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Abstract: To address the challenges in real-time process diagnosis within the semiconductor manu-

facturing industry, this paper presents a novel machine learning approach for analyzing the time-

varying 10th harmonics during the deposition of low-k oxide (SiOF) on a 600 Å undoped silicate 

glass thin liner using a high-density plasma chemical vapor deposition system. The 10th harmonics, 

which are high-frequency components 10 times the fundamental frequency, are generated in the 

plasma sheath because of their nonlinear nature. An artificial neural network with a three-hidden-

layer architecture was applied and optimized using k-fold cross-validation to analyze the harmonics 

generated in the plasma sheath during the deposition process. The model exhibited a binary cross-

entropy loss of 0.1277 and achieved an accuracy of 0.9461. This approach enables the accurate pre-

diction of process performance, resulting in significant cost reduction and enhancement of semicon-

ductor manufacturing processes. This model has the potential to improve defect control and yield, 

thereby benefiting the semiconductor industry. Despite the limitations imposed by the limited da-

taset, the model demonstrated promising results, and further performance improvements are antic-

ipated with the inclusion of additional data in future studies. 

Keywords: artificial neural network (ANN); low-k oxide (SiOF); harmonics; high-density plasma 

(HDP); time varying 

 

1. Introduction 

The continuous increase in semiconductor integration has resulted in the increased 

sensitivity of plasma and inter-reactions owing to its complex surface microscopic topog-

raphy. The challenges posed by abnormal phenomena in plasma reactors resulting from 

electrical, chemical, optical, and physical interactions make it difficult to determine the 

exact cause of this increase. Consequently, defect control and yield improvement are be-

ing researched in each process [1–6]. 

Input parameters such as the pressure, gas, power, process gap, and impedance of a 

process system have been utilized for anomaly detection and equipment diagnosis 

through trends and statistical management using fault detection and classification (FDC) 

systems. However, the increasing complexity and number of steps in the process owing 

to miniaturization have resulted in unexpected results and new variables. In addition, the 

reliability of process management using sampling measurement data, which were previ-

ously used for defect and yield management from wafer to wafer or lot to lot, has de-

creased. Therefore, real-time process performance diagnosis using data generated from 

sensors in the system during execution has become necessary. 
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Real-time process diagnosis has been developed by applying machine learning (ML) 

techniques using input parameters and process results combined with virtual metrology 

(VM) technology [7–14]. Recently, plasma-information-based virtual metrology (PI-VM) 

has been actively researched, and highly accurate virtual models that predict process results 

by linking plasma factors that affect process characteristics have been developed [15–17]. 

Artificial intelligence (AI) mimics biological structures using neuronal inputs as com-

puting devices and assigns weights that indicate synaptic connection strengths [18–23]. 

Learning is achieved by adjusting the weights assigned to each input. The sensor values 

and plasma information generated during semiconductor processes are generated as 

time-varying data, and deep learning is applied in a structured data format that includes 

label values that reflect the process results. A virtual model formed using deep learning 

can be used for classification and prediction. 

Recently, neural-network-based algorithms have become increasingly popular as 

methods for anomaly detection and equipment diagnosis, replacing traditional FDC sys-

tems. These algorithms can be applied to various types of data, such as images and signals, 

owing to their ability to solve problems using nonlinear approaches. Examples include 

regression, modeling, clustering, classification, and big data analysis [24–27]. 

The objective of this study was to develop a virtual prediction model utilizing time-

varying harmonic data, which are plasma parameters, generated during the low-k oxide 

(SiOF) deposition process in a high-density (HDP) chemical vapor deposition (CVD) sys-

tem. An artificial neural network (ANN) model was constructed using a large amount of 

bias radio frequency (RF) 10th (reverse) harmonic time-varying data obtained through a 

1x process. The thickness of the thin liner in the low-k deposition process had a significant 

impact on the yield, and the thin liner and SiOF were continuously deposited. The objec-

tive of the VM model was to classify whether the thickness of the thin liner falls within 

the normal yield range using the time-varying data of harmonics generated during the 

process. 

Building upon the foundations of previous research in PI-VM, it is evident that the 

approach to PI parameterization has been instrumental in crafting high-precision VM. 

This methodology demonstrated significant success in real-world OLED display produc-

tion [15]. While these contributions have been pivotal in highlighting the potential of PI-

VM to overcome challenges commonly observed in statistics-based VM models, our in-

vestigation takes a step further. We aim to refine these methodologies and contribute more 

comprehensively to the existing body of knowledge. With this context in mind, the subse-

quent sections delve deeper into our unique approach, experiments, and findings. 

