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Abstract: Vehicle ad hoc networks (VANETs) are a vital part of intelligent transportation systems (ITS),
offering a variety of advantages from reduced traffic to increased road safety. Despite their benefits,
VANETs remain vulnerable to various security threats, including severe blackhole attacks. In this
paper, we propose a deep-learning-based secure routing (DLSR) protocol using a deep-learning-based
clustering (DLC) protocol to establish a secure route against blackhole attacks. The main features
and contributions of this paper are as follows. First, the DLSR protocol utilizes deep learning (DL) at
each node to choose secure routing or normal routing while establishing secure routes. Additionally,
we can identify the behavior of malicious nodes to determine the best possible next hop based on its
fitness function value. Second, the DLC protocol is considered an underlying structure to enhance
connectivity between nodes and reduce control overhead. Third, we design a deep neural network
(DNN) model to optimize the fitness function in both DLSR and DLC protocols. The DLSR protocol
considers parameters such as remaining energy, distance, and hop count, while the DLC protocol
considers cosine similarity, cosine distance, and the node’s remaining energy. Finally, from the
performance results, we evaluate the performance of the proposed routing and clustering protocol
in the viewpoints of packet delivery ratio, routing delay, control overhead, packet loss ratio, and
number of packet losses. Additionally, we also exploit the impact of the mobility model such as
reference point group mobility (RPGM) and random waypoint (RWP) on the network metrics.

Keywords: deep learning; secure routing; clustering; blackhole; vehicular ad-hoc networks

1. Introduction

Vehicular ad-hoc networks (VANETs) have emerged as an important component in
the intelligent transportation system (ITS) field [1,2]. In a VANET, vehicles are equipped
with devices that enable wireless communication, effectively turning each vehicle into
a mobile node within the network. This allows them to communicate with each other
(vehicle-to-vehicle or V2V communication) and with infrastructure such as traffic signals or
roadside units (vehicle-to-infrastructure or V2I communication) [3,4]. Routing in VANETs
pertains to the process of finding and maintaining efficient routes for data transmission
between these mobile nodes. Due to the high mobility and dynamic nature of the network,
it can lead to frequent route disconnection and network topology changing [5]. Therefore,
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the routing protocol is essential for efficient data transmission between the source node
and the destination node.

In VANETs, the clustering protocol is considered as one of the possible approaches to
enhance network stability and node connectivity by forming similar node
characteristics [6–8]. In detail, the cluster consists of three types of nodes: the cluster
head (CH), cluster member (CM), and gateway (GW) [9,10]. The CH works as the central
node in a cluster and is responsible for managing communication among its CMs. It gathers
data from CMs and forwards it to other CHs or the GW. CMs are regular nodes within
the cluster, associated with a CH, and follow the CH’s decisions to efficiently use network
resources and save energy. The GW is a special node that connects different clusters or
extends the communication range beyond a single cluster. It acts as a bridge forwarding
data between clusters when CHs need to communicate or when a CH is out of range from
other CHs, ensuring that messages reach their intended destinations.

Security is a critical issue in VANETs due to the potential for serious accidents. A
blackhole attack that disrupts the data transmission process by dropping all the packets
instead of forwarding them is especially serious [11,12]. When other nodes try to commu-
nicate with the destination, the blackhole node sends fake route replies (fake-RREP) by
having the freshest and shortest or most efficient route towards the destination node [13,14].
However, instead of forwarding the packets to the actual destination, the blackhole node
intentionally drops or discards the packets. As a result, the data packets are lost, and the
source nodes never receive any response from the destination node. This interruption in
data transmission can lead to a significant disruption in communication within the network
and causes an increase in the end-to-end delay and low packet delivery ratio (PDR).

To address the problem above, we use a deep neural network (DNN) model for
detecting blackhole attacks in VANETs. Deep learning (DL) is a powerful machine learning
technique that can analyze complex data patterns through DNN [15]. This approach
offers advantages over conventional methods, especially in identifying the distinguishing
features between normal and malicious network behavior. DL efficiently processes high-
dimensional data leading to more accurate detection [16]. According to the authors in [17],
we can actively avoid blackhole nodes by using DL to select the optimal route based on
fitness function values and improve the optimization speed, thereby reducing delays and
enhancing network performance. Additionally, since DL is one of the compact mapping
functions, the trained DL can find the relation between input data and output data without
additional processes. Thus, it can be adapted to detect whether the next node is a blackhole
attack node or not. Usually, an iteration-based algorithm is used to optimize fitness values
but it spends so much time finding the optimal value than the DNN model. Therefore, by
using the DNN model, we can reduce delays in the optimization process and ultimately
improve the performance of the overall system.

1.1. Related Works and Motivation

Routing in VANETs is an active area of research due to the dynamic and distributed
nature of these networks. To manage the challenges of routing in networks on a large
scale, clustering has emerged as a commonly used approach. Clustering plays a crucial
role in ensuring high stability and reducing control overhead within a network. One of the
first and most referenced protocols in this area is LEACH [18], which used a randomized
rotation of nodes as CH to evenly distribute the energy load among the sensors in the
network. However, the cluster is randomly selected from all sensor nodes, regardless
of their energy levels, affecting network longevity. Deterministic algorithms such as the
highest-degree algorithm [19] or the lowest-ID algorithm [20] use static node properties
such as node ID or degree (number of neighbors) to select CH. These are simpler but
may not adapt well to network changes. In addition, the authors in [19] do not consider
other important metrics such as energy levels, which can impact the network’s overall
performance, while the authors in [20] do not take into account any metric other than the ID
itself. The authors in [21] introduce a particle swarm optimization (PSO)-based clustering
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algorithm for VANETs. This algorithm not only establishes the rules for clustering but also
designs a routing algorithm within the cluster and among different clusters to improve
routing efficiency in V2V communication. More recent studies have proposed the use
of artificial intelligence techniques for CH selection. For example, some of the research
leverages fuzzy logic [22] and genetic algorithms [23] to optimize cluster head selection.
However, the iteration-based algorithm, as mentioned above spends so much time finding
the optimal cost or fitness function. Hence, using a machine learning technique such as DL
can provide a more efficient and accurate solution compared to iteration-based algorithms,
especially when dealing with large-scale, high-dimensional, and complex problems.

