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Abstract: Due to the growing interest in climbing, increasing importance has been given to research
in the field of non-invasive, camera-based motion analysis. While existing work uses invasive
technologies such as wearables or modified walls and holds, or focuses on competitive sports, we
for the first time present a system that uses video analysis to automatically recognize six movement
errors that are typical for novices with limited climbing experience. Climbing a complete route
consists of three repetitive climbing phases. Therefore, a characteristic joint arrangement may be
detected as an error in a specific climbing phase, while this exact arrangement may not considered
to be an error in another climbing phase. That is why we introduced a finite state machine to
determine the current phase and to check for errors that commonly occur in the current phase. The
transition between the phases depends on which joints are being used. To capture joint movements,
we use a fourth-generation iPad Pro with LiDAR to record climbing sequences in which we convert
the climber’s 2-D skeleton provided by the Vision framework from Apple into 3-D joints using
the LiDAR depth information. Thereupon, we introduced a method that derives whether a joint
moves or not, determining the current phase. Finally, the 3-D joints are analyzed with respect to
defined characteristic joint arrangements to identify possible motion errors. To present the feedback
to the climber, we imitate a virtual mentor by realizing an application on the iPad that creates an
analysis immediately after the climber has finished the route by pointing out the detected errors
and by giving suggestions for improvement. Quantitative tests with three experienced climbers
that were able to climb reference routes without any errors and intentionally with errors resulted
in precision–recall curves evaluating the error detection performance. The results demonstrate that
while the number of false positives is still in an acceptable range, the number of detected errors is
sufficient to provide climbing novices with adequate suggestions for improvement. Moreover, our
study reveals limitations that mainly originate from incorrect joint localizations caused by the LiDAR
sensor range. With human pose estimation becoming increasingly reliable and with the advance of
sensor capabilities, these limitations will have a decreasing impact on our system performance.

Keywords: climbing motion analysis; sports and computer science; video analysis; key point detection;
human pose estimation

1. Introduction

Climbing as a sport has become increasingly popular, and its practice has spread to
the point that today we can find climbing walls not only in specialized gyms, but also in
public parks, with attractive designs for children and beginners who are encouraged to
take up this sporting trend. Bouldering is a variant of climbing without the use of ropes,
offering its practitioners different climbing challenges that they can perform without the
help of a partner and individually. Unlike other solo sports such as cycling or running,
bouldering does not have many tools for the practitioner to control and measure their
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exercise autonomously [1], hence there is a need for applications to measure, analyze, and
provide feedback to people in this discipline. Additionally, the proliferation of wearables
to capture information about the activity of the human body has aroused special interest in
athletes and trainers who see the need for additional tools that allow them to collect data
with the aim of analyzing their routines and improving their performance.

Climbing requires the development of some physical skills that differentiate it from
other sports. Among them is that it requires efficient movements in order to make proper
use of body energy to reach the target on a route, either lateral or ascending [2]. It also
requires the development of strength in small muscles, psychological stress management in
the face of a potential fall, and a visual–motor ability to visualize and reach different holds
on a random route when the route has not been predefined [3]. The different movements
performed by a climber are framed within one of three clearly defined stages, referred to
here as phases, which can be analyzed in relation to the climber’s pose and the speed of the
body joints involved in the action [4].

Within the climbing phases, as well as in the transition between them, it is common
for the climber to make mistakes in posture and hip movement, especially when they are a
beginner. These mistakes are part of learning and the continuous improvement in climbing
technique, and their early correction prepares the climber for different climbing situations
where maximum strength and resistance will be required. The climbing errors are usually
corrected with the assistance of a more experienced partner who acts as a guide, pointing
out the error and demonstrating the correct execution of the exercise.

To determine the current phase and check whether the climber makes typical errors
while in it, we introduce a finite state machine in which the transition between states
depends on which joints are in motion. The joint movement is detected from RGB-D video
recordings made with an iPad Pro 4th Generation, which has a LiDAR sensor and provides
us with Vision [5], Apple Inc.’s framework for human pose estimation (HPE). The Vision
information is complemented with the LiDAR data to obtain a 3-D model of the climber’s
pose to establish whether the joint is in motion by means of an algorithm. Simultaneously,
we determine the angles and relationships between joints that will allow us to evaluate the
existence of climbing errors.