In this study, we developed the application of an ANN for fault detection through 

classification. First, we performed labeling based on the results of a process and then cre-

ated a classification model using the corresponding data. Next, we tested the influence of 

the hyperparameter values on the model, including the number of hidden layers and 

nodes in each layer. Finally, we tested various models and determined an optimal classi-

fication model using deep learning. With this model, a virtual prediction model with high 

accuracy can be implemented within 60 s of data collection with cost reduction. Further-

more, our research stands out as it pioneers the use of ANN in the realm of semiconductor 

fault detection. It underscores the profound impact of hyperparameter tuning on the per-

formance of the model and offers a blueprint for achieving high-precision real-time pro-

cess monitoring in semiconductor manufacturing. 

2. Materials and Methods 

SiOF deposition is applied in semiconductor processes to fill gaps between metal 

lines and prevent the crosstalk of signals in multilayer metal lines. The deposition equip-

ment used in this experiment was an Applied Materials HDP CVD 200 mm (Ultima) sys-

tem. Figure 1 shows a schematic illustration of the harmonic diagnostic system, demon-

strating the combination of harmonics generated during the deposition process and an 

ANN-based model for real-time process diagnosis. The schematic shows how the time-
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varying data from the harmonics are input into the ANN model, which then classifies 

whether the thickness of the thin liner falls within the normal yield range. This integrated 

approach highlights the use of ANN to detect and diagnose process anomalies based on 

plasma data, thereby providing a comprehensive view of the proposed diagnostic system. 

The HDP CVD system is highly productive and capable of both deposition and physical 

spu�ering, which removes overhangs that form on a structure during oxide deposition, 

enabling bo�om-up filling and improving the gap-filling characteristics. Deposition oc-

curs in the intermetal dielectric structure in which low-k materials are applied in the order 

of silicon-rich oxide (SRO), undoped silicate glass (USG), and SiOF after dry etching of the 

metal lines. 

 

Figure 1. Schematic of the HDP CVD system, illustrating real-time diagnosis using harmonics and 

an ANN-based model. 

The SRO and USG thin liners are used to minimize damage from electron-charging 

plasma-induced damage (PID), and the thickness of the USG thin liner is critical for the 

yield. While conventional CVD processes use a susceptor (heater) to precisely control the 

substrate temperature, the HDP CVD system using plasma heating with low-frequency 

(LF) power has a lower temperature precision than the susceptor method. Therefore, 

achieving a consistent USG thin-liner thickness is difficult, and the plasma heating step 

must be strictly controlled for precise temperature management. 

In this experiment, the thicknesses of the applied USG thin liner and SiOF material 

were 600 and 4000 Å, respectively. The deposition temperature was 400 °C, and the pro-

cess pressure was 5.5 mTorr. Harmonics refer to high frequencies that are integer multi-

ples of the fundamental frequency. The harmonics generated in plasma processes are due 

to the nonlinear nature of plasma. In this experiment, the harmonics generated in the 

sheath were formed by applying a bias RF signal to the bo�om electrode and were diag-

nosed. The sheath functioned as a nonlinear capacitor, and the nonlinear characteristics 

were formed by time-varying changes in the sheath thickness due to plasma oscillations 

and time-varying changes in the RF field [3,28–30]. Harmonics were diagnosed using a 

directional coupler for nonintrusive measurements. A directional coupler was installed in 

the transmission line between the RF generator and matcher. The signal picked up by the 

directional coupler was transmi�ed to a computer for data processing and transformed 

into the frequency domain using fast Fourier transform using the ParaDias system 

(Comdelkorea, Inc., Yongin, Republic of Korea). To diagnose the time-varying behavior, 

we converted the first fundamental frequency to the second one by dividing it by the Nth 

frequency power, as shown in Equation (1), and data processing was performed every 0.1 s. 

N�� harmonic power (%) =
N��frequency power

1��fundamental frequency power
× 100 (1)
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In this experiment, the 10th (reverse) harmonic generated during the SiOF oxide dep-

osition process on a 600 Å USG thin liner was diagnosed, and the time-varying behavior 

of the 10th harmonic was analyzed. 