In addition to the clustering process, security stands as another important aspect of
routing, ensuring the safe transmission of data in VANETs. One of the most common
attacks that has a negative impact on network performance is the blackhole attack. A
variety of methods were suggested to prevent and identify blackhole attacks. The authors
in [24] used a modification to the AODV protocol to prevent blackhole attacks in mobile
ad hoc networks (MANETs). This protocol used an intrusion detection system to detect
the blackhole attacks. However, the false-positive detection of blackhole nodes in a harsh
environment may occur. The authors in [25] proposed the detection and prevention of
blackhole attacks in VANETs. The authors made the algorithm to scan all the existing
routes for the chance blackhole attacks exist. If the route with a blackhole node is found,
then the route is ignored and another route is searched for. This algorithm exhibits the
capability to identify and mitigate the effects of black hole attacks within highly mobile
VANETs. Despite this, the processing time required by this algorithm is significant, leading
to an increased end-to-end delay. The authors in [12] proposed SVODR to avoid blackhole
attacks in VANETs. An encrypted random number field is introduced into the RREQ
packet, which is then broadcast to all adjacent nodes. When the source node receives the
RREP, it validates the destination sequence number in its own routing table against the
destination sequence number and the encrypted or decrypted random numbers in the
RREP. If the RREP’s destination sequence number exceeds the destination sequence number
in the source vehicle’s routing table and the random numbers from both operations match,
the node is considered a legitimate node. If not, the vehicle is flagged as malicious. A
potential limitation of this approach is that it necessitates additional fields in control packets
for cryptography algorithms, which require more resources. This can lead to substantial
routing overhead and increased end-to-end delay.

The authors in [26] modeled SSAE and softmax classifier deep network schemes
for DDoS attack detection. The key features were extracted from a dataset and their
dimensionality was reduced using the SSAE model. These selected features were then fed
into a softmax classifier to detect attacks. Although this method significantly decreases
training time, it does not enhance security when it is applied to hardware with limited
resources. The authors in [27] proposed SVM for IDS. SVM is a well-known machine
learning algorithm that is widely used for pattern classification problems. This method
prevented the modification of classified events, but it did not include the large amounts of
data obtained via vehicular communication to improve the SVM’s performance. In [28], to
improve security, the authors proposed the CMEHA-DNN deep learning-based intrusion
detection model for the purpose of detecting Sybil attacks in VANETs. The Sybil attack
is successfully identified by this method. These works [26–28] did not focus on blackhole
attacks in VANETs. However, from the above works, we can conclude that machine learning
techniques, especially DL, can be used to avoid attacks in VANETs.

Table 1 shows the full comparison of the existing approach and our proposed approach
to easily compare and identify the research gap of our study. It is evident that the existing
schemes have numerous limitations. Thus, we propose a deep learning approach that is
utilized in various aspects of networking, including clustering, routing, and blackhole
detection which has not been explored by other authors in the previous studies. This leads
to the enhancement of both the security and efficiency of network routing. By employing
DL, we are able to leverage the inherent complexities of the data and patterns presented
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within the network, leading to more accurate results compared to conventional methods.
The DL approach also can reduce delays in the optimization process and ultimately improve
the performance of the overall system.

Based on the above, three fundamental questions arise, which will be addressed in
this article: (1) In VANETs, how do we protect the confidential packet from a blackhole
attack? (2) Can the data-driven method be utilized instead of the iteration-based method?
(3) Is it possible to manage mobile nodes to improve route stability?

Table 1. Summarized literature review.

Authors Clustering Routing Attack Detection Remarks

Heinzelman et al. [18] LEACH - -
The cluster head is randomly chosen,
regardless of their energy levels,
affecting network longevity

Tselikis et al. [19] Highest-degree-based
clustering -

Consistent clustering
algorithm to classify
suspicious nodes

Does not consider other important
metrics such as energy levels, which
can impact the network’s overall
performance

Nguyen et al. [20] Lowest-ID Algorithm - - Does not take into account any
metric other than the ID itself

Bao et al. [21] PSO PSO -
The iteration-based algorithm
spends so much time finding the
optimal cost

Giri et al. [22] Optimized Fuzzy
Clustering Algorithm PSO -

The iteration-based algorithm
spends so much time finding the
optimal cost

Sahoo et al. [23] Genetic Algorithm - -
The iteration-based algorithm
spends so much time finding the
optimal cost

Shashwat et al. [24] - mAODV Intrusion detection system
for blackhole attack

The false-positive detection in a
harsh environment may occur

Kadam et al. [25] - D&PMV
Distrust value for
malicious node detection
and prevention.

Requires more time for processing,
resulting in high end-to-end delay

Purohit et al. [12] - AODV, ZRP
Encrypted random
number for blackhole
attack detection

Additional fields in the control
packets for cryptography algorithms
lead to substantial routing overhead
and increased end-to-end delay

Polat et al. [26] - -

SSAE and softmax
classifier deep network
schemes for DDos attack
detection

Failed to improve the security of
SDN-based VANETs using hardware
application with limited resources

Alsarhan et al. [27] - -

SVM using three ML
algorithms (GA, ACO, and
the PSO) for classifying
intrusion

Failed to include large amounts of
data obtained via vehicular
communication for SVM training

Velayudhan et al. [28] Modified K-harmonic
means clustering - CMEHA-DNN for

identifying Sybil attack
Unable to identify different types of
attacks in VANETs

The proposed
approach DLC DLSR DNN for blackhole attacks

detection

Using DL in clustering, routing, and
blackhole attacks detection improves
network security and efficiency by
delivering accurate results and very
different from conventional
optimization methods that involve
iteration processes

1.2. Contributions and Organization

To address the security vulnerability posed by blackhole attacks in VANETs, we
propose a deep-learning-based secure routing (DLSR) protocol to avoid blackhole attacks.
In addition, we also propose a deep-learning-based clustering (DLC) protocol to enhance
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route connectivity and reduce control overhead. One of the key features of our proposed
routing protocol is its ability to adaptively choose the flexibility between secure routing and
normal routing based on network security conditions. This flexibility allows the protocol to
maintain a balance between security and routing performance, ensuring that the network
remains both safe from blackhole attacks and efficient in terms of performance. The main
contribution of this paper can be summarized as follows:

• We propose the DLSR protocol to avoid blackhole attacks in VANETs. The proposed
DLSR protocol utilizes DL on each node to select secure routing or normal routing
depending on network security conditions to maintain a balance between security
and routing performance. More specifically, DL is used to identify any suspicious
behavior of a node and to determine the best possible next hop based on its fitness
function value.

• We propose the DLC protocol as the underlying structure to enhance route connectivity
and reduce control overhead in VANETs. We consider node distance, node speed,
node direction, and remaining energy to form a cluster.

• We design the DNN model to optimize the fitness function in both the routing and
clustering process. By using DNN, the proposed DLSR protocol can optimize the
weights of each parameter, such as remaining energy, distance, and hop count, which
leads to choosing the best route against blackhole attacks; while in the DLC protocol,
DNN is used to optimize the weights of each parameter, such as cosine similarity,
cosine distance, and remaining energy, which leads to electing CH.

• The simulation results show that the proposed DLSR with DLC protocol can establish
a route that is much more resistant to blackhole attacks than the benchmark protocol.
Moreover, as the clustering organizes nodes into groups, the proposed DLC protocol
enables stronger connectivity and reduces control overhead. Additionally, in order to
demonstrate the efficiency of the proposed protocol, we also compare it with different
mobility models, namely, the reference point group mobility (RPGM) and random
waypoint (RWP).

The rest of the paper is organized as follows: Section 2 provides a brief background
of blackhole attacks in VANETs. Section 3 explains the proposed system model that
consists of the basic concept of the proposed routing and clustering protocol, the proposed
DLC protocol, and the proposed DLSR protocol. Section 4 explains the proposed DL
framework. Section 5 discusses the performance evaluation that consists of simulation
environments and network parameters, performance metrics, and numerical results, and
Section 6 concludes the paper.

