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Abstract: Multiple attempts to quantify pain objectively using single measures of physiological
body responses have been performed in the past, but the variability across participants reduces the
usefulness of such methods. Therefore, this study aims to evaluate whether combining multiple
autonomic parameters is more appropriate to quantify the perceived pain intensity of healthy subjects
(HSs) and chronic back pain patients (CBPPs) during experimental heat pain stimulation. HS and
CBPP received different heat pain stimuli adjusted for individual pain tolerance via a CE-certified
thermode. Different sensors measured physiological responses. Machine learning models were
trained to evaluate performance in distinguishing pain levels and identify key sensors and features
for the classification task. The results show that distinguishing between no and severe pain is
significantly easier than discriminating lower pain levels. Electrodermal activity is the best marker
for distinguishing between low and high pain levels. However, recursive feature elimination showed
that an optimal subset of features for all modalities includes characteristics retrieved from several
modalities. Moreover, the study’s findings indicate that differences in physiological responses to pain
in HS and CBPP remain small.

Keywords: chronic back pain; machine learning; autonomic nervous system; skin conductance;
experimental heat stimulation

1. Introduction

Pain as a complex phenomenon protects the body from actual or potential tissue
damage [1]. The International Association for the Study of Pain (IASP) defines pain in this
context as “an unpleasant sensory and emotional experience associated with, or resembling
that associated with, actual or potential tissue damage” [2]. Pain and the Autonomic
Nervous System (ANS) have a close anatomical and functional connection [3–6]. On the
one hand, pain alerts us to damage to our body [7], as the unpleasant sensation inevitably
attracts attention. So, we are urged to inhibit it or avoid related actions. On the other hand,
pain triggers many unconscious changes and processes in the body. An essential aspect
of this relationship is shaped by the influence of pain on the body, which causes various
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physiological responses in the ANS parameters [8]. Painful stimuli may evoke different
physiological body responses such as changes in heart rate variability [9], respiratory
rate [10] or skin conductance [11–13]. Vice versa, changes in these autonomic reactions can
influence pain responses [14]. More specifically, the autonomic body responses are caused
by noxious stimuli and not by the pain itself [15]. Pain in medical or clinical settings is
usually assessed via subjective pain ratings, e.g., using a Visual Analogue Scale (VAS) [16].
These subjective pain ratings are challenging in treating people who cannot adequately
express their pain, for example, people with neurological diseases, cognitive impairments,
patients receiving intensive care or persons with changes in pain perception due to chronic
pain. Chronic pain is characterized by central sensitization, which is associated with
changes in pain behavior and pain perception [1,17–19]. A more objective pain assessment
method would be helpful for the pain management of people with chronic pain or other
mentioned impairments [15]. Previous research assumed that chronic pain is associated
with autonomic dysfunction [20–22]. Additionally, most of these single measurements
show alterations as a response to acute or chronic pain on a group level, but the variance
in the data is always high. In contrast to clinical trials, experimental pain models might
help understand the underlying aspects of pain disorders, such as chronic pain conditions.
Therefore, this experimental study aims (1) to evaluate whether the combined data from
various autonomic body responses of Healthy Subjects (HSs) and Chronic Back Pain
Patients (CBPPs) can accurately predict the perceived intensity of experimental heat pain
stimuli and (2) to exploratively compare the autonomic output of CBPPs with those of HSs.

2. Materials and Methods
2.1. Study Design and General Information

This experimental heat pain study was performed in a laboratory at the University
of Lübeck. The study was conducted in accordance with the Declaration of Helsinki
and agreement from the Ethics Committee of the University of Lübeck (reference number
19-262). The study was preregistered at the German Clinical Trials Register (DRKS00025295).
Data are reported according to the STROBE statement [23]. To exploratively compare the
autonomic output of CBPP during experimental heat pain stimulation with the responses of
healthy participants, we used data from the PainMonit Database (PMDB) [24]. Participants
were recruited by distributing recruitment flyers from June 2021 to May 2022.

2.2. Participants

HSs were eligible to participate if they stated they were healthy and pain-free on the
day of examination. CBPPs were eligible to participate if they had chronic back pain lasting
more than three months in the last two years. Participants had to be aged between 18 and
65 years. They were excluded if they had comorbidities affecting the nervous system,
cardiovascular diseases or psychiatric illnesses requiring treatment or medication, dermal
diseases at the non-dominant forearm, other diagnosed comorbidities requiring systematic
drug consumption or if they were pregnant.