Harmonics are closely associated with the capacitance characteristics of a film formed 

on the surface or walls of a wafer. When the film surface undergoes electron transfer in 

the sheath, its increase or decrease is directly proportional to the electron density. Har-

monics are generated by the dynamic behavior of electrons in the sheath, and their in-

crease or decrease is directly proportional to the electron density. As the deposition time 

and thickness of the SiOF film increase, the capacitance of the capacitor decreases expo-

nentially, resulting in a decrease in the charge on the surface. Consequently, the electron 

density in the sheath increases, resulting in an exponential increase in the 10th harmonic. 

When the film is thin or absent, it lacks capacitance, resulting in a flat graph without the 

transient behavior caused by electron charging in the harmonics. Plasma information re-

fers to plasma parameters that are directly correlated with process outcomes. Thin-liner 

thickness, as a type of plasma information, has a significant impact on the yield and har-

monic behavior [4,31]. To evaluate the appropriateness of the thickness of the thin liner, 

we developed a virtual measurement model using harmonic time-varying data. General-

ization is essential to obtain results similar to the training data when applying actual data 

to a virtual measurement model. In this study, the data corresponding to the maximum 

and minimum of the 377 harmonic time-varying data points were labeled as normal and 

included in the training process. 

Selecting an appropriate neuron model is crucial for accepting time-varying har-

monic data as the input. The selection of a model depends on the nature of the input data. 

Among the various models, an ANN, which is primarily used for various input data, in-

cluding images, audio, and raw data, was applied in this study. We adopted the multilayer 

perceptron (MLP) as the choice of ANN architecture. The decision to use MLP was based 

on its proficiency in managing structured tabular data, which constituted the majority of 

our dataset. Moreover, the specific nature of our research task did not demand sequence 

or image recognition capabilities, making MLP a fi�ing choice over other architectures 

such as recurrent neural networks or convolutional neural networks. We believe that the 

MLP model enabled us to efficiently address the objectives of our study given the dataset 

characteristics. 

The key feature of an ANN model is its ability to make nonlinear decisions. By con-

structing the model nonlinearly, data that cannot be accessed or analyzed linearly can be 

accurately predicted. Moreover, although not specifically considered during model con-

struction, an ANN is resilient to noisy data and can be used to identify important features, 

even in noisy scenarios. For example, when images are used as input data, an ANN model 

can effectively handle noise and identify features. Moreover, the ANN can adapt to chang-

ing input data and learn to recognize new pa�erns, which is another major advantage. 

Considering its ability to make nonlinear decisions, robustness against noise, and flexibil-

ity in handling different types of inputs, we propose an ANN model. 

The presented data consisted of two cases, each containing 600 data points over time. 

This process involved receiving, converting, and transmi�ing an input signal. When con-

structing the ANN, each neuron incorporated a nonlinear function, and the functions con-

nected to each neuron were individually performed using gradient descent methods. 

Among the various activation functions available for the ANN techniques, those necessary 

for diagnosing PECVD were selected. In this study, a sigmoid and rectified linear unit 

(ReLU) were utilized for the hidden layers to ensure high-quality training of the model. 

The sigmoid activation function is nonlinear and characterized by a gentle curve 

compared with the step function. Unlike step functions that exhibit dramatic output 

changes based on boundaries, the sigmoid function changes smoothly, which is vital in 

neural network learning; this was the reason for using the sigmoid function for activation. 

The sigmoid function is mathematically expressed as 
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h(x) =  
1

1 + exp(−x)
 (2)

The sigmoid function ranges between 0 and 1, preventing the occurrence of extreme 

values. Unlike other activation functions, the intermediate value of the sigmoid function 

is 0.5, as shown in Figure 2c. This intermediate value of 0.5 is advantageous for binary 

classification. Additionally, the sigmoid function can differentiate between two classes, 

with values close to 1 and 0. The 0.5 intermediate value of the sigmoid function serves as 

the threshold for classifying a model with high accuracy [32]. As the research progressed, 

various activation functions were developed. The deeper the layer of the model, the 

weaker the gradient. The gradient vanishing problem must be addressed, because the er-

ror rate is difficult to calculate at a large depth of the hidden layer. The mathematical ex-

pression of the ReLU function is 

y = �
x, (x > 0)
0, (x ≤ 0)

�  (3)

 

Figure 2. Processes contributing to the progression of an epoch: (a) forward propagation, (b) back-

ward propagation and associated activation functions, (c) sigmoid activation function, (d) derivative 

of sigmoid, (e) ReLU activation function, and (f) derivative of ReLU. 