2. Overview of Blackhole Attack

One kind of network security risks that affects wireless networks, particularly VANETs,
is the blackhole attack. In the blackhole attack, a malicious node can attract all packets by
falsely claiming a fresh route to the destination and then absorbing them (dropping all
packets) without forwarding them to the destination [2,29]. This causes other nodes in the
network to route their packets through the malicious node, which then drops or consumes
the packets instead of forwarding them as expected. It is also known as a sequence number
attack because it uses sequence numbers for dropping the packet [30]. The sequence
number is a numbering scheme kept by the source node of the route request (RREQ) and
route reply (RREP) to help maintain the freshness of the routing information.

In the routing process, the source node starts a route discovery if the route toward
the destination is not found or if the route is no longer active. In this case, the source
node broadcasts RREQ to the neighbor nodes (NN). If the destination node receives this
RREQ, it responds to the source node with RREP containing updated information such as
source identifier, destination identifier, sequence number, broadcast ID, and hop count. A
blackhole node can exploit this process to present itself as having the freshest route to the
destination by quickly responding with a fake RREP with a significantly higher sequence
number than the normal nodes in the network without checking its routing table. A higher
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value of destination sequence number means a fresher route [31]. In this way, a blackhole
node becomes part of the route. Then, the source selects this route, and the blackhole node
starts to drop the packets, degrading the overall performance of the VANETs. Dropping
these packets in highly dynamic VANETs could result in road fatalities, accidents, traffic
jams, and congestion. Hence, our research focuses on addressing the blackhole attack in
VANETs and proposes an efficient solution to avoid it.

A blackhole attack can be detected by studying the behavior of blackhole nodes in
a network. Therefore, by using the behavioral characteristics of a blackhole attack, we
can make a detection system to classify the type of node between a blackhole node and a
normal node [11,32–34], which can be summarized as follows:

• The blackhole node has a higher destination sequence number.
• The blackhole node has a lower number of hop counts toward the destination node.
• The blackhole node has higher remaining energy.
• The blackhole node responds to all RREQ packets by sending an RREP packet.
• The blackhole node never broadcasts any RREQ packet received.
• The blackhole node drops the received data packet in the network.

3. System Model

In this section, we introduce the network topology used for VANETs in urban areas,
incorporating clustering to enhance route connectivity. The network nodes are organized
into clusters, grouping nodes with similar characteristics. Each cluster is led by a CH,
which is responsible for managing communications within the cluster. A key concern in
this topology is the threat of blackhole attacks among the vehicle nodes. These attacks
falsely claim to have the optimal route to the destination and then drop packets without
forwarding them, causing a disruption in the network performance. To address this
challenge, we propose a DLSR protocol, which can predict and counter blackhole attacks
by establishing secure routes to the destination. Additionally, we employ the DLC protocol,
which groups vehicle nodes into clusters based on distance, speed, direction, and remaining
energy. This approach ensures strong connectivity and enhances the overall performance
of the network.

3.1. The Basic Concept of The Proposed Secure Routing and Clustering Protocol

In this subsection, we present the basic concept of our proposed routing protocol. The
proposed routing protocol can be divided into two processes, called clustering by using the
DLC protocol and routing by using the DLSR protocol, that can avoid a blackhole attack.
These processes can be summarized as follows:

• Clustering Process: In the proposed DLC protocol, network nodes are grouped into
clusters based on shared information such as distance, speed, direction, and remaining
energy. CH is selected based on the highest remaining energy. DL is used to optimize
the weights of the fitness function for selecting the most optimal CH so that a node can
join a cluster as CM effectively and transmit its data efficiently. The DNN model takes
input parameters such as cosine similarity, cosine distance, and remaining energy
to calculate the optimized weight of the fitness function. GW is also considered to
improve route connectivity and reduce control overhead in the clustering process.

• Routing Process: Following the clustering process, a source node broadcasts an RREQ
packet to find the destination node. However, a blackhole node may send a fake
RREP to deceive the source node into believing it has the optimal route. To overcome
this, our proposed DLSR protocol uses DL to detect and select the optimal route for
avoiding blackhole attacks. When a node receives RREP packets, it feeds the relevant
feature data into the DNN model. The model then processes this information and
generates an output, classifying the received data as originating from a blackhole
node or a normal node. Then, based on the fitness value, the routing protocol can
dynamically choose to operate in either secure or normal routing mode. Here, we also
optimize the weight of the fitness function by using DL. Figure 1 shows an illustration
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when an intermediate node receives two RREP packets from the NN. One of the RREP
packets received is a fake RREP from a blackhole node. In this case, the proposed
DLSR protocol employs secure routing by detecting it through DL and calculating the
fitness function. Therefore, the proposed DLSR protocol can establish the secure route
from S–CH1–CH2–CH3–CHm–D to avoid a blackhole attack.

Figure 1. The basic concepts of the proposed DLSR protocol.

3.2. The Proposed DLC Protocol: The Underlying Structure

The proposed clustering protocol is called the DLC protocol as an underlying structure,
as shown in Figure 2. The proposed DLC protocol uses a DNN model to optimize the
fitness function weights for selecting a CH to follow by a CM. Here, we consider three
factors to form a cluster, namely, cosine similarity, cosine distance, and remaining energy.
Figure 3 shows the flowchart of the proposed DLC protocol. The procedure for forming a
cluster and electing the CH is as follows:

• Step 0: Initialization

Each node activates and operates independently once the simulation begins.

• Step 1: The Dissemination of Node Information

Each node nk periodically estimates its remaining energy information. Then, node nk
generates and broadcasts information (INFO) packets to its NN periodically to advertise its
node information with NN. The following fields are included in the INFO packet:

〈Type, SID, DID, E〉

where Type represents packet type, SID represents source node ID, DID represents destina-
tion node ID, and E represents the remaining energy of the node, respectively. Then, go to
Step 2.

• Step 2: Cluster Heads Candidate Selection

The CH is chosen by the candidate node from all NN with the highest remaining
energy. This can be mathematically expressed as [35]

k∗ = arg max
k∈NN∗k∪{k}

Ek, (1)
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where Ek indicates the remaining energy of the kth node. The node with the highest
remaining energy is chosen as a CH because all communication must pass through the CH.
Therefore, it provides robust connectivity between CH and cluster members (CM). If k = k∗,
the node nk becomes CH, then go to Step 3. Otherwise, go to Step 4.

• Step 3: The Dissemination of Cluster Head Information

When nk becomes the CH, nk generates and broadcasts the cluster head information
(CHI) packet to advertise it to its NN. The following fields are included in the CHI packet:

〈Type, SID, DID, Pos, S, Dir〉

where Type represents the packet type, SID represents the source node ID, DID represents
the destination node ID, Pos represents the node position (xk, yk), S represents the node
speed, and Dir represents the node direction, respectively. Then, go to Step 4.