In this study, we present a novel tool that acts as a virtual trainer, allowing the video
recording of the climber and pointing out errors, as well as providing feedback to correct
them. In the development of this tool, we modeled six of the frequent errors in bouldering
and analyzed, among other variables, the position and velocities of the subject’s hands,
feet, and hips. Additionally, we propose a model of transitions between climbing phases
based on the position of the climber’s limbs and their center of mass (CoM).

The paper is organized in five sections. Following the introduction, in Section 2,
we include a summary of similar related work for HPE in the climbing domain, using
non-invasive sensors and climbing analysis. In Section 3, theoretical concepts on climbing
phases and errors are presented. Section 4 explains our modeling of the different cases
and artifacts needed for our application. In Section 5, we carry out the evaluation, first
presenting the methodology and then analyzing the results. Finally, Section 6 draws
conclusions and provides proposals for future work.

2. Related Work

To provide unified information on existing bouldering research from different perspec-
tives like sensors, HPE, and motion analysis algorithms, ref. [6] presents a survey including
existing studies using optical devices, wearables, and capacitive force sensors. There, they
list commercial and open source HPE frameworks, highlighting the difficulties in sport
climbing when faced with occluded limbs and the climber’s pose taken from the back.
The study also points out the challenge of tool development for teaching and training sport
climbing. Likewise, an interesting classification of sensors used in climbing, both indoors
and outdoors, is included in [3]. Several groups are presented there that allow comparison
in terms of invasive and non-invasive sensors and practical benefits and limitations, in
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addition to performance metrics. More specifically, we find studies that use a particular
type of sensor to measure parameters such as force, position, and velocity. These sensors
may be part of instrumented climbing holds [7–12], attached to the climber’s body [13–15],
or attached as visual markers [16–19]. Some researchers also highlight the benefits of
non-invasive sensors, such as cameras, where measurements are made without contact and
without affecting climbers, walls, or holds [20,21].

An important topic for climbing analysis is the HPE research area. Ref. [22] presents a
comprehensive survey of the most relevant publications since 2014, describing techniques
based on deep learning and datasets for 2-D and 3-D, silhouette, and skeleton extraction.
The survey summarizes the challenges for the algorithms, such as occlusions and depth
data ambiguity errors, in addition to the lack of sufficient training data for certain scenarios.
In this regard, ref. [23] extends the information by including specific sports and physical
exercises, focusing the study on markerless and camera-based systems. They point out
numerous publications that combine general-purpose HPE techniques for 2-D skeletal
prediction and their subsequent pairing with depth data to build 3-D models, a solution to
tackle the lack of datasets for a given sports scenario.

In research on climbing motion analysis, ref. [18] made early studies to compare
entropy, force, and speed by using markers attached to the climbers and tracking them
through a single camera. More recently, ref. [16] used a similar concept of markers and
a video capture system to compare the distance of climbers to the wall using the CoM.
In the field of speed climbing, ref. [19] measured the energy performance of climbers when
making horizontal advances on the climbing route, i.e., when executing moves to lateral
positions. They calculated the 3-D trajectory and measured the climber’s speed using two
drones armed with cameras following a marker attached to the climber. Similarly, a novel
method for analyzing the climber’s velocity from non-static video sequences is presented
in [20]. The authors avoid invasive techniques by using only a moving camera to measure
the position, velocity, and acceleration of the CoM. They define a set of relevant body
joints to calculate the angles of the body parts and the time taken to reach adjacent holds.
These parameters allow different climbers to be evaluated on the same wall configuration,
providing students and athletes with comparative results on speed, movement, and location
on the climbing route. To follow the climber along the speed wall, the camera position
and distance to the wall are algorithmically determined, and image processing is used for
segmentation, feature detection, and matching. Especially, an analysis of the change in
knee and elbow angles along the route execution is provided, so that trainers can detect
problems in the climbing technique by comparing it with the same execution of other expert
athletes. In climbing, so-called smart materials, such as capacitive sensors that can measure
the presence of a climber [12], can also be employed for analyzing climbing movements.
An insight into the latest developments in smart materials is provided by [24].