Figure 2e shows the ReLU, which is commonly used as an activation function for the 

hidden layers of neural networks [33]. At the end of the third-order hidden-layer ANN 

model, the weight parameters were used for the sigmoid classification. When the output 

layer has a sigmoid activation function, the role of the activation function used in the hid-

den layer is to update the weight for forward propagation, which is achieved using the 

ReLU. The process from the input parameter to the final predicted value is described as 
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propagation, as shown in Figure 2a, where the input value has a weight across all layers, 

including the hidden and output layers. The input passes through the layers and gains 

additional weight. Finally, it passes through the last output layer, the sigmoid activation 

function, and transforms into the final value. The value of each node in the forward prop-

agation activation function is expressed as 

��.� = ReLU(����.� + ����.�)  (4)

where ��.� is the input value through the activation function, �� is input parameter 1, �� 

is input parameter 2, ��.� is the weight of input parameter 1, and ��.� is the weight of 

input parameter 2. 

��.� = ReLU( ��(�� ��.� + �� ��.�)  (5)

where ��.� is the input value through the activation function, �� is input parameter 1, �� 

is input parameter 2, ��.� is the second-order weight of input parameter 1, and ��.� is 

the second-order weight of input parameter 2. 

��.� = ReLU(��.���.�
� + ��.���.�

� + ⋯ ) (6)

where ��.� is the input value through the second hidden-layer activation function, ��.�
�  is 

the weight of ��.�, and ��.�
�  is the weight of ��.�. The processes of I, the nodes, and the 

weights occur sequentially. The equation associated with the sigmoid function and weight 

in the final output layer is 

������� = Sigmoid(��.���.�
� + ��.���.� 

� + ⋯ ) (7)

where ������� is the predicted value, ��.� is the input value through the second hidden-

layer activation function, ��.�
�  is the weight of ��.� and ��.�

�  is the weight of ��.�. 

The cost function is equal to the mean of the square of the difference between the 

predicted and actual values. This function is the criterion for determining model accuracy 

and is expressed as 

�� = �
(������� − �����) 

� 

2
  (8)

Here, �� is the cost function value, and ����� is the actual value. 

The value derived from the input value to the output value is considered a single 

forward propagation. After the forward propagation, the predicted value can be com-

pared with the actual value obtained using the loss function. Thus, we obtain the cost 

function by adding the loss for each value, which is expressed as ��. This is shown in 

Equation (8) and is the output result of forward propagation. Table 1 lists the model results 

when only forward propagation was performed. When forward propagation was directed 

from the input layer to the output layer, backpropagation was calculated in the opposite 

direction from the output layer to the input layer to update the weight, as shown in Figure 

2b [34]. 

Table 1. Results of first-order forward propagation (without backpropagation). 

Start 
Model 1 

(3 Hidden Layers) 

Model 2 

(3 Hidden Layers) 

Model 3 

(3 Hidden Layers) 

Model 4 

(3 Hidden Layers) 

Starting Node 200 100 100 200 

Loss 1.6537 1.2331 2.0683 3.1615 

Accuracy 0.8174 0.912863 0.8589 0.8340 

The derivative of the sigmoid function shown in Figure 2d for backward propagation is 

h(x)� = h(x)�1 −  h(x)�  (9)

The sigmoid function is expressed as an exponential function. The response ranges 

from 0 to 1, and the derivative of the sigmoid function ranges from 0 to 0.25. In the graph 
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of the derivative of the sigmoid function, the maximum is 0.25, and the minimum con-

verges to 0. The differential of the sigmoid function is multiplied in series from backprop-

agation to the layer in front of the input layer. When the value is less than 1, the multiple 

gradually decreases [35,36]. As the depth of the network increases, this can lead to rapid 

diminishing of gradients, a phenomenon termed the vanishing gradient problem. This 

poses challenges in training deeper neural networks when the sigmoid function is em-

ployed. 

The derivative of the ReLU for backward propagation is 

∂y

∂x
= �

1, (x > 0)
0, (x ≤ 0)

�  (10)

The ReLU activation function is used to reduce gradient vanishing problems for the 

hidden layer. It also has the advantage of not decreasing the slope when outpu�ing 1, 

because the derivative of the ReLU function has an output of either 0 or 1, as shown in 

Figure 2f. 