Figure 2. The Basic Concept of the DLC Protocol.

• Step 4: Determination of Gateway Nodes

The GW is selected when nk is located in between more than one CH. In this case, the
CHs from the neighbor may send nk several CHI packets. Therefore, nk becomes the GW
and goes to Step 5.1. Otherwise, nk becomes a CM node and goes to Step 5.2.

• Step 5: Determination of Cluster Members
The procedure for the node nk receiving either one or multiple CHI packets is as follows:

– Step 5.1: If node nk receives multiple CHI packets, it selects the CH among the
CH candidates to follow based on the maximum fitness function value. Input
parameters such as cosine similarity, cosine distance, and remaining energy are
taken into account. The proposed fitness function can be expressed as

max
{x1,x2,x3}

Fk = x1CSk + x2CDk + x3Ek, (2a)
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s.t x1 + x2 + x3 = 1, (2b)

CSk ≥ CSth, (2c)

CDk ≤ CDth, (2d)

Ek ≥ Eth, (2e)

where CSk, CDk, and Ek are the cosine similarity, cosine distance, and remaining energy,
respectively. Equation (2b) indicates the total weight that must be equal to one. Fur-
thermore, (2c) explains that the cosine similarity must be greater than equal to the
cosine similarity threshold, (2d) explains that the cosine distance must be lower than
equal to the cosine distance threshold, and (2e) explains that the remaining energy of
the CH must be greater than equal to energy threshold, respectively. To find the opti-
mal weight in (2b), we use the proposed DNN model, which is elaborated on in detail
in the forthcoming Section 4.1. Using a DNN model to optimize the weights of a fitness
function can provide a more efficient and accurate solution compared to iteration-
based algorithms, especially when dealing with large-scale, high-dimensional, and
complex problems. Moreover, the iteration-based algorithm spends so much time
finding the optimal weights compared to the DNN model. This efficiency can lead to
reduced delays in the optimization process and ultimately improve the performance
of the overall system. Here, we consider cosine similarity, which serves as a measure
of similarity between the movement patterns of vehicles. Vehicles with high cosine
similarity have similar movement patterns and, therefore, can be grouped together in
the same cluster. The cosine similarity between two nodes can be defined as [36]

CS(k, l) =
∑N

l=1
~Vk~Vl√

∑N
k=1

~V2
k

√
∑N

l=1,l 6=k
~V2

l

, (3)

where ~Vk and ~Vl are the kth and lth node’s vector information list, respectively. Each
node ~Vk is associated with vector information metric values such as speed, direction,
and location. It can be defined as ~Vk = (~V1, ~V2, ..., ~Vl), where ~Vk indicates a value that
denotes the association between nodes. Furthermore, we consider the cosine distance
between mode nk and its neighbor. We may control CM to create a more stable CM
from the perspective of mobility by taking into account the highest cosine similarity
under the constrained communication distance. Therefore, the cosine distance can be
defined as [37]

CD(k, l) = {1− CS(k, l)}. (4)

Here, we also consider the remaining energy of the node. By considering the remaining
energy, we can design energy-efficient clustering protocols that take into account the
energy consumption of nodes, ultimately prolonging their lifetime. To establish an
accurate and reliable energy model, we reference the work of [7,8], which provide
comprehensive insights into energy-efficient approaches in wireless networks. Then,
the selected CM can be mathematically formulated as

l∗ = arg max
l
{Fk, Fl}, (5)

where Fk indicates the fitness function value of node nk, and Fl indicates the fitness
function value of neighbor CH near node nk and goes to Step 5.2.
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– Step 5.2: If nk chooses the CH, then the join cluster (JC) packet is sent by nk to the
CH. This happens when node nk receives only one CHI packet; it directly sends
the JC packet. The following fields are included in the JC packet:

〈Type, SID, DID, Stat〉

where Type represents the packet type, SID represents the source node ID, DID repre-
sents the destination node ID, and Stat represents the node status, whether it will be
GW or not, respectively. Then, go to Step 6.

Figure 3. The Flowchart of the Proposed DLC Protocol.

• Step 6: Cluster Members and Cluster Heads Table Updates

Node nk sends the JC packet to CH. When the CH receives the JC packet, it replies
with an accept cluster (AC) packet. The following fields are included in the AC packet:

〈Type, SID, DID〉

where Type represents the packet type, SID represents the source node ID, and DID represents
the destination node ID, respectively. Furthermore, node nk updates the CM table, the CH
table is also updated, and then the cluster is formed. The obtained clustering table can
be summarized in Table 2, where NID is the node ID, Stat is the node status (CM, GW, or
CH), CHID is the CH ID to which the node belongs, and CM is a list of the node IDs of CM
belonging to the same cluster as the current node, respectively.

Table 2. Clustering table of the proposed DLC protocol.

NID Stat CHID CM
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Taking into account the dynamic and random movement of nodes in VANETs, it is
common for nodes to frequently switch over between clusters. Nevertheless, with the
proposed clustering algorithm, member nodes including the source and GW nodes exhibit
minimal switching between clusters. This stability can be associated with the similarity in
mobility patterns among CM. Table 3 shows the summary of the packet list involved in the
proposed DLC protocol.

Table 3. Packet list for the DLC protocol.

Packet Name Stand for Field Information

INFO Information Packet Type, SID, DID, E
CHI Cluster Head Info Packet Type, SID, DID, Pos, S, Dir
JC Join Cluster Packet Type, SID, DID, Stat
AC Accept Cluster Packet Type, SID, DID

3.3. The Proposed DLSR Protocol

The proposed routing protocol is called the DLSR protocol. We assume that the
clustering process has already been completed and is running periodically during the
routing process. Figure 4 shows an illustration when a blackhole node appears in the
network. Each node employs DL to detect the presence of a blackhole node. If a blackhole
node is identified along the route, then the fitness value will have a higher value than the
other route, and secure routing is employed to avoid it. The flowchart of the proposed
DLSR protocol is shown in Figure 5, which can be divided by the route request process and
the route reply process.

Figure 4. The Basic Concept of the DLSR protocol.

3.3.1. Route Request Process

In this sub-subsection, we explain in detail the RREQ process of the proposed DLSR
protocol as follows:

• Step 1: Initialization

If the route between a source node S and a destination node D does not exist, the
source node S starts the route establishment process.

• Step 2: Source Generates and Sends RREQ Packet
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The source node S (a CM) wants to send a message to a destination node D located
in another cluster. In this case, S generates the RREQ packet with a unique ID and a
sequence number and then sends it to the CHi in the cluster if S does not have the routing
information to the destination. The RREQ packet contains the following fields:

〈Type, SID, DID, Sseq, Dseq, BID, H〉

where Type represents the packet type, SID represents the source node ID, DID represents
the destination node ID, Sseq represents the source sequence, and Dseq represents the
destination sequence, which is the number of attempts to confirm control messages. BID
represents the broadcast ID, which is the number of generating RREQs in the same session
at the source, and H is a hop count, respectively. Then, go to Step 3.

Figure 5. The Flowchart of the Proposed DLSR Protocol.