In application development for sport climbing, ref. [15] presented a bouldering assis-
tance system that projects a reference shadow on the climbing wall to guide the climber in
the movements to follow. This assistant, called betaCube [25], locates the subject using a 3D
camera and allows them to follow the projection of climbing sequences pre-recorded with
the same system, applying an augmented reality concept. More recently, ref. [1] presented
a tool that provides the climber with an analysis of their climbing from video sequences
and the use of machine learning (ML). The project included video sequences of climbers
with different experience in various scenarios. The tool produces an automatic output
with information on the percentage of the route completed, the number of moves made,
and the identification of route parts to be improved based on a proposed algorithm that
uses the climber’s pose and the time spent on each hold. The segmentation of the climbing
holds is achieved using predictive models based on YOLO [26] by means of Roboflow [27].
The climber’s pose is estimated using MediaPipe [28], an ML framework capable of infer-
ring 3-D landmarks and segmenting the climber. In the same climbing motion analysis
scenario, a video recording system is proposed in [29] to automatically detect movement
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errors common to novice climbers. The system acts as a virtual mentor providing graphical
feedback with a rich user interface developed using Apple Inc.’s ARKit [30].

3. Background

In this section, we briefly introduce concepts necessary to frame our work: the division
of the climbing stages for their study; the most common errors that we identified within
these stages and that are the object of our analysis; and finally, we describe a mathematical
method used for video synchronization.

3.1. Climbing Phases

According to [31], there are three stages into which a climber’s actions can be split:

i. Preparation, when the climber sets up their body by establishing the correct position
and setting their feet to initiate a standing-up action.

ii. Reaching, when the climber is in the action of standing up to reach and grab the
next hold on an ascending climbing route.

iii. Stabilization, when the climber adjusts and relaxes the body after having reached
the hold before starting the next series of movements.

In these stages, the climber performs different arm, leg, and hip movements sequen-
tially and at specific times. For example, the climber first reaches for a hold with one
hand, stabilizes the body in an attempt to conserve energy, and then places the feet; finally,
the climber rises to grab the next hold with the other hand. These three divisions of the
climber’s actions are what we have referred to here as phases. Figure 1 presents the transi-
tion diagram for the climbing phases, which will be described in terms of joint movements
in Section 4.6.

Figure 1. Proposed climbing phases transition state diagram.

3.2. Climbing Errors

A correct climbing technique aims at optimizing the climber’s effort to reach the
holds in the execution of a climbing route, in addition to preventing possible injuries.
Six basic climbing techniques are presented below to verify the correct execution of the
climbing action, including the characteristic errors related to the climber’s position or
limb movements. Constant values for the elbow and shoulder angles, the time of the
reaching action, and the hip distance difference when comparing climbers were given as a
reference by our sport climbing expert, but some of these were updated later in the tuning
of the algorithms.

3.2.1. Decoupling

This is an energy-saving technique in the preparation phase, where the arm of the
holding hand has to be straight when the feet are being set. Here, the holding hand is
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defined as the hand that is higher up and holds the main weight of the body, while the hand
in the lower position is named the supporting hand and holds the body in the direction of
the wall.

Characteristic error: The elbow angle and the shoulder angle both are less than 150°.

3.2.2. Reaching Hand Supports

In the reaching phase, the supporting hand should stay as long as possible on the hold
before reaching to the next hold and becoming the new holding hand.

Characteristic error: Reaching takes longer than 1 s.

3.2.3. Weight Shift

In the reaching phase, the weight should be shifted onto the leg that is opposite the
supporting hand: the knee is shifted vertically in front of the toe of this leg, the weight of
the body, or the hips, is shifted first over the leg towards the wall and then upwards.