2.3. Outcome Measures

Previous research has evaluated various markers for their use in automated pain
assessment [25], ranging from ANS markers such as Heart Rate Variability (HRV), Electro-
dermal Activity (EDA) or pupillary reflexes to biopotentials such as neuronal signaling, and
neuroimaging such as monitoring brain cell activity using Position Emission Tomography
(PET) scans. In particular, sensory systems to record responses from the ANS have been
popular because these modalities are relatively easy to acquire (especially compared to
neuroimaging or neural signalling methods). For example, the publicly available BioVid
Heat Pain Database (BVDB) introduced by Walter et al. [26] in 2013 enabled researchers
to investigate EDA, Electrocardiogram (ECG), and Electromyogram (EMG) changes in
response to heat stimuli in healthy subjects. One of the findings, supported by multiple
sources, is that skin conductance is sensitive to thermal stimuli and has been identified as
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the best single channel for automated pain detection [27–30], even to the point where fusing
more modalities reduces classification rates [31]. This relationship between thermal stimuli
and EDA has also been validated separately by different researchers. Another study [32,33]
used thermal grills, which use interlaced tubes to evoke an illusion of pain by presenting
cool and warm stimuli simultaneously. A high contribution of several properties of EDA to
the performance of pain detection models and an increase in the EDA signal with higher
stimulation were observed. Although significantly inferior to the EDA signal, ECG and
EMG still contain valuable information for the pain recognition task and are expected to
improve classification rates through dedicated fusion approaches [31,34]. In addition, the
use of Blood Volume Pulse (BVP) was evaluated in separate studies to investigate its use in
predicting pain in patients undergoing surgery [35]. An accuracy of 86.79% in a 2-class pain
status classification revealed the relevant information of BVP for pain recognition. As acute
pain increases the respiratory frequency, flow, and volume [10], it has been successfully in-
corporated into the fusion of physiological sensor modalities for pain detection before [36].
However, it is not as commonly used in the research community compared to the channels
of the sensor mentioned above. Finally, Gouverneur et al. [37] showed that physiological
time series data captured with wearable devices only may be sufficient for the detection of
a level of pain as well.

Thus, indicators of autonomic responses to pain were measured via different wearable
sensors (respiBAN Professional, Plux Wireless Biosignals S.A., Portugal; E4 Wristband, Em-
patica, United States) attached to the participant’s body. Both devices and the used adhesive
electrodes are shown in Figure 1. The physiological responses were identified in depen-
dence on the perceived pain intensity ratings of five different stimulus intensities measured
via a Computerized Visual Analogue Scale (CoVAS) (Medoc, Ramat Yishai, Israel).

Skin Conductance (SC) was detected via self-adhesive electrodes attached to the
medial phalanx of the index and middle finger of the non-dominant hand. The electrodes
were connected to the respiBAN Professional (RB) device to record the EDA continuously
during experimental heat pain stimulation. In addition, another EDA signal was measured
by the Empatica E4 (E4) worn on the wrist of the non-dominant arm. For the measurement
of HRV, three self-adhesive electrodes of the RB device were placed as an ECG attachment
at the participant‘s chest.

(a) E4. (b) RB.
(c) Sensor with self-adhesive elec-
trodes.

Figure 1. The wearable devices recording several physiological modalities during data acquisition of
the PainMonit Database: (a) Empatica E4 (E4), (b) respiBAN Professional (RB), and (c) Electrodes
used for the RB, i.e., Electromyogram.

A second measure of cardiac activity was acquired by the E4 that records the BVP.
The respiratory belt of the RB device was set at the participant‘s chest to record respiration
parameters during experimental heat pain stimulation. The piezoelectric sensor of the
device measured the dilation of the belt during experimental heat pain stimulation. The
signals were transferred to a computer and visualized as a respiratory wave. Self-adhesive
electrodes were attached to the trapezius muscle (pars descendens) of the non-dominant
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body site to record neck muscle activity during experimental heat pain stimulation. The
sensors of the RB device measured the incoming signals as an EMG.

In addition to the autonomic parameters, basic characteristics of the sample (gender,
age, comorbidities) and data of the Pain Vigilance Awareness Questionnaire (PVAQ) Ger-
man version, Pain Catastrophizing Scale (PCS) and Pain Health Questionnaire (PHQ-9)
were collected. The PVAQ addresses the awareness, consciousness, vigilance and observa-
tion of pain [38]. The PCS contains questions about catastrophizing of pain [39], and the
PHQ-9 addresses symptoms of depression [40].

2.4. Study Procedure

To guarantee a standardized study procedure and reduce bias, the study working
group in Lübeck created a guideline for the data acquisition phase. Participants sat on
a chair in a laboratory of the University of Lübeck and first had to fill out the digital
questionnaires (PVAQ, PHQ-9, PCS) after they gave informed consent. The documents
were pseudonymized and stored in a second room of the laboratory. Before starting
the experimental heat pain stimulation, the devices and sensors were attached to the
participant’s body.

To detect the individual Pain Tolerance (PT) and Pain Tolerance Threshold (PTT), a
calibration phase was conducted before the main phase of the data acquisition. The CE-
certified Contact Heat-Evoked Potential Stimulator (CHEPS; Medoc, Ramat Yishai, Israel)
was attached to the central non-dominant forearm of the participant by a 20 mmHG inflated
blood pressure cuff to standardize the contact between the skin and the thermode. Using
the Medoc Software (version 6.4.0.22), the participants received manually applied heat
pain stimuli of 10 s duration with increasing intensity, beginning at 40 ◦C and increased to
a maximum of 49 ◦C in steps of 1 ◦C. The subjects were instructed to rate each stimulus
on the CoVAS scale from “no pain” (=0/100) to “worst pain imaginable” (=100/100) as
exactly as possible. PT and PTT were recorded on a separate Microsoft Office Excel list.
After the calibration phase, there was a test run to check PT and PTT. For this, participants
received one stimulus rated as not painful and one stimulus rated as most painful. If the
test failed, the temperatures were adopted in the Microsoft Office Excel list, and the test
run started again. This means that, e.g., if the first stimulus is rated painful on the CoVAS
scale, although it has to be not painful, the temperature is reduced by the software. After
identification of the individual PT and PTT, four painful stimuli temperatures were defined
using the found thresholds and the following equation:

Pi = PT + (i× R), (1)

where i ∈ 1, 2, 3, 4 and R = (PTT − PT)/4. A non-painful stimulus was set below the
painful threshold temperature given as NP = PT − R. The found values were adjusted in
the main programme of the Medoc Software for each subject individually. To start the main
experimental phase, the RB and E4 devices were connected to the working computer via
Bluetooth. The participants were instructed to relax their non-dominant arms and fingers
to avoid movement and, thus, artefacts in the sensor data. The probands subsequently
received 40 heat pain stimuli of five different intensities in a randomized order. The
stimuli lasted for 10 s with randomized breaks of 15–30 s between the stimuli. To avoid
strong irritations of the skin, the thermode device was moved two centimeters distally or
proximally after 20 stimuli. After 20 to 25 min, the experimental phase was completed, and
all sensors were removed from the subject‘s body.

2.5. Machine Learning Analyses

To evaluate the predictive power and to account for the differences between the two
given datasets (PMDB dataset for HSs and ChronPainMonit dataset for CBPPs), the datasets
were analysed using Machine Learning (ML) techniques. Individual steps in the pattern
recognition chain were followed to create an automated pain classification system for each
of the two datasets. First, the continuous time series data from the data acquisition were
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segmented. Specific characteristics, known as Hand-Crafted Features (HCF), were then
extracted from the various sensor modalities. Finally, a Random Forest (RF) [41] model was
trained and evaluated in a leave-one-subject-out (LOSO) cross-validation (CV). To estimate
the impact of each feature, Recursive Feature Elimination (RFE) was applied to find the
best feature set for the given pain classification task.

2.5.1. Segmentation

ML systems rely on training datasets of data samples and associated labels. Following
Gouverneur et al. [24], the continuous data streams of the data acquisition were segmented
by cutting out areas of 10 s during the stimulus as painful windows. Moreover, the 10 s
prior to each segment were used as non-painful baseline windows (B). NP and P1–P2 were
applied as associated class labels during stimuli. In addition, CoVAS responses during the
2 s after the stimulus were also analyzed to capture late responses. Figure 2 illustrates the
segmentation process, showing painful stimuli in red and non-painful baseline windows
in green.
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Figure 2. Visualization of the applied segmentation step on the retrieved data stream. The 10 s
windows were extracted during the heat stimuli as painful windows (red) and before the stimulus as
baseline windows (green).

2.5.2. Feature Extraction

According to [42], a variety of features, from simple statistical to sophisticated literature-
based, were calculated separately for the E4 and RB EDA signals. For the ECG signal, the
mean, standard deviation, and slope of the linear regression of RR intervals, Root Mean
Square of the Successive Differences (RMSSD) and number of R peaks were retrieved.
Inhalation and exhalation phases in the respiratory signal were computed using a trape-
zoidal detection [43], and characteristics, such as the number of phases or their mean
amplitude, were extracted afterwards. For the EMG signal, an aggregation of the signal
power spectrum was also performed. Finally, all available features for the corresponding
sensor modality were extracted using Neurokit 2 [44] (neurokit2==0.2.3) with Python. Finally,
simple statistical features such as max, min, range, standard deviation, interquartile range,
mean, local maxima and minima and the mean of the absolute value were calculated for all
modalities. A total of 323 features were extracted for the various sensor modalities.

2.5.3. Classification and Evaluation

For classification, RF models with 100 trees were trained on binary tasks such as B
vs. P4 for two main reasons. First, RFs have been shown to provide robust classification
performance for a variety of ML tasks. Similarly, RFs perform significantly better in
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discriminating between no pain and high pain intensities in direct comparison to other
traditional learning algorithms such as Support Vector Machines (SVMs) or even Neural
Network (NNs) [24,34,45]. On the other hand, by their very nature, RFs allow a relatively
straightforward interpretation of their decision process, especially in contrast to Deep
Learning (DL), where networks often act as black boxes with only input and output being
transparent. The tree-like structure of the forest’s underlying entities, individual Decision
Trees (DTs), implements a hierarchical decision path [46]. At the top of the tree is a root,
from which several internal nodes follow, applying a splitting function to the incoming data
until a leaf of the model presents the predicted outcome. The overall complex prediction
is thus broken down into minor problems based on individual features, which can be
viewed and interpreted later to estimate a feature’s performance. Moreover, the models
were evaluated using a LOSO CV, as it allows for fair evaluation of subject-specific data
and is commonly used in the pain recognition field. In a LOSO evaluation, the performance
is evaluated in several runs (folds). In each fold, one subject’s data are used as the test set,
while the remaining data are used as the training set. This process is repeated so that each
subject in the dataset has been part of the test set once. The overall performance is obtained
by calculating the mean value of all folds’ performances. As data from the training set
are never part of the test set, a realistic estimate of the classifier performance is estimated.
The performance is given in terms of accuracy, as both evaluated datasets have balanced
classes (equal number of samples per class), and it is the most commonly used metric in
automated pain recognition systems.

To find an optimal set of features for HSs and CBPPs concerning the task of au-
tomated pain recognition, RFE was performed. It is an effective method for selecting
predictive features [47] that has been applied to various ML tasks in the past. First, the
classification performance is computed using all available features. By calculating feature
importance from the impurity (sum of squared deviations around the node average) of
the RF model [48], the least important feature of the set is identified and discarded. The
classification system is then trained again on the newly found feature space. This step is
repeated until only one feature remains. Usually, an optimal subset of features from the
original dataset is found.