• Step 3: Intermediate Nodes Operation at CH for RREQ
When CHi receives the RREQ packet, it checks the freshness of the received RREQ
packet and then checks its routing table for a valid route towards D. The operation to
check the freshness of the packet can be summarized as follows:
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– Step 3.1: If Sseq at the received RREQ is larger than Sseq at the routing table, then
go to Step 3.3. Otherwise, go to Step 3.2.

– Step 3.2: If Sseq at the received RREQ is equal to Sseq at the routing table, then
check again whether the BID at the received RREQ is equal to BID at the routing
table or if BID at the received RREQ is larger than BID at the routing table and H at
the received RREQ plus one is less than H at the routing table or not, then go to
Step 3.3. Otherwise, the packet will be dropped.

– Step 3.3: If the node ID in the CHi table is the same as the destination ID in the
RREQ packet, then go to Step 3.4. Otherwise, go to Step 3.5.

– Step 3.4: CHi records the sender’s ID, updates the routing table, and sends the
RREQ packet to the destination using unicast, then goes to Step 5.

– Step 3.5: CHi records the sender’s ID, updates the routing table, and broadcasts
RREQ to NN, then goes to Step 4.

• Step 4: Intermediate Nodes Operation at GW for RREQ

When GWi receives the RREQ packet from CHi, it records the sender’s ID, updates
the routing table, and broadcasts RREQ to NNi by increasing the number of hop counts.
Steps 1–4 are repeated until the RREQ packet reaches the destination node’s CH and goes
to the Route Reply Process.

3.3.2. Route Reply Process

Following the route request process, in this sub-subsection, we explain in detail the
RREP process of the proposed DLSR protocol, as follows:

• Step 5: Destination Generates and Sends RREP Packet

Once the destination node receives the RREQ packet, it records the sender’s ID,
updates the routing table, and an RREP packet with an updated destination sequence
number is generated. It unicasts the RREP packet to the previous node using the reverse
path. The RREP packet contains the following fields:

〈Type, DID, SID, Dseq, E, Pos, H, F〉

where Type represents the packet type, DID represents the destination node ID, SID rep-
resents the source node ID, Dseq represents the destination sequence, E is the remaining
energy, Pos represents the node position (xi, yi), H is a hop count, and F is a fitness function,
respectively. Then, go to Step 6.

• Step 6: Intermediate Node Operation at GW for RREP

GWi records the sender’s ID and updates the routing table when it receives the RREP
packet. Then, GWi forwards the RREP packet to the previous node by using unicast and
increasing the number of hop counts, then goes to Step 7. Otherwise, it waits until it
receives the RREP packet.

• Step 7: Intermediate Node Operation at CH for RREP
When CHi receives the RREP packets, it checks whether the route information received
is from a blackhole node or not. The process can be summarized as follows:

– Step 7.1: If CHi receives the RREP packet more than once, then go to Step 7.2.
Otherwise, go to Step 7.6.

– Step 7.2: Classify the RREP packet received by using the DNN model that is
elaborated in detail in the forthcoming Section 4.2. This model is used to identify
any suspicious behavior of a node. If no blackhole node is detected, go to Step 7.3.
Otherwise, go to Step 7.4.
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– Step 7.3: If the packet is not from a blackhole node, calculate the fitness function
for normal routing (without penalty for blackhole nodes). The fitness function
can be expressed as

min
{x1,x2,x3}

Fi = x1Ei + x2Disti + x3Hi, (6a)

s.t x1 + x2 + x3 = 1, (6b)

Ei ≥ Eth, (6c)

Disti ≤ Dth, (6d)

Hi ≤ Hth, (6e)

where Ei, Disti, and Hi are the remaining energy, distance, and hop count, re-
spectively. Equation (6b) indicates the total weight that must be equal to one.
Equation (6c) explains that the remaining energy of the node must be greater than
equal to the remaining energy threshold, (6d) explains that the distance must be
lower than equal to the distance threshold, (6e) explains that the hop count must
be lower than equal to the hop count threshold, respectively. To find the optimal
weight in (6b), we use the proposed DNN model that is elaborated in detail in
the forthcoming Section 4.2. Furthermore, to establish an accurate and reliable
energy model, we reference the work of [7,8], which provides comprehensive
insights into energy-efficient approaches in wireless networks. In addition, we
consider the distance between two nodes, which is based on the node position
and can be expressed as

Dist(i,i′) =
√
(xi − xi′)2 + (yi − yi′)2, (7)

where xi and yi represents the node location longitude and latitude, respectively.
Then, go to Step 7.5.

– Step 7.4: If the packet is from a blackhole node, then we employ secure routing.
Here, we introduce the penalty term, as follows:

Pi = P̂× blackhole, (8)

where P̂ is a large positive constant, and blackhole is a binary variable (1 if a
blackhole node is detected, 0 otherwise). Thus, the updated fitness function with
a penalty term can be expressed as

FPi = Fi + Pi, (9)

where Fi is the original fitness function, and Pi is the penalty term. The idea is to
make the fitness value higher than a normal node, effectively discouraging the
selection of routes with blackhole nodes, then go to Step 7.5.

– Step 7.5: The best route is selected by choosing the minimum fitness function
value for data transmission that can be mathematically formulated as

i∗ = arg min
i∈R

Fi, (10)

where Fi indicates the fitness function value of the ith route. Then, go to Step 7.6.
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– Step 7.6: CHi records the sender’s ID, updates the routing table, and sends the
packet to S by using unicast and increasing the number of hop counts, then goes
to Step 7.7.

– Step 7.7: If S receives RREP, then it goes to Step 8. Otherwise, wait until S
receives the RREP packet.

• Step 8: Data Transmission Process: Source Received RREP and Preparing for
Data Transmission

The data transmission is sent by S to D based on the routing table, which is determined
in Step 1 to Step 7.

The routing table can be summarized in Table 4, where PN is a previous node, NX is
the next node, F is the fitness function, NID is the node ID, SID is the source ID, DID is the
destination ID, BID is the broadcast ID, Sseq is the source sequence, Dseq is the destination
sequence, and H is the hop count, respectively. Therefore, based on the explanation above,
the summary of the packet list involved in the proposed DLSR protocol can be seen in
Table 5.

Table 4. Routing table of the proposed DLSR protocol.

PN NX F NID SID DID BID Sseq Dseq H

Table 5. Packet list for the DLSR protocol.

Packet Name Stand for Field Information

RREQ Route Request Type, SID, DID, Sseq, Dseq, BID, H
RREP Route Reply Type, DID, SID, Dseq, E, Pos, H, F

4. The Proposed Deep Learning Framework

In this section, we present the proposed DL framework based on the DNN model
to obtain the optimal solution, as shown in Figure 6. More specifically, the proposed DL
framework is used for solutions to these problems in this paper, as follows:

• Problem I: Finding optimal fitness function value for clustering.
• Problem II: Detecting whether the next node is a blackhole node or not.
• Problem III: Finding the optimal fitness function value for routing.