Characteristic error: The climber stands while pulling with the holding arm, and in
the course of the movement the knee is never vertical in front of the toe.

3.2.4. Both Feet Set

In this movement, both feet should be placed onto the wall in the standing up action
during the reaching phase. One foot can also be simply pressed against the wall; it does
not necessarily have to be on a bolted step.

Characteristic error: Only one foot has wall contact when standing up, while the other
foot continues to move or hangs loosely in the air.

3.2.5. Shoulder Relaxing

In the stabilization phase, after gripping, the arm of the new holding hand should
be stretched again and the CoM should be lowered again, although it may be higher.
The weight of the body, or the hips, approaches the perpendicular of the holding hand
again, and the distance depends on what the climber can do with the second hand.

Characteristic error: After gripping, the arm of the new holding hand remains locked
and the angle of the elbow and shoulder does not open, and the inner angle of the elbow
and the angles of the shoulder in the dorsal and sagittal plane are less than 150°.

3.2.6. Hip Close to the Wall

The aim is to keep the hips as close as possible to the wall within the reaching phase.
This mobility of the hips results in more efficient and economical climbing, as most of the
body weight rests on the toe holds.

Characteristic error: The assessment is made by reference to another climber who
performs the same route in precise form. When comparing the distance to the wall of the
climber’s hips to the reference, the distance should not be exceeded by more than 5 cm.
Climbers of similar size to the reference are considered here.

3.3. Dynamic Time Warping

Especially for hip-close-to-the-wall error detection, in our approach, dynamic time
warping (DTW) is used to align the video sequence of an expert climber with the novice
sequence. DTW is a measure of similarity between two time sequences, also referred to
as curves, represented as discrete sets in a common metric space [32]. These sequences
may vary in speed, and DTW allows us to correlate all the points of one set into the other,
making a one-to-many match that covers all the valleys and peaks of both curves. Having
A = (p1, . . . , pn) and B = (q1, . . . , qm), to create an ordered coupling C = (c1, . . . , ck), the
algorithm satisfies the following rules:

i. All points of the two sequences must match in both directions with the heads and
tails paired, such that c1 = (p1, q1), ck = (pn, qm).
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ii. The indices mapping the first sequence to the other must be monotonically increas-
ing and vice versa, cr = (pi, qj) =⇒ cr+1 ∈ {(pi+1, qj), (pi, qj+1), (pi+1, qj+1)},
for r < k, i.e., cross-matching is not allowed.

Hence, as [32] describes, the DTW distance between A and B is given by Equation (1).

dtw(A, B) = min
C:coupling

∑
(pi ,qj)∈C

dist(pi, qj) (1)

This technique can be used to compare two time series with different lengths and
speeds, to distinguish the underlying pattern rather than looking for an exact match in the
unprocessed sequences. As Equation (1) shows, the usual Euclidean distance between the
two signals is replaced by a dynamically adjusted metric dist that allows the aligning, pre-
serving the temporal dynamics of the sequences by directly modeling the correspondence
of the two time series at each point.

4. Methods and Implementation

In the following we describe in detail our proposed model for each of the climbing
analysis components. These are estimation of the climber’s pose by estimating the skeletal
joints, segmentation of the climbing wall and establishment of the coordinate system,
identification of the beginning and end of the climbing route in the video, alignment of
the reference and climber videos, segmentation of the climber’s movements, the transition
rules between the climbing phases, and finally, the error detection metrics.

4.1. Climber Pose

As noted by [23], although many public general-purpose HPE systems exist, none of
them are trained in specific fields of sport and physical exercise. In addition to this, there
are situations such as occlusions, that affect the detection accuracy of the climber’s skeleton.
Nevertheless, for the assessment of our climbing algorithms we have obtained acceptable
results using Vision [5], the HPE framework provided by Apple Inc. In particular, we have
chosen an iPad Pro 4th Generation equipped with a LiDAR sensor, whose integration of
hardware and software in a single device is practical for climbing applications.