3. Results
3.1. Characteristics of Participants

Twenty-four CBPPs and 59 HSs were recruited from August 2020 to June 2022. After
examination for eligibility, three CBPPs were excluded. From 59 HSs and 21 CBPPs, eight
(seven HSs and one CBPP) were excluded due to technical problems during data acquisition.
A single imputation was performed to deal with missing data in six subjects. Characteristics
of participants of both groups are presented in Table 1.

Table 1. Characteristics of study participants.

HSs CBPPs pCharacteristics (n = 52) (n = 20)

Age (Years), Mean (SD) 27.4 (6.6) 40.9 (14.4) <0.001
Female, n (%) 35 (67.3) 15 (75) 0.534

BMI, Mean (SD) 23.4 (3.28) 24.7 (3.33) 0.106
PCS, Median (IQR) 14.0 (10.0) 12.0 (17.3) 0.015

PHQ-9, Median (IQR) 4.0 (2.3) 7.5 (7.0) 0.005
PVAQ, Median (IQR) 34.0 (10.0) 41.5 (18.8) 0.006

3.2. Machine Learning

Table 2 summarizes the classification performance for HSs evaluated in a LOSO CV
given in terms of accuracy. Each sensor modality alone and a combination of all are tested
for each binary task, i.e., no pain vs. high pain (B vs. P4).
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Table 2. Performance results (in %) of the Random Forest models trained on Healthy Subjects
evaluated in a leave-one-subject-out cross-validation for several tasks given in accuracy.

Sensor B vs. NP B vs. P1 B vs. P2 B vs. P3 B vs. P4

Bvp 53.49 52.52 50.45 50.72 53.52
Ecg 52.16 45.79 51.63 54.33 61.63

Eda_E4 55.65 56.49 60.63 66.71 72.28
Eda_RB 50.84 61.78 68.11 78.12 91.70

Emg 50.36 52.28 49.21 48.20 52.02
Resp 51.08 48.32 52.80 53.12 54.82
All 52.64 62.26 67.24 77.76 89.90

Similar to previous publications [27,31,34,49], no pain vs. high pain remains the
simplest task for the automated pain classification system yielding the best results. Other
tasks, like no pain vs. medium pain or lower pain classes, remain challenging and gradually
reduce the classification performance. For most sensor channels, only a performance
around chance can be achieved for the task of no pain vs. low pain. In particular, the task
of discriminating between no stimulus and a non-painful stimulus seems to pose problems
for the learning algorithms. The results for this task remain around chance (50%), with
the best results being achieved by EDA_E4 with an accuracy of 55.65%. In addition, the
various sensor modalities differ greatly in performance results. The EDA signal (from the
RB) yields the best classification performance scores with a maximum value of 91.70%,
whereas the EDA derived from E4 gives slightly worse performance for all tasks (72.28% for
B vs. P4). Moreover, the ECG sensor performs relatively decent, giving a best performance
of 61.63%. The classification systems based on other sensors (BVP, EMG and Respiration)
seem to struggle and only make a random estimate. A combination of all sensors remains
slightly worse than the EDA sensor (from the RB) alone with a best performance of 89.90%.
In contrast, Table 3 shows the results obtained for the participants with chronic back pain.
In general, the same paradigms can be found, and the outcomes do not differ greatly.
However, there is a slight drop in performance for the best single modality (EDA_RB) to
89.58%. Moreover, the best performance achieved with the ECG signal dropped to 54.17%,
while better results are achieved with the BVP signal, which now reaches up to 57.74%
accuracy. There is also a slight increase in performance for the EDA signal derived from
the E4, resulting in a performance of 74.40% for the B vs. P4 task.

Table 3. Performance results of the Random Forest models trained on Chronic Back Pain Patients
evaluated in a leave-one-subject-out cross-validation for several tasks given in accuracy.

Sensor B vs. NP B vs. P1 B vs. P2 B vs. P3 B vs. P4

Bvp 47.32 49.11 55.95 50.89 57.74
Ecg 55.65 49.40 52.98 54.76 54.17

Eda_E4 49.70 50.60 56.25 58.93 74.40
Eda_RB 52.68 54.17 69.05 76.19 89.58

Emg 44.64 48.51 47.92 51.19 54.76
Resp 47.02 52.98 54.17 48.21 51.19
All 51.19 55.95 67.56 74.70 88.39

To further test whether the two cohorts differed in terms of physiological responses to
pain, a small transfer study was also conducted. Table 4 summarizes the results for the RFs
trained on the PMDB and evaluated on the CBPP data in a LOSO CV for the different tasks.
Again, the results differ only marginally from those of the system trained on CBPP data
alone (Table 3).
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Table 4. Transfer performance results of the Random Forest models trained on the healthy subjects
and evaluated in a leave-one-subject-out cross-validation on chronic back pain patients for several
tasks given in accuracy.