We consider the general DL framework with two phases: phase 1 is for training the
DNN model, and phase 2 is for testing the DNN model, as shown in Figure 6. Figure 6a
shows the DNN learning from the generated dataset in the training phase, where the
DNN model learns the dataset generated from the conventional method. The conventional
method can guarantee convergence at the global optimum. The optimal solutions obtained
from the conventional method serve as the target parameters of the DNN model. The
DNN will be trained to learn the relationship between input trainable parameters and
target parameters. In the training phase, an error will be obtained from comparing the
DNN output with the target based on the optimal solution of the conventional method.
Then, this error will be minimized by updating the weight and bias on the neurons by
using backpropagation, which continues until the iteration is satisfied [38]. After training,
the trained DNN model can predict the optimal value with new input data variables, as
shown in Figure 6b. By using these processes, the DNN learns to predict the optimal value.
However, it can be noted that each DL framework to solve each problem is totally different,
which can be explained in the following subsection.

4.1. Deep Learning for Clustering

To solve problem I, we propose the architecture of the DNN model to obtain the
optimal solution for clustering that is presented in Figure 7. As we can see, the main
goal of this approach is to demonstrate the speed, distance, vehicle direction, and the
energy remaining to determine the weight value (x1, x2, x3). This is very different from
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the conventional optimization method for solving the problem (2), which requires some
iteration. We use the speed (S), distance (Dist), the vehicle from 0◦ direction (Dir1), the
vehicle from 180◦ direction (Dir2), and the energy remaining (E) with size 1× 5 as input
parameters for the neural network to learn the complex functions, several hidden layers
with numerous hidden neurons connected with symmetric weight, while the output layer
is the prediction of x1, x2, and x3. Then, we generate a dataset to train a DNN model for
multiple-output regression problems. Table 6 presents the structure of the layers employed
in the DNN model, which enhances the system’s performance.

(a) Training

(b) Testing

Figure 6. The DL framework.

Figure 7. The structure of the DNN model for clustering.

Table 6. The layer structure of the DNN model for clustering weight maximization.

Size Activation Function

Input 5 -
Layer 1 100 ELU
Layer 2 150 ELU
Layer 3 200 ELU
Layer 4 100 ELU
Output 3 LINEAR



Sensors 2023, 23, 8224 17 of 28

4.2. Deep Learning for Routing

In the routing process, we proposed the architecture of the DNN model that is em-
ployed twice for the purposes of blackhole node detection and finding the optimal weight
that minimizes the routing fitness function value, as detailed below:

• Deep learning for blackhole detection: To solve problem II, we utilize a DNN model
for classifying blackhole nodes and normal nodes in VANETs. This makes it possible
to choose the flexibility between secure routing and normal routing strategies based
on the types of nodes that were identified. Our primary objective is to enhance the
security and efficiency of routing in VANETs by detecting and avoiding blackhole
attacks. Based on the behavioral characteristics of the blackhole attack mentioned
in Section 2, we can define the input parameter to train the DNN model. The input
parameters are node identifier (NID), destination sequence number (Dseq), hop counts
(H), remaining energy (E), and the node’s position (Pos). The DNN model we em-
ploy is a feed-forward neural network with 1× 5 dimensional input layers, several
hidden layers with numerous hidden neurons connected with symmetric weight,
and 1× 2 dimensional output layers to classify nodes in real-time as either blackhole
nodes (Bn) or normal nodes (Nn), which can be seen in Figure 8. Table 7 presents the
structure of the layers employed in the DNN model.

Figure 8. The structure of the DNN model for node classification.

Table 7. The layer structure of the DNN model for node classification.

Size Activation Function

Input 10 -
Layer 1 40 ELU
Layer 2 100 ELU
Layer 3 80 ELU
Output 2 LINEAR

• Deep learning for finding optimal fitness function values for routing: To solve problem
III, we also utilize a DNN model to find the optimal weight that minimizes the routing
fitness function values the same way as in clustering but with different parameters of the
input layers. Three factors such as the remaining energy (E), distance (Dist), and hop count
(H) of the node are considered for input parameters. To determine the ideal weight values
for x1, x2, and x3, we employ a feed-forward neural network with 1× 3 dimensional input
layers, several hidden layers with numerous hidden neurons connected with symmetric
weight, and 1× 3 dimensional output layers, as shown in Figure 9. Table 8 presents
the structure of the layers employed in the DNN model, which enhances the system’s
performance.

Figure 9. The structure of the DNN model for routing.
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Table 8. The layer structure of the DNN model for routing weight minimization.

Size Activation Function

Input 3 -
Layer 1 120 ELU
Layer 2 200 ELU
Layer 3 80 ELU
Output 3 LINEAR

5. Performance Evaluation
5.1. Simulation Environments and Network Parameters

In the conducted simulation, we attempt to gain a deeper understanding of the
proposed routing and clustering protocol. In this comparison, we look at how the DLSR
protocol performed against the ad hoc on-demand distance vector (AODV) protocols.
Table 9 shows the simulation environments and parameters.

Table 9. Simulation environments and network parameters.

Parameters Value

Simulator NS3
Simulation area 1000 × 1000 m2

Simulation time 1000 s
Packet size 1024 bits

Mobility model RPGM and RWP
Session length 5 s

Number of nodes [30, 50, 100]
Node’s speed range [20:20:80] (km/h)
Transmission range 250 m

Receive signal strength indicator (RSSI) threshold −80 dBm
MAC protocol 802.11a

We simulate the proposed routing protocol using network simulator 3 (NS3), where the
simulations are run for 1000 s with 5 s for each session. We specifically deploy 30, 50, and
100 nodes moving throughout 1000 m2 × 1000 m2 area in an urban scenario. Additionally,
we compare two different mobility models, namely, the RPGM model [39,40] and the
RWP model [41], to evaluate their performance in VANETs. The RPGM model represents
a scenario where vehicles move cohesively in groups, following similar trajectories and
maintaining relative proximity to each other. On the other hand, the RWP model represents
a scenario where vehicles move randomly and independently, each following its own
trajectory without any coordination with other vehicles. The purpose of this comparison is
to understand how the choice of mobility model impacts various performance metrics. The
mobile nodes’ initial positions are randomly distributed along the street, and they move
at different speeds (20, 40, 60, and 80 km/h). Each mobile node has an omnidirectional
antenna, and the node’s maximum transmission range is set to 250 m (approximately).
The medium access control (MAC) layer is modeled based on the IEEE 802.11 standard.
A received signal strength indicator (RSSI) threshold of −80 dBm is used to define the
communication range more practically, ensuring realistic communication scenarios in the
simulation. Furthermore, to evaluate the performance of the DL framework, we calculate
the accuracy of the predicted optimal value against the output data from the test set. This
is accomplished by computing the root mean square error (RMSE) in our proposed DL
framework. The RMSE can be expressed as [35]

RMSE =

√
1
n

n

∑
k=1

(δ(k) − δ̃(k))
2, (11)
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where n represents the number of samples in the test set, δ(k) represents the the predicted
optimal value of the k-th observation in the dataset, and δ̃(k) represents the actual value for
the k-th observation in the dataset, respectively. A smaller RMSE indicates a closer match
between the predictions and the observations.