Vision works in the 2-D space, processing RGB video frames at a maximum sample rate
of 60 frames per second (FPS), thus capturing 60 poses per second in our implementation.
Each pose consists in turn of 19 body joints given in Cartesian camera coordinates (Rx, Ry),
of which we have taken 13 for our evaluations, as shown in Figure 2. Each of these
coordinates is mapped to the depth data acquired by the LiDAR sensor to obtain the
depth component Rz, as shown in Figure 3; thus, building the 3-D skeleton for each frame,
expressed as the set J in Equation (2).

J = {Jk = (Rx, Ry, Rz)k : J ∈ R3 , 2 6 k 6 14} (2)

Considering that the device memory is scarce when processing several video frames
in parallel, as explained later in Section 4.8, the depth information does not exist for each
pixel of the image and instead is obtained by means of a depth grid that associates each
point with reticular image sections. Hence, the 2-D coordinates of the joint, obtained with
Vision, fall within one of the grid squares and must be associated with the nearest point
to determine the third coordinate. This is achieved by applying a kd-tree algorithm [33]
on the nine grid points in the joint vicinity and averaging the depth measurements of the
three closest points, thus obtaining the joint’s depth measurement.
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Figure 2. Relevant body joints in climbing analysis. Image source [5].

4.2. Wall Plane Model

The 3-D skeleton is initially built on the reference coordinate system provided by the
camera, named the camera system. To carry out the position calculations with the skeleton
joints independently of the camera system, it is necessary to transfer them to their own
reference coordinate system, which is constructed from the climbing wall. Therefore, we
call this new coordinate system, the wall coordinate system. This process is performed in a
first extrinsic calibration step, detailed below.

In our study, the climbing wall is represented as a rectangular plane with an optional
tilt. This plane and its boundaries are determined from the analysis of the point cloud
from a random frame in the first 3 s of the video, where only the climbing wall is in the
scene. The plane equation is determined using RANSAC [34], and the point cloud of the
climbing wall is segmented to determine the edges of the rectangle by a 2-D polygonal
approximation [35].

We choose the upper left corner of the wall rectangle as the origin of the new coordinate
system and construct the transformation matrix T as shown in Equation (3). The rotation
matrix R in Equation (4) results from Rodrigues’ rotation formula, by including the wall
plane normal vector n and the unit vector in the z-direction of the camera model, and
subtracting the identity matrix I [36]. Lastly, the transformation matrix uses a translation
vector t from the camera origin to the wall coordinate origin. All skeleton joints Jk are
rotated and translated by applying the transformation shown in Equation (5), hence the
distances calculated in independent videos will be relative to the same coordinate system
located on the wall. This procedure allows us to compare different recordings with different
orientations of the camera with respect to the wall.

R = 2 · (z + n)(z + n)ᵀ

(z + n)ᵀ(z + n)
− I (3)

T =

[
R t
0 1

]
(4)

Jk,wall = T × Jk,camera (5)
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(a) 2-D pose (b) 3-D pose

Figure 3. Extraction of the climber’s pose in a video frame. (a) Skeleton provided by Vision and
calculation of the climber’s CoM, the latter highlighted by a red point. (b) Skeleton projection on the
point cloud to assign the depth component to each skeleton joint.

4.3. Automatic Route Delimitation

In bouldering, it is natural for a climber to ascend the climbing wall and then, at the
end, jump, or descend by un-climbing their steps. Determining the start and end points
of a climbing route automatically is an important task that allows us to differentiate the
portion of the video that is subject to comparison and analysis. Technically, two moments
are evaluated, namely:

(i) In the first half of the video, we look for the frame in which the hip position is the
lowest to the origin of the wall coordinates to obtain the start of the portion.

(ii) In the second part of the video, we take the last frame in which one of the two hands
registered the highest position to obtain the end of the portion.