The derivative for the ReLU activation function is shown in Equation (10). This de-

rivative outputs either 0 or 1 depending on its input, ensuring that the gradient does not 

vanish rapidly even in deep networks. But there is a catch when the input is negative, the 

gradient is 0, introducing a potential problem where certain neurons might become inac-

tive or “die” during training. While several variants of the ReLU have been proposed to 

address this issue, the simplicity and efficiency of the basic ReLU function make it a pop-

ular choice in many neural network architectures. 

Both derivatives of these activation functions encapsulate the characteristics of their 

respective functions and provide the necessary gradient for updating the network’s 

weights. Understanding the strengths and weaknesses of each allows for their optimal 

application, ensuring efficient training of neural networks. 

The weight at backpropagation from the cost function is calculated as 
���

��������
=

���

��������
 = 

�

�

�

��������
(������� − �����) 

� = (������� − �����) 

��������

�(��.���.�
� +��.���.�

� )
 = h(��.���.�

� +��.���.�
� )(1 − h(��.���.�

� +��.���.�
� )) = �������(1 − �������) 

���.���.�
� +��.���.�

�

���.�
�  

= ��.� 

���

��������
= (������� − �����) × �������(1 − �������) × ��.� 

∅�
� = 

���

���.�
 = (������� − �����) × �������(1 − �������) 

��.�
� = ��.�

� − ∅�
� × ��.�  

(11)

where ∅�
� is the derivative of R� divided by the derivative of ∂I�.�. The weight value is 

updated in reverse as the quotient of the derivative value of the activation function to that 

of the cost function. This is the first weight updating method for backpropagation. 

Equation (11) describes the weight updating method from the cost function to the 

third hidden layer. When the weight update passes through the derivatives of the sigmoid 

and ReLU and arrives at backpropagation, one epoch is said to have been completed. The 

weight update value obtained in the process is applied from the input parameter layer to 

the forward- and back-propagation processes. The calculation of the cost function using 

the predicted value obtained by forward propagation conducted with a weight update 

and backpropagation represents two epochs. Thus, an epoch involves updating the 

weight value to optimize the cost function value, which is the difference between the pre-

dicted and actual values. 

After completing the model construction, it was verified using independent data. Alt-

hough it is preferable to include a large amount of data in model construction, the use of the 

data for learning can result in overfitting. Therefore, further verification is required [14]. 
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3. Results 

An LF of 2 MHz was used in the deposition process for the top and side coils at each 

stage, as shown in Figure 3a. Table 2 presents the sequence of the SiOF oxide deposition. 

To understand the variation in harmonic intensity in response to time-varying factors, we 

examined the temporal pa�erns of the data flow. Figure 3b shows that the 10th harmonic 

RF bias at 135.6 MHz exhibited an exponential increase. Owing to the limited sample size 

of the 377 wafer data points available for testing, the accuracy and loss values of the ANN 

model could be significantly influenced by the data used for training. Therefore, fi�ing 

the model to the input data rather than adjusting the data to fit the model is crucial. The 

choice of data has a greater impact on the model than the model architecture itself. 

 

Figure 3. (a) Sequence of low-frequency (LF) and radio-frequency (RF) power, (b) 10th bias RF har-

monics, and (c) classification according to binary classification; 38 wafer represents Case 1, and 67 

and 70 wafers represent Case 2. 

Table 2. Sequence of the deposition process. 

No. Step Gas Power 

1 Chamber cleaning SF6 Microwave (GHz) 

2 Chamber seasoning SiH4, Ar, O2 Top & Side LF 

3 Wafer loading - - 

4 Pressure stabilization Ar, O2 - 

5 Plasma on Ar, O2 Top and Side LF 

6 Thro�le valve on Ar, O2 Top LF Ramp-up 

7 Preheating for heat-up Ar, O2 Top and Side LF 

8 SRO and USG deposition SiH4, Ar, O2 Top and Side LF 

9 SiOF deposition SiH4, SiF4, Ar, O2 Top and Side LF, RF 

10 Transition - Reduced Top and Side LF, RF 

11 Power and gas off - - 

This approach was employed to prevent problems that may result from modeling 

with limited data. In summary, to ensure the accuracy of an ANN model, it is imperative 

to carefully select the appropriate input data rather than focus on the model architecture. 