5.2. Performance Matrices

The performances of the proposed clustering protocols (DLC) and routing (DLSR) are
evaluated in terms of the following metrics [8]:

• PDR refers to the ratio of the number of the received data packet at a destination node
over the number of the transmitted packet at a source node.

• The routing delay refers to the average time to establish the route between a source
node to a destination node per session.

• The control overhead refers to the average number of control packets to establish a
route per session per node.

• The average number of cluster head changes refers to the average number of cluster
head changes per cluster per session.

• Packet loss ratio refers to the ratio of the number of packet losses to the total number
of sent packets.

These specified metrics collectively provide a comprehensive evaluation of the pro-
posed DLC and DLSR performance. They address essential aspects of VANETs operation,
including communication quality, efficiency, and network stability. By analyzing the proto-
col’s performance across these metrics, researchers can assess its suitability for real-world
VANETs scenarios and make informed decisions about its deployment and optimization.

5.3. Numerical Results

In this subsection, we present the simulation results of the proposed DLC and DLSR
protocol. First, we exploit the impact of the number of iterations to search for the best
fitness value. Then, in our experiment, we create 100.000 datasets, utilizing 90% for training
and the remaining 10% for validation. Furthermore, we produce 100 distinct datasets to
evaluate the performance of our trained DNN model. The objective is to examine the
ability of the DNN model to predict the optimal value provided with an unfamiliar dataset.
Table 10 shows the parameters we considered to examine DNN training.

Table 10. DNN training parameters.

Parameters Value

Dataset 100.000
Epoch 50

Batch size 256
Optimizer Adam

Learning rate 0.00001

Figure 10a illustrates the convergence of the fitness function value for clustering,
reaching an optimal value within the 8th iteration using the conventional algorithm. More-
over, as the vehicle speed increases, the fitness value also increases, indicating consistent
convergence within the 8th iteration despite higher speeds. On the other hand, Figure 10b
displays the convergence of the fitness function value for routing, reaching an optimal value
within the 10th iteration. Furthermore, with the increasing vehicle speed, the fitness value
decreases consistently within the 10th iteration. This proves the ability of the algorithm to
handle an increase in speed without affecting its convergence time.
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Figure 10. Convergence using the conventional algorithm for (a) clustering fitness value maximization
and (b) routing fitness value minimization.

Figure 11 shows the RMSE of the DL framework with different numbers of hidden
layers and hidden neurons. In Figure 11a, we analyze the impact of the number of hidden
neurons on the DL framework with the different numbers of hidden layers for clustering.
As we can see in Figure 11a, the value of RMSE with one hidden layer decreases from
0.5295 to 0.1817; with two hidden layers, it decreases from 0.4756 to 0.0917; and with
four hidden layers, it decreases from 0.3220 to 0.08 when the number of hidden neurons
increases from 2 to 250, respectively. Figure 11b shows the impact of the number of hidden
neurons on the DL framework with the different numbers of hidden layers for blackhole
detection. As can be seen in Figure 11b, the value of RMSE with one hidden layer decreases
from 0.01124 to 0.00098; with two hidden layers, it decreases from 0.00855 to 0.00074; and
with three hidden layers, it decreases from 0.00554 to 0.00039 when the number of hidden
neurons increases from 2 to 100, respectively. In Figure 11c, we analyze the impact of the
number of hidden neurons on the DL framework with the different numbers of hidden
layers for routing. Figure 11c reveals that the RMSE value with one hidden layer decreases
from 0.1887 to 0.0361; with two hidden layers, it decreases from 0.1764 to 0.0259; and with
three hidden layers, it decreases from 0.1673 to 0.0101 when the number of hidden neurons
increases from 2 to 200, respectively. Therefore, from the results shown in Figure 11, we can
conclude that the performance of a DNN model improves with an increase in the number
of neurons it contains. In addition, a larger number of hidden layers in the DNN model
also contributes to better performance, as opposed to models with fewer hidden layers.

Figure 12 provides a comparison of the execution times between the conventional
methods and the DL method, considering varying quantities of data. The DL method
achieves impressively short execution times, even when the quantity of data increases. In
contrast, the conventional method requires a significantly longer execution time under the
same conditions. As we can see in Figure 12, the conventional method requires 18 s to find
the optimal solution dealing with 50 data, while the DL method accomplishes the same
task in just one second for the clustering scheme. In the routing scheme, the conventional
method requires 11 s to find the optimal solution dealing with 50 data, while the DL method
accomplishes the same task in just one second. The reason is that DNNs are designed to
efficiently handle large amounts of data. The use of multiple layers with neurons allows
for complex modeling and efficient computation. Furthermore, once the DNN model is
trained, the prediction phase is very fast, which reduces execution time.
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Figure 11. RMSE of the DL framework with different numbers of hidden layers and hidden neurons.

Figure 13 shows the comparison of the average number of cluster head changes per
session as a function of node speed, serving as an evaluation of cluster stability. From
Figure 13, it is evident that as the node speed increases, the average number of cluster head
changes also increases. This can be attributed to the frequent changes in node location
due to the higher speeds, resulting in disruptions to the clustering process. Furthermore,
as the number of nodes in the network increases, the average number of cluster head
changes also increases. This can be attributed to the higher network density, which leads
to more frequent changes in cluster heads. In addition, we are evaluating the effect of
the mobility model (RPGM and RWP) on the average number of cluster head changes
within the network. As we can see in Figure 13, the RPGM model exhibits a lower average
number of cluster head changes compared to the RWP model. The reason is that in the
RPGM model, vehicles move cohesively in groups, which means they tend to follow
similar trajectories and move together as a unit. On the other hand, in the RWP model,
vehicles move randomly and independently, each following its own trajectory without
any coordination with other vehicles. Thus, the RPGM model performs more stable and
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cohesive clusters, resulting in a lower average number of cluster head changes compared to
the RWP model, where vehicle movement is independent. However, it is important to note
that the average number of cluster head changes remains less than one. This indicates that,
on average, there is less than one cluster head change in each session. Hence, the proposed
clustering algorithm demonstrates a high level of stability as the number of cluster head
changes is kept minimal.
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Figure 12. Execution time vs. variations in number of data for the clustering and routing scheme.
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Figure 13. Average number of the cluster head changes as a function of node speed.

The comparison of the PDR as a function of node speed is shown in Figure 14. The
PDR decreases as the node speed increases. The possible reason is that the network becomes
more unstable since the node is more dynamically moved when the node speed increases,
leading to the occurrence of packet loss. However, we can see that the DLSR with DLC
(DLSR+DLC) protocol has a markedly higher level of PDR than other protocols. As a
result, the DLSR with DLC protocol turned out to be the most reliable in terms of PDR. In
addition, the DLSR+DLC protocol with the RPGM model shows a high PDR compared
to the RWP model. The reason is that RPGM provides a more controlled and structured
mobility pattern, leading to better communication and more stable network connectivity
compared to RWP.