Hence, the starting point rs is taken as the first frame where the y-position of the hip J8
is the lowest, beginning the route; and the end point re is taken as the last frame where
the y-position of either wrist, J7 or J4, reaches the highest point along the climbing route,
as specified in Equations (6) and (7).

rs = min( f ∗) : J8y, f ∗ 6 J8y, fi
∀ fi ∈ [0, #F/2) (6)

re = max( f ∗) : J7y, f ∗ > J7y, fi
∨ J4y, f ∗ > J4y, fi

∀ fi ∈ [#F/2, #F) (7)

4.4. DTW Alignment

Having a reference climbing route recorded by an expert in a video sequence C′,
a novice climber repeats the same route, giving a second video recording C′′. For the
simultaneous analysis of these two recordings, we use the DTW technique applied to the
trajectory of the climber’s hips J8 in both videos. The trajectory of J8 is projected into
the x–y space of the climbing wall model in each case. The Euclidean distance between
the projected joint and the wall origin is then calculated as the distance metric dist, thus
forming two independent time series of length equal to the number of frames in each video.

As shown in Figure 4, after applying DTW, each frame of C′ corresponds to a frame
of C′′. This relationship, not necessarily simultaneous or unique, can be represented as a
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series of tuples relating the position of the hips of the climber in each frame of both videos;
hence, we can define WC as the alignment of the two videos, as shown in Equation (8).

WC = {( fi, f j) | dtw(C′, C′′)J8 , ∀ fi ∈ C′ , ∀ f j ∈ C′′} (8)

Figure 4. Correlation of two different recordings C′ and C′′ on the same climbing route.

4.5. Motion Segmentation

The transition between the phases is given by the movements of hands, feet, and the
hips, hence identifying the range of frames in which the joints are in motion or static is
a preliminary step to determine the phase in which the climber is. The segmentation of
the video frames in which these joints are in motion is performed with a projection of the
skeleton in the x–y plane of the wall coordinate system. There, the velocity of the joints is
evaluated independently, and the ranges of motion are established for each joint.

In [21], a motion segmentation algorithm is proposed for each of the climber’s body
joints that are of interest in the analysis of climbing. The technique used is based on a
standard score [37] on the joint velocity signal sampled at each frame of an RGB video
recording. In this procedure, the mean of the velocity signal is taken and the standard
score, or z-score, is calculated as the number of standard deviations the velocity is above or
below the mean in each frame, according to Equation (9). The new z-score signal allows the
tracking of prominent changes in the velocity’s mean, related to joint movement intervals.
The original method looks for crossover points between the nth-standard-deviation (n-σ)
graph and the velocity signal, thus marking the initial and final frames of a probable joint
motion. The presented algorithm detects the motion of each key joint independently in a
given sequence of climbing poses, and shows good results when the signal has well-defined
velocity peaks, but is prone to errors when the joint signal is affected by noise. This noise
is mainly introduced by jittering in the detection of the joint position, which translates as
joint motion, and this in turn into false positives in the algorithm results.

z =
v− µ

σ
(9)

Making use of the same standard score technique as described above, we present here
a variation in the selection of crossover points to determine the initial and final frames that
define the motion segment of the key joint, which is described as follows. By analyzing
n-σ, it is possible to use only this single graph to extract the points where the signal
gradient increases and decreases rapidly by comparing the n-σ against a 50% threshold
of its maximum Ok. This threshold results after observing that n-σ sharpens non-jittering
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velocity increments so that we can extract such increments by finding the intersection of
the graph with its complement, Ok − n-σ, which coincide in the middle of the graph. This
technique makes it possible to skip those short velocity peaks introduced by jittering in the
skeleton detection, as can be seen for the first 100 frames in the example in Figure 5.

Figure 5. nth-standard-deviation graph with threshold of 50% of its maximum peak Ok. Here, n = 2
and Ok = 1580 mm/s.

The result of the algorithm is a set of intervals for each of the six key joints J7, J4, J8, J14,
and J11. A joint Jk is then considered to be in motion for a given frame fi if the frame belongs
to one of the motion segmentation intervals JM, as indicated in Equation (10). With m and
n as the limits of the intervals, Kµ as the minimum number of frames for a motion to be
considered valid, and l as the number of detected movements. For validation of whether
the joint is static, the complement JM is used.