Figure 3c depicts two binary cases, each exhibiting a distinct graphical pa�ern. Addition-

ally, Figure 4a also shows two binary cases. The K-fold cross-validation method can be 

employed to address the limitations associated with the limited data [37–39]. The value of 

K used for model verification is not fixed, and values ranging from 5 to 10 are commonly 

used [38]. For the model used here, the value of K was set to 5. The main reason for using 

K-fold cross-validation, as shown in Figure 4b, is to improve the accuracy for datasets with 

a smaller number of data points. By using all the data for verification instead of dividing 

them into training, validation, and test sets, a model with improved performance can be 

learned. Through repeated verification calculations, the optimal model can be identified 

based on the error values recorded during each cycle. Validation also plays a role in pre-

venting overfi�ing, which occurs when a model fits well with a specific training set but 

performs poorly with a test set [40]. The disadvantage of K-fold cross-validation is that it 
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requires more time than the general learning method performed with general training and 

test sets. 

After model verification, quantitative figures were obtained to assess the model fit. 

Various values such as the mean squared error, R2 score, mean absolute error, and binary 

cross-entropy loss (BCEL) were calculated to determine the fit. The BCEL method was 

used to determine the fit. The BCEL method was used to evaluate the fit of the current 

model. The BCEL function is commonly used for binary classification problems [41,42]. 

Unlike the R2 score, which is a commonly used evaluation metric for regression models, 

the BCEL function measures the error between the predicted probability and actual label, 

indicating the accuracy of the model predictions. The BCEL value ranges from 0 to 1, with 

a higher value indicating a more accurate prediction. To validate the model in this study, 

we used harmonic data from Harmonics Inc. as the input for binary classification, and the 

BCEL function was employed, as shown in Equation (12). 

BCEL =  −
1

N
� y� ∗ logy��  

�

���

+ (1 − y�) ∗ log (1 − y��) (12)

where y� is a real value and y��  is the estimated value from the harmonic VM model. In-

creasing the number of epochs decreased the BCEL value. 

 

Figure 4. (a) Representative of binary classification cases, (b) schematic of K-fold cross-validation 

process, epoch-driven results, (c) accuracy, and (d) BCEL. 

Figure 4c,d shows the values obtained through K-fold cross-validation and shows 

that increasing the number of epochs gradually decreased the cost function through 

weight updating based on forward propagation and backpropagation. The result indi-

cates good model suitability based on BCEL. The loss function represents the difference 

between a model’s probability distribution and the actual probability distribution of the 

data. Therefore, the closer this value is to zero, the higher the accuracy of the model. Figure 

4 confirms that no significant change occurred in accuracy after 15 epochs. More epochs 

may slightly increase the accuracy values, but they can lead to overfi�ing and adversely 

affect the results. The same concept applies to the loss function, where the loss value may 

decrease but can indicate overfi�ing. Table 3 provides detailed results of the model over 
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15 epochs, determining the best model as that of epoch 15 and identifying it as the final 

harmonic VM model. 

Table 3. Results of numbers of layers and nodes (15 epochs). 

Epoch No. 15 
Model 1 

(3 Hidden Layers) 

Model 2 

(3 Hidden Layers) 

Model 3 

(3 Hidden Layers) 

Model 4 

(3 Hidden Layers) 

Starting node 200 100 100 200 

Loss 0.3076 0.1277 0.1433 0.3922 

Accuracy 0.9253 0.9461 0.9295 0.9212 

4. Conclusions 

This paper presents a novel approach for predicting SiOF deposition in PECVD 

chambers, emphasizing the significance of SiOF materials in the semiconductor industry. 

A Python-based VM model utilizing an ANN was developed by incorporating prepro-

cessing techniques to analyze the time-varying data. The ANN model employed a sigmoid 

activation function for the output layer and a ReLU function for the hidden layers. The 

model was validated using K-fold cross-validation. The final VM model exhibited impres-

sive performance, achieving a BCEL value of 0.1277 and an accuracy of 0.9461. These re-

sults demonstrate the potential of ANN-based VM models for an effective process diag-

nosis in SiOF deposition. By enhancing data quality and reliability, this study contributes 

to ongoing advancements in process diagnosis techniques within the semiconductor in-

dustry. The developed VM model creates new avenues for improved manufacturing pro-

cesses and quality control during SiOF deposition. It serves as a valuable tool for optimiz-

ing production efficiency and ensuring high-quality semiconductor devices. Further re-

search and development in this field will continue to enhance the accuracy and applica-

bility of VM models, resulting in advancements in semiconductor manufacturing and con-

tributing to the overall expansion of the industry. 
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