Sensor B vs. NP B vs. P1 B vs. P2 B vs. P3 B vs. P4

Bvp 52.68 49.40 47.02 53.27 57.14
Ecg 50.30 53.27 48.81 43.75 53.27

Eda_E4 52.68 54.17 59.82 68.15 75.00
Eda_RB 53.87 56.25 66.96 77.98 87.80

Emg 51.49 51.19 47.62 48.81 46.73
Resp 49.11 53.57 55.65 48.21 56.25
All 51.79 58.33 65.48 76.19 88.10

To find an optimal feature set for the task of automated pain classification, RFE was
applied to the full feature space for the no pain vs. high pain task (as it is the most widely
used one in the ML community). Figure 3 visualizes the results showing the classification
performance in terms of accuracy for both datasets and the varying size of the feature space
(x-axis). Each point of the graph represents a performance result given in accuracy for a
LOSO CV. On the left side, the results of the original dataset can be found. Each subsequent
point in the sequence resembles the performance result obtained by eliminating one feature
from the existing feature space. Each test was performed five times to compensate for
random variations in the performance of the RF models. Only the best result of each
trial is presented here. The best performance of 93.62% with 15 features and 91.67% with
31 features could be achieved for the HS and CBPP datasets, respectively. In both optimal
feature sets, most of the features are derived from the EDA signal collected at the finger site.
While the model trained on healthy subjects focused on skin conductance characteristics
derived from the RB, selecting only two respiration and 13 features from the EDA, the
system selected a wider range of metrics from different sensors for the CBPPs. Here, three
BVP, ten EDA (E4), 15 EDA (RB), one ECG and two EMG features were selected. The
complete list of features is summarized in Table 5.
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Figure 3. Comparison of the effect of different amounts of features (x-axis) on the resulting accuracy
(y-axis) of a Random Forest evaluated on Healthy Subjects (HSs) and Chronic Back Pain Patients
(CBPPs) in a leave-one-subject-out cross-validation for the no pain (B) vs. high pain (P4) task.
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Table 5. Optimal number of features found for the best accuracy of a Random Forest evaluated on
Healthy Subjects and Chronic Back Pain Patients in a leave-one-subject-out cross-validation for the
task no pain (B) vs. high pain (P4) using Recursive Feature Elimination.

Dataset # Features Accuracy Feature Set

CBPPs 31 91.67

’Bvp_Rate_Max_nk’, ’Bvp_Rate_Min_nk’, ’Bvp_Rate_SD_nk’,
’Eda_E4_diff_start_end’, ’Eda_E4_range_tonic’, ’Eda_E4_mean_rise_times’,

’Eda_E4_mean_offsets’, ’Eda_E4_norm_mean’, ’Eda_E4_dPhEDA_3’,
’Eda_E4_dPhEDA_10’, ’Eda_E4_TVSymp_6’, ’Eda_E4_TVSymp_7’,

’Eda_E4_SCR_RecoveryTime_nk’, ’Eda_RB_range’, ’Eda_RB_mean_abs_2_diff’,
’Eda_RB_argmax’, ’Eda_RB_argmin’, ’Eda_RB_diff_start_end’,

’Eda_RB_range_tonic’, ’Eda_RB_dPhEDA_3’, ’Eda_RB_dPhEDA_8’,
’Eda_RB_dPhEDA_9’, ’Eda_RB_dPhEDA_13’, ’Eda_RB_dPhEDA_14’,
’Eda_RB_dPhEDA_15’, ’Eda_RB_TVSymp_1’, ’Eda_RB_MTVSymp_1’,

’Eda_RB_SCR_RecoveryTime_nk’, ’Ecg_Rate_Baseline_nk’,
’Emg_mean_abs_1_diff’, ’Emg_SM3’

HSs 15 93.62

’Eda_E4_range_tonic’, ’Resp_min’, ’Resp_mean_in’, ’Eda_RB_max’, ’Eda_RB_min’,
’Eda_RB_iqr’, ’Eda_RB_argmax’, ’Eda_RB_argmin’, ’Eda_RB_diff_start_end’,

’Eda_RB_std_tonic’, ’Eda_RB_dPhEDA_3’, ’Eda_RB_dPhEDA_4’,
’Eda_RB_dPhEDA_6’, ’Eda_RB_dPhEDA_16’, ’Eda_RB_TVSymp_5’

3.3. Autonomic Responses and Heat Pain Intensities

Moreover, box plots of the applied maximum thermode temperatures and maximum
CoVAS ratings per dataset (HSs and CBPPs) and stimulus (NP to P4) were generated to
visually inspect variations in the calibration (and thus pain thresholds and pain tolerance
thresholds) and the subjective pain ratings for the two groups. Figure 4 visualizes the
applied thermode temperature for each individual stimulus separated by the two groups.
Applied mean temperatures were slightly lower for NP and P1 for CBPPs in comparison to
the other group.
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HS CBPP

Figure 4. Box plots of applied thermode temperatures per dataset and stimulus. There are non-painful
(NP) and four painful (P1–P4) stimulus temperatures. Values have been individually evaluated for
Healthy Subjects (HSs) and Chronic Back Pain Patients (CBPPs).

Furthermore, Figure 5 visualizes the maximum CoVAS rating during each individual
stimulus separated by the two groups. The mean values of the CoVAS ratings were visibly
slightly higher in CBPPs compared to the HSs dataset.
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Figure 5. Box plots of the maximal Computerized Visual Analogue Scale (CoVAS) ratings per dataset
and stimulus. There are non-painful (NP) and four painful (P1–P4) stimulus temperatures. Values
have been individually evaluated for Healthy Subjects (HSs) and Chronic Back Pain Patients (CBPPs).