JMk = { fi ∈ [ fm, fn]l | m 6 i 6 n , Kµ 6 n−m , l ∈ N} (10)

4.6. Phase Transitions

The climbing analysis is performed by dividing the video sequence C into the climbing
phases: preparation, reaching, and stabilization. To move from one phase to the next,
the climber’s key joints must fulfill specific criteria, which are described below.

4.6.1. Preparation

From stabilization, we transfer to the preparation phase if the feet start moving.
The climber adjusts the body, sets the feet, and prepares for the next movement in order
to reach a new hold. There, the two hands, J7 and J4, are fixed, and the moving feet seek
their place on the lower grips. The video frames FP that make up this phase are identified
as shown in Equation (11), following the rules set out in Figure 1.

FP = { fi ∈ C | fi ∈ JM14 ∪ JM11} (11)

4.6.2. Reaching

After preparation, the climber elongates the body as they reach for the next hold.
While the feet, J14 and J11, remain stationary, they release one hand, J7 or J4, looking to grab
the next hold in a vertical upward movement. Equation (12) defines the frame sequence for
this phase.

FR = { fi ∈ C | fi ∈ JM8y ∨ fi ∈ JM7 ∪ JM4 , fi ∈ JM14 ∩ JM11} (12)
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4.6.3. Stabilization

Once reaching is achieved, the hands remain static on the grips and now the body is
lowered, so that this allows them to start a new climbing cycle. Frames belonging to this
phase are identified when the hands are static, as shown in Equation (13).

FS = { fi ∈ C | fi ∈ JM7 ∩ JM4} (13)

4.7. Error Detection

Error detection is carried out by considering the phase in which the climber is. For this
study, we examined four common errors linked to the reaching phase, one linked to
stabilization, and one to the preparation phase, which will be detailed in this section.

Figure 6 shows an overview of the variables involved in our definition of the different
errors. In addition to angles, distances, and time, the following two concepts are necessary
before describing each error. The holding hand Hh is defined as the hand that is in the
higher position py in relation to the other one. Complementarily, the supporting hand Hs
is the hand that is in the lower position qy. These variables are defined in Equation (14)
as follows:

Hh, Hs = {(p, q) : p, q ∈ Jk∈{7,4} , py > qy} (14)

Figure 6. Angles and distances used in the error detection with holding hand (Hh) and supporting
hand (Hs). (a) Measured angles for the elbow (ϕ) and shoulder (ϑ) in the decoupling and shoulder-
relaxing errors, respectively. (b) Knee-to-ankle horizontal distance (dknee) in the weight-shift error,
and minimum time (thand) for the supporting hand in reaching-hand-supports error. (c) Hip-to-wall
depth distance (dhip) in relation to a reference climber for the hip-close-to-the-wall detection, and feet
motion frames (JM14,11 ) for both-feet-set error.

4.7.1. Decoupling

The decoupling error is detected in the preparation phase FP. There, the climber
should not bend the arm of the holding hand to avoid loading the hand unfavorably, thus
saving effort. The arm of the holding hand should be as straight as possible when the
climber places the feet. For this evaluation, the elbow and shoulder angles, ϕ and ϑ, relative
to the holding hand are constructed according to Equation (15).

ϕ =

{
]J7 J6 J5 Hh = J7
]J4 J3 J2 Hh = J4

, ϑ =

{
]J6 J5 J12 Hh = J7
]J3 J2 J9 Hh = J4

(15)
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The set of frames EE in which the angle ϕ or the angle ϑ are below the threshold Kφ or
Kθ , respectively, constitute the decoupling error detections, as shown Equation (16).

EE = { fi ∈ FP | ϕ fi
< Kφ ∨ ϑ fi

< Kθ} (16)

4.7.2. Reaching Hand Supports

While the climber is in the standing-up action, i.e., in the reaching phase FR, the sup-
porting hand HS should not be in motion for longer than Kt, thus stabilizing the body and
using less energy. By evaluating the time thand during which the supporting hand is in
movement HS M, we assess the occurrence of the error as defined in Equation (17).

