, F.; Asahara, Y.; Murase, K. Development of Human Support Robot as the research
platform of a domestic mobile manipulator. ROBOMECH J. 2019, 6, 1–15. [CrossRef]

16. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object
detectors. arXiv 2022, arXiv:2207.02696.

17. Jin, X.; Han, J. K-Means Clustering. In Encyclopedia of Machine Learning; Sammut, C., Webb, G.I., Eds.; Springer: Boston, MA, USA,
2010; pp. 563–564. [CrossRef]

18. Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

19. García, C.E.; Prett, D.M.; Morari, M. Model predictive control: Theory and practice—A survey. Automatica 1989, 25, 335–348.
[CrossRef]

20. Ding, Y.; Pandala, A.; Li, C.; Shin, Y.H.; Park, H.W. Representation-Free Model Predictive Control for Dynamic Motions in
Quadrupeds. IEEE Trans. Robot. 2020, 37, 1154–1171. [CrossRef]

21. Di Carlo, J.; Wensing, P.M.; Katz, B.; Bledt, G.; Kim, S. Dynamic Locomotion in the MIT Cheetah 3 Through Convex Model-
Predictive Control. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Detroit, MI, USA, 1–5 October 2018; pp. 1–9. [CrossRef]

22. Ding, Y.; Pandala, A.; Park, H.W. Real-time Model Predictive Control for Versatile Dynamic Motions in Quadrupedal Robots. In
Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019;
pp. 8484–8490. [CrossRef]

23. Escande, A.; Mansard, N.; Wieber, P.B. Hierarchical quadratic programming: Fast online humanoid-robot motion generation. Int.
J. Robot. Res. 2014, 33, 1006–1028. [CrossRef]

24. Yi, J.B.; Kim, J.; Kang, T.; Song, D.; Park, J.; Yi, S.J. Anthropomorphic Grasping of Complex-Shaped Objects Using Imitation
Learning. Appl. Sci. 2022, 12, 12861. [CrossRef]

http://doi.org/10.3390/app10175874
http://dx.doi.org/10.1145/3406499.3418757
http://dx.doi.org/10.1007/978-3-030-85613-7_30
http://dx.doi.org/10.1109/RO-MAN46459.2019.8956329
http://dx.doi.org/10.1109/URAI.2019.8768787
http://dx.doi.org/10.1007/978-3-319-27702-8_40
http://dx.doi.org/10.1109/RO-MAN47096.2020.9223512
http://dx.doi.org/10.1109/ACCESS.2022.3155661
http://dx.doi.org/10.1080/01691864.2022.2111229
http://dx.doi.org/10.1109/URAI.2019.8768782
http://dx.doi.org/10.1109/UR52253.2021.9494635
http://dx.doi.org/10.3390/machines10080719
http://dx.doi.org/10.1049/csy2.12069
http://dx.doi.org/10.1186/s40648-019-0132-3
http://dx.doi.org/10.1007/978-0-387-30164-8_425
http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.1016/0005-1098(89)90002-2
http://dx.doi.org/10.1109/TRO.2020.3046415
http://dx.doi.org/10.1109/IROS.2018.8594448
http://dx.doi.org/10.1109/ICRA.2019.8793669
http://dx.doi.org/10.1177/0278364914521306
http://dx.doi.org/10.3390/app122412861

Sensors 2023, 23, 8247 23 of 23

25. Lei, Q.; Chen, G.Y.; Wisse, M. Fast grasping of unknown objects using principal component analysis. AIP Adv. 2017, 7, 095126.
[CrossRef]

26. Lei, Q.; Chen, G.Y.; Meijer, J.; Wisse, M. A novel algorithm for fast grasping of unknown objects using C-shape configuration. AIP
Adv. 2018, 8, 025006. [CrossRef]

27. Mishra, S.; Sarkar, U.; Taraphder, S.; Datta, S.; Swain, D.; Saikhom, R.; Panda, S.; Laishram, M. Principal Component Analysis.
Int. J. Livest. Res. 2017, 7, 60–78. [CrossRef]

28. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A. ROS: An open-source Robot Operating System.
In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan, 12–17 May 2009; Volume 3.

29. Lin, K.Y.; Tseng, Y.H.; Chiang, K.W. Interpretation and Transformation of Intrinsic Camera Parameters Used in Photogrammetry
and Computer Vision. Sensors 2022, 22, 9602. [CrossRef] [PubMed]

30. Koenig, N.; Howard, A. Design and use paradigms for Gazebo, an open-source multi-robot simulator. In Proceedings of the
2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sendai, Japan, 28 September–2 October 2004;
Volume 3, pp. 2149–2154. [CrossRef]

31. Kim, J.; Kang, T.; Song, D.; Yi, S.J. PAWDQ: A 3D Printed, Open Source, Low Cost Dynamic Quadruped. In Proceedings of the
2021 18th International Conference on Ubiquitous Robots (UR), Gangneung, Republic of Korea, 12–14 July 2021; pp. 217–222.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1063/1.4991996
http://dx.doi.org/10.1063/1.5006570
http://dx.doi.org/10.5455/ijlr.20170415115235
http://dx.doi.org/10.3390/s22249602
http://www.ncbi.nlm.nih.gov/pubmed/36559969
http://dx.doi.org/10.1109/IROS.2004.1389727
http://dx.doi.org/10.1109/UR52253.2021.9494653

	Introduction
	Related Work
	System Overview
	Perception
	Behavior Control
	Joint Control

	Perception
	Per-Object Point Cloud Generation
	Filtering Outliers
	Probing Direction Decision
	Height Map Creation
	Grasp Pose Prediction
	Selecting Grasp Candidates
	Getting Contact Pose Inclination
	Selecting Grasp Pose in Height Map
	Grasp Pose Transition

	Rotation of an Object on The Floor

	Behavior Control
	SLAM
	Navigation
	Approaching
	Grasping an Object

	Joint Control
	Manipulator Control
	Leg Control
	COM Controller
	Gait
	Parameters
	Finite State Machine
	Swing Foot Trajectory

	Experiment
	Objects
	Tasks
	Results

	Discussion
	Conclusions
	References