Similar to the analysis of individual CoVAS ratings and applied temperature stimulus
values, several physiological responses to pain characteristics were also examined. The
main characteristics of the pain level detection task for each modality (Table 5) were
examined in more detail individually for the two groups. In other words, the last remaining
feature for each sensor modality is shown for the HSs-based RFE procedure. Figures 6–11
show boxplots for the heart rate derived from the BVP, the time when the maximum heart
rate occurs computed by the ECG sensor, the range of the tonic component of the EDA
derived from the E4, the time when the maximum value of the EDA measured by the
RB is reached, the mean absolute values of the first differences of the standardized EMG
signal, and the minimum values of the respiration signal, respectively. In comparison to
Figures 4 and 5, the physiological properties were also calculated and visualized for the
segments of the baseline windows.
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Figure 6. Box plots of the heart rate derived from the Blood Volume Pulse (BVP) per dataset and
stimulus. There are non-painful (NP) and four painful (P1–P4) stimulus temperatures. Values have
been individually evaluated for Healthy Subjects (HSs) and Chronic Back Pain Patients (CBPPs).
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Figure 7. Box plots of the time when the maximum heart rate occurs computed by the Electrocardio-
gram (ECG) sensor per dataset and stimulus. There are non-painful (NP) and four painful (P1–P4)
stimulus temperatures. Values have been individually evaluated for Healthy Subjects (HSs) and
Chronic Back Pain Patients (CBPPs).
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Figure 8. Box plots of the range of the tonic component of the Electrodermal Activity (EDA) derived
from the Empatica E4 per dataset and stimulus. There are non-painful (NP) and four painful (P1–P4)
stimulus temperatures. Values have been individually evaluated for Healthy Subjects (HSs) and
Chronic Back Pain Patients (CBPPs).
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Figure 9. Box plots of the time when the maximum value of the Electrodermal Activity (EDA)
measured by the RB is reached per dataset and stimulus. There are non-painful (NP) and four painful
(P1–P4) stimulus temperatures. Values have been individually evaluated for Healthy Subjects (HSs)
and Chronic Back Pain Patients (CBPPs).
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Figure 10. Box plots of the mean absolute values of the first differences of the standardized Elec-
tromyogram (EMG) signal per dataset and stimulus. There are non-painful (NP) and four painful
(P1–P4) stimulus temperatures. Values have been individually evaluated for Healthy Subjects (HSs)
and Chronic Back Pain Patients (CBPPs).
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Figure 11. Box plots of the minimum values of the respiration signal per dataset and stimulus. There
are non-painful (NP) and four painful (P1–P4) stimulus temperatures. Values have been individually
evaluated for Healthy Subjects (HSs) and Chronic Back Pain Patients (CBPPs).

4. Discussion

This experimental study investigated the autonomic nervous system-associated output
of healthy subjects and chronic back pain patients during experimental heat pain stimula-
tion with individually calibrated stimulus intensities. ML techniques were used to evaluate
the use of different sensor modalities for the task of automated pain detection in healthy
subjects and patients with chronic back pain. The negligible differences in accuracy between
the two groups (Tables 2 and 3) suggest that there is little difference in the physiological
response to pain between healthy subjects and patients with chronic back pain, at least from
the perspective of the learning algorithms and the given detection task. This assumption
is further supported by the transfer learning results (Table 4), which show that models
trained on healthy subjects can still be used on patients with chronic back pain. The varying
dataset sizes could also explain the minor differences in performed accuracy between the
two datasets. In addition, the in-group results provide further insight into the field of
automated pain detection. In general, the performance results around random guess for
the B vs. NP task indicate that there is no difference in the physiological outcomes for a
resting and a non-painful state, suggesting that the success in discriminating no pain from
pain for the other tasks is related to the pain responses themselves rather than the detection
of physiological responses to an applied thermal stimulus. As has already been shown,
tasks with larger margins between pain intensities (B vs. P4) are more manageable for the
learning algorithms to cope with than smaller ones (B vs. P1). Skin conductance remains
one of the most promising and successful modalities that can be used. The performance of
models trained only on the EDA (RB) signal outperforms others and even a combination
of all (Tables 2 and 3). Only in the case of using the RF trained on HSs for the CBPPs
group (Table 4), a fusion of all channels improves the accuracy compared to relying only
on the EDA signal. The study with two different sources for this modality shows that the
electrodes used and their placement are highly important. The better performance of the
standard electrode site at the fingers (RB) compared to the use of the wrist band (E4) shows
that the choice of electrode site has a significant impact on automated pain detection tasks.
The fusion of various sensor modalities only improved results for tasks like B vs. P1 or, in
the case of transfer learning, further highlighting the dominance for characteristics in the



Sensors 2023, 23, 8231 14 of 19

skin conductance for the task at hand but indicating that an aggregation of various sensor
sources can lead to improved models.