Figure 15 compares the routing delay, which includes the consumed time for cluster
construction per session as a function of node speed. As we can see in Figure 15, when node
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speed increases, the delay increases as well. The reason is that when the speed increases,
frequent network topology changes lead to frequent interruptions in data transmission.
Again, the protocol functioning under the RPGM model proves to be more stable than
that under the RWP model. The reason is that the coordinated group movement in RPGM
minimizes abrupt shifts in the network topology, consequently reducing the delay in
establishing routes. Conversely, CH and GW are the only nodes involved in the proposed
DLSR+DLC protocol, which leads to enhancing the efficiency of the routing process. Thus,
the DLSR+DLC protocol with the RPGM model can transmit packets with the least amount
of delay compared to other protocols.
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Figure 14. PDR with various scenarios as a function of node speed.
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Figure 15. Routing delay with various scenarios as a function of node speed.

The control overhead, which includes the control overhead for cluster construction,
is compared as a function of node speed in Figure 16. As we can see in Figure 16, the
control overhead slightly increases as the speed increases. The reason is that when the
number of node speeds increases, nodes can be broken more easily, leading to an increase
in the control overhead. Furthermore, when comparing the two mobility models, it is
clear that the RPGM protocol shows lower control overhead due to high stability than
the RWP model. In contrast to other scenarios, the control overhead in our proposed
routing protocol can be decreased by the DLC protocol. The decrease in control overhead
is significantly lower in the case of the DLSR+DLC protocol than in other scenarios, as
the DLC protocol only involves CH and GW nodes in the routing operation. Thus, it was



Sensors 2023, 23, 8224 24 of 28

shown that the DLSR+DLC protocol with the RPGM model may increase connectivity
while simultaneously being the most stable in terms of control overhead.
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Figure 16. Control overhead with various scenarios as a function of node speed.

The focus of our attention is now on security issues. In order to evaluate the impact of
node speed on the network performance, we conduct a comparison analysis of the packet
loss ratio and number of packet losses under various scenarios, as shown in Figure 17.
Figure 17a displays the average packet loss ratio, which is calculated as the ratio of the
number of loss packets to the total number of sent packets. It is evident that when the node
speed increases, the average packet loss ratio also increases. Similarly, in Figure 17b, when
the node speed increases, the average number of packet losses also increases. The observed
behavior can be attributed to the increased node speed, causing the node’s location to
change more frequently. Consequently, packets are more likely to be sent directly to the
blackhole node, resulting in a higher packet loss rate. On the other hand, by using the
RPGM model over the RWP model, we can handle movement-related issues better. The
RPGM model ensures the predictable and collective movement of nodes. Thus, the RPGM
model leads to fewer route changes, more stable connections, and ultimately, a lower
chance of packet loss. However, clustering plays a significant role in reducing the number
of links between nodes. Therefore, the proposed DLSR+DLC protocol under the RPGM
model showcases enhanced network security, making it a promising and effective approach
from a network security perspective.
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speed is performed under different scenarios.
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Finally, we analyze how the number of nodes affects the network performance metric,
as shown in Figure 18. In Figure 18a, we analyze the PDR as the function of node speed
with various numbers of nodes in the proposed DLSR with DLC protocol. The PDR slightly
decreases as the node speed increases. However, the PDR slightly increases as the number of
nodes increases. This behavior can be attributed to the more predictable movement patterns in
the RPGM model, leading to less frequent route changes and fewer packet losses. Furthermore,
Figure 18b shows the routing delay as the function of node speed with various numbers of
nodes in the proposed DLSR with DLC protocol. As the node speed and the number of nodes
increase, a slight increase in routing delay can be observed, although not significantly. This can
be attributed to the fact that with more nodes and higher speeds, the number of hops in the
routing path increases, leading to a slightly longer routing process. Figure 18c shows the control
overhead as a function of node speed with various numbers of nodes in the proposed DLSR
with DLC protocol. It demonstrates that an increase in both node speed and the number of
nodes leads to higher control overhead but not significantly. This observation can be explained
by two possible reasons. First, with a higher number of nodes, the network density increases,
causing a higher frequency of packet transmissions, thus, contributing to the increased control
overhead. Second, the increase in node speed results in more frequent node mobility, which can
lead to more frequent link breakages and route rediscoveries, further contributing to the increase
in control overhead. Moreover, to address the control overhead issue, we consider a clustering
protocol. The DLC protocol creates clusters with similar mobility patterns using cosine similarity
and cosine distance metrics, effectively reducing the occurrence of frequent cluster head changes,
especially at higher speeds. Despite these challenges, it is evident that the proposed DLSR+DLC
protocol, paired with the RPGM mobility model, exhibits impressive scalability. It effectively
enhances the PDR, reduces routing delay, and mitigates control overhead as the number of
nodes increases.
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From these results, the combination of the proposed methods (DLSR + DLC) can establish
a secure route under various mobility models against the blackhole attack. In detail, the DL
framework is properly utilized to solve these problems that maximize the fitness function value
for clustering and blackhole node detecting and minimize the fitness function value for routing,
respectively. The proposed clustering algorithm can enhance the route connectivity, and the
proposed DLSR routing protocol can avoid the blackhole attack without additional detecting
steps, as well as support network scalability.

6. Conclusions

In this paper, we proposed a DLSR and DLC protocol in VANETs to establish a secure
route against blackhole attacks. The proposed DLSR protocol utilized DL at each node
to select secure routing or normal routing depending on network security conditions by
training a DNN model to detect abnormal node behavior. This enabled nodes to select the
most suitable next-hop based on their fitness function value, which is also achieved through
DNN by optimizing the weights of each parameter such as remaining energy, distance, and
hop count. Furthermore, to enhance route connectivity and reduce control overhead we
proposed a DLC protocol that employed DNN to optimize the weights of each parameter
such as cosine similarity, cosine distance, and remaining energy, which led to electing a
cluster head candidate. Additionally, we compared the impact of the mobility model, i.e.,
the RPGM and RWP model on network metrics. The numerical results showed that the
proposed DLSR+DLC protocol with the RPGM model can establish a secure route that
improved node connectivity against blackhole attacks. Overall, the proposed DLSR+DLC
protocol with the RPGM model efficiently established the cluster and route, which led to
improvements in network metrics such as PDR, routing delay, control overhead, packet
loss ratio, and number of packet losses.
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The following abbreviations are used in this manuscript:

Parameters Value
AC Accept cluster
AODV Ad hoc on-demand distance vector
CH Cluster head
CHI Cluster head information
CM Cluster members
DL Deep learning
DLC Deep-learning-based clustering
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DLSR Deep-learning-based secure routing
DNN Deep neural network
GW Gateway
INFO Information
JC Join cluster
NN Neighbor nodes
PDR Packet delivery ratio
RREP Route reply
RREQ Route request
RPGM Reference point group mobility
RMSE Root mean square error
RSSI Received signal strength indicator
RWP Random waypoint mobility
VANETs Vehicle ad hoc networks
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