Exploratory analysis of maximum CoVAS values per stimulus (Figure 5) and applied
stimulus temperatures revealed that CBPPs had slightly higher subjective pain intensity rat-
ings in all stimulus levels and slightly lower temperatures for NP and P1 stimuli (Figure 4),
suggesting a lower initial pain threshold. Exploratory analyses of the features of the phys-
iological responses that contribute the most to the classification outcomes (Figures 6–11)
show minimal differences between the two groups. A reduction in activity in the EDA
signal in CBPPs could be introduced by the increased age of the group itself [50]. This
slight reduction in EDA could also justify the reduced performance of the automated pain
classification system on CBPPs in comparison to HSs. Here, a reduced overall activation
yields less information to evaluate the subject’s level of pain. As previously shown [42],
the EDA sensor presents simplistic characteristics for the automated recognition of pain.
Basically, a rise in EDA is associated with pain, whereas a reduction or monotonic levels of
skin conducted are related to non-painful segments. An overall minimized activation in
the EDA signal could thus constitute the slightly lower performance of the EDA (RB) signal
in chronic back pain patients compared to healthy subjects. Moreover, both box plots of
the given EDA features show visible differences in the distribution for B and P4, showing
their use for the classification task. Generally, EDA activation seems to be associated with
painful segments, as an increase in tonic range is visible for the highest pain class (Figure 8).
Moreover, maximum EDA peaks are found in higher pain classes (Figure 9), indicating
that a rise of skin conductance with a late peak value is associated with pain, whereas a
decreasing EDA signal (with a maximum value at the beginning of the time window) is
associated with non-painful windows. Finally, differences in respiratory and EMG features
between HSs and CBPPs show deeper respiration in CBPPs and more changes in the EMG
signal compared to healthy probands. No exploratory differences were found between the
groups for the BVP and ECG sensors.

The results of the exploratory analyses suggest that the autonomic output of chronic
back pain patients during experimental heat pain stimulation may not differ from the
output of healthy subjects, except for respiration. Interestingly, patients with chronic back
pain showed higher values than healthy controls. This may indicate that chronic back pain
patients may have an increased respiratory function with deeper flow compared to healthy
controls during experimental heat pain stimulation. A systematic review by Jafari et al. [10]
supports this result. They investigated the effect of experimental and clinical pain on
respiratory outcomes and reported evidence for an increased inspiratory rate and flow as
an autonomic response to pain. Furthermore, one of the included clinical studies observed
increased ventilation (in minutes) in chronic pain patients [10]. The authors hypothesized
that an increased respiratory response to pain reflects one component of the fight-or-flight
autonomic reaction, preparing the organism for action [10]. Additionally, the authors
investigated the effects of respiration on pain; some of the included experimental studies
found evidence that slow breathing, breath holding, or relaxation instructions reduced
pain [10]. Further research on breathing exercises in treating chronic back pain supports this
result [51]. Thus, the finding that chronic back pain patients showed increased respiratory
function compared to healthy controls may indicate a higher awareness of this hypoalgesic
effect in patients with chronic pain. The lack of further research about the underlying
neurophysiological mechanisms for respiratory responses to acute or chronic pain indicates
a great demand for future studies to explore this subject.

Furthermore, the slight differences either in CoVAS ratings or in stimulus intensities
indicate that chronic back pain patients may not be more sensitive to experimentally
induced heat pain stimulation than healthy controls. This is inconsistent with previous
investigations: the study by Carriere et al. [52] reported an increased sensitivity of chronic
low back pain patients to mechanical pain procedures. The cross-sectional study further
suggested that pain catastrophizing and higher pain expectancies might lead to an altered
pain sensitivity [52]. These suggestions are consistent with the findings of Meints et al. [53]),
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who identified an association between pain catastrophizing and pain sensitization. This
might explain the lack of a difference between CoVAS ratings because the included chronic
back pain patients had a consistently low PCS score. However, PCS scores significantly
differed from those of healthy subjects. Results might be different in a sample showing
higher PCS scores.

Limitations

The generalizability of the current data is limited to healthy subjects and chronic
low back pain populations. The results of this study provide a first impression of chronic
back pain patients’ autonomic reactions compared to healthy controls. Since pain is still a
subjective experience modulated by different internal and external factors [54–56] and the
fact that chronic back pain is a heterogeneous pathology [17], the results of this experimental
study might have been influenced by other pain-modulating factors. Additionally, due
to exploratory analyses, it was not possible to control our calculations for covariates, as
there were differences in baseline characteristics (e.g., age, PVAQ, PHQ-9) between the
groups. Furthermore, slightly more female than male subjects participated in both groups.
However, previous studies assume that a sex-specific influence on autonomic parameters
is rather unlikely [57–59]. Due to the small sample size of CBPPs, subgroup analyses
could not be performed. However, there was no statistically significant difference in
the proportion of female participants between the healthy and chronic back pain groups.
Therefore, no influence on the explorative between-group results is expected. A further
limitation is the constraint of experimentally induced heat pain. There is a demand for
future studies with greater sample size and other pain induction methods or clinical pain
studies to obtain a clearer understanding of the complex underlying mechanisms and
relationships of nociception, autonomic reactions, and chronic pain [17,60]. In addition,
there is a need for further investigations on pain assessment methods and the potential of
wearable devices [61].

5. Conclusions

In summary, this study compared ML models trained on several autonomic parameters
to predict the level of pain in HSs and CBPPs. The datasets used include experimental heat
pain stimulation and several physiological responses recorded by two wearable devices.
RFs were trained to evaluate their performance in discriminating different levels of pain
and to identify critical sensors and features for the classification task using RFE. Similar
to the results of previous publications, superior classification rates were achieved by
distinguishing between no pain and severe pain as opposed to lower levels of pain. While
EDA remained the best-performing modality, RFE applied to all modalities suggests an
optimal subset of features, including those derived from multiple sensor channels. Thus,
future work should focus on efficiently fusing different modalities to increase automated
pain classification rates for individual subject cohorts. Finally, the learning algorithms
indicate that there appears to be little difference between the physiological responses of
HSs and CBPPs to pain, as classification performances are comparable for both groups,
except for respiration parameters. The results provide a first impression of the potential
for developing a pain-monitoring instrument based on the ANS. More findings within this
topic can be relevant to enhance the quality of chronic pain care and to develop further
therapeutic and pain assessment methods.
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Abbreviations
The following abbreviations are used in this manuscript:

ANS Autonomic Nervous System
BVDB BioVid Heat Pain Database
BVP Blood Volume Pulse
CBPPs Chronic Back Pain Patients
CoVAS Computerized Visual Analogue Scale
CV Cross-Validation
DL Deep Learning
DT Decision Tree
E4 Empatica E4
ECG Electrocardiogram
EDA Electrodermal Activity
EEG Electroencephalography
EMG Electromyogram
EOG Electrooculogram
GSR Galvanic Skin Response
HCF Hand-Crafted Features
HR Heart Rate
HRV Heart Rate Variability
HSs Healthy Subjects
IASP International Association for the Study of Pain
IBI Inter-Beats Interval
LOSO Leave-One-Subject-Out
LR Linear Regression
LSTM Long Short-Term Memory
ML Machine Learning
MLP Multi-Layer Perceptron
MSE Mean Squared Error
NCS Nociception Coma Scale
NN Neural Network
NRS Numerical Rating Scale
PMDB PainMonit Database
PCS Pain Catastrophizing Scale
PET Position Emission Tomography
PHQ-9 Pain Health Questionnaire
PPG Photoplethysmography
PT Pain Tolerance
PTT Pain Tolerance Threshold
PVAQ Pain Vigilance Awareness Questionnaire
RB respiBAN Professional
RF Random Forest
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RFE Recursive Feature Elimination
RMS Root Mean Square
RMSE Root Mean Square Error
RMSSD Root Mean Square of the Successive Differences
SC Skin Conductance
SCL Skin Conductance Level
SCR Skin Conductance Response
SDNN Standard deviations of the IBIs
sEMG surface Electromyogram
SVM Support Vector Machine
VAR Variance
VAS Visual Analogue Scale
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operant conditioning: Systematic review and meta-analysis. J. Pain 2019, 20, 861–875. [CrossRef] [PubMed]

56. Wei, H.; Zhou, L.; Zhang, H.; Chen, J.; Lu, X.; Hu, L. The influence of expectation on nondeceptive placebo and nocebo effects.
Pain Res. Manag. 2018, 2018, 8459429. [CrossRef] [PubMed]

57. Aslaksen, P.M.; Myrbakk, I.N.; Høifødt, R.S.; Flaten, M.A. The effect of experimenter gender on autonomic and subjective
responses to pain stimuli. Pain 2007, 129, 260–268. [CrossRef] [PubMed]

58. Breimhorst, M.; Hondrich, M.; Rebhorn, C.; May, A.; Birklein, F. Sensory and sympathetic correlates of heat pain sensitization and
habituation in men and women. Eur. J. Pain 2012, 16, 1281–1292. [CrossRef]

59. Ndayisaba, J.P.; Fanciulli, A.; Granata, R.; Duerr, S.; Hintringer, F.; Goebel, G.; Krismer, F.; Wenning, G.K. Sex and age effects on
cardiovascular autonomic function in healthy adults. Clin. Auton. Res. 2015, 25, 317–326. [CrossRef]

60. Drummond, P.D. Sensory–autonomic interactions in health and disease. Handb. Clin. Neurol. 2013, 117, 309–319.
61. Leroux, A.; Rzasa-Lynn, R.; Crainiceanu, C.; Sharma, T. Wearable devices: Current status and opportunities in pain assessment

and management. Digit. Biomarkers 2021, 5, 89–102. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.bbe.2019.05.001
http://dx.doi.org/10.3922/j.psns.2014.041
http://dx.doi.org/10.1007/s10867-020-09547-4
http://www.ncbi.nlm.nih.gov/pubmed/32444917
http://dx.doi.org/10.1123/jsr.2015-0199
http://www.ncbi.nlm.nih.gov/pubmed/27632818
http://dx.doi.org/10.1002/ejp.1348
http://www.ncbi.nlm.nih.gov/pubmed/30506913
http://dx.doi.org/10.1097/j.pain.0000000000001461
http://www.ncbi.nlm.nih.gov/pubmed/30531308
http://dx.doi.org/10.1097/j.pain.0000000000001573
http://www.ncbi.nlm.nih.gov/pubmed/31107415
http://dx.doi.org/10.1016/j.jpain.2019.01.009
http://www.ncbi.nlm.nih.gov/pubmed/30690165
http://dx.doi.org/10.1155/2018/8459429
http://www.ncbi.nlm.nih.gov/pubmed/29755621
http://dx.doi.org/10.1016/j.pain.2006.10.011
http://www.ncbi.nlm.nih.gov/pubmed/17134832
http://dx.doi.org/10.1002/j.1532-2149.2012.00133.x
http://dx.doi.org/10.1007/s10286-015-0310-1
http://dx.doi.org/10.1159/000515576

	Introduction
	Materials and Methods
	Study Design and General Information
	Participants
	Outcome Measures
	Study Procedure
	Machine Learning Analyses
	Segmentation
	Feature Extraction
	Classification and Evaluation


	Results
	Characteristics of Participants
	Machine Learning
	Autonomic Responses and Heat Pain Intensities

	Discussion
	Conclusions
	References