EG = { fi ∈ FR | fi ∈ HS M ∧ thand > Kt} (17)

4.7.3. Weight Shift

The weight-shift error occurs when the climber stands up to grasp the next hold,
but the hip does not move in the direction of the supporting hand Hs, so that the main body
weight does not rest on the hold. The error is detected in the reaching phase FR by checking
whether the knee does not pass in front of the supporting foot. To achieve this, we first
determine the distance vector dknee between the knee and the supporting foot, the latter
related to Hs as given in Equation (18). Next, we identify the error by checking whether the
x-component of dknee is less than a threshold Kdknee

, as expressed in Equation (19).

dknee =

{
J14 − J13 Hs = J7
J10 − J11 Hs = J4

(18)

EH = { fi ∈ FRk | dkneex < Kdknee
, k = [ 1

4 , 3
4 ]#FR} (19)

Note that the knee, by the nature of the leg’s movement, may not pass in front of the
supporting foot at the beginning and end of the reaching phase; for this reason, we only
consider the central frames of the FR sequence, i.e., the frames of the two central quartets.

4.7.4. Both Feet Set

While standing up in the reaching phase FR, both feet should be placed either on the
wall or on the holds to stabilize the body. One leg should support the lateral displacement
of the hips and the straightening, while the other leg is mainly stabilizing. In the validation,
the set of frames where one of the feet is in motion or not located on the wall are marked
with error, as shown in Equation (20).

EP = { fi ∈ FR | fi ∈ J14,M ∪ J11,M ∨ J14z, fi
> 0 ∨ J11z, fi

> 0} (20)

4.7.5. Hip Close to the Wall

To assess this error type, that occurs in the reaching phase FR, we need to compare
the climber’s hips position in a recording C′ with respect to another C′′ that is selected as
reference on the same climbing route. For this purpose, we rely on the alignment of the
videos WC that provides us with the corresponding frames in both sequences to perform
the comparison of the z-position of both climbers’ hips J8. Hence, we can calculate the
perpendicular distance of the hips J′8z and J′′8 z to the climbing wall in each video, according
to the frame tuples given by WC as indicated by Equation (8). If the difference between the
distance to the wall of J′8 and J′′8 is greater than a threshold Kdhip

, the frame in C′ is flagged
with error, following the description in Equation (21).

EW = { fi ∈ FR | J′′8, f j
− J′8, fi

> Kdhip
, ( fi, f j) ∈WC} (21)
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4.7.6. Shoulder Relaxing

After reaching, the climber enters the stabilization phase FS and the arm of the new
holding hand should be stretched again. If this arm Hh remains locked, i.e., the elbow and
shoulder angles do not open, the so called shoulder-relaxing error will be observed. This
error is established for the elbow and shoulder with respect to Hh when their angles are
below a certain threshold, Kφ and Kθ , respectively, as shown in Equation (22).

EN = { fi ∈ FS | ϕ fi
< Kφ ∨ ϑ fi

< Kθ} (22)

Note that Equations (16) and (22) share the calculation of the angles ϕ and ϑ, but differ
in the phase where the error occurs.

4.8. Climbing Application for Users and Trainers

The proposed rules for identification of the six climbing errors defined in the previous
section were coded in C++ within an application developed for the iPad Pro 4th Generation.
This application allowed us to carry out the recording and processing of the climbing
video sequences, starting with the recording of a reference route, which is performed by
an experienced climber as a trainer. The reference recording demonstrates the proper
pose to be adopted by the climber in each of the preparation, reaching, and stabilization
phases, as well as the correct movements of hands, arms, waist, feet, and legs in each of the
transitions between these three phases. Similarly, the application allows a user to select the
reference video sequence and make multiple recordings of themselves in order to obtain
feedback on their movements and hips position relative to the wall, when compared to the
reference sequence.

To capture the video and process the images we use Apple’s ARKit framework. ARKit
allows the recording of RGB videos with the possibility of mapping reticular sections of the
image with the LiDAR sensor measurements. The sensor uses a global matrix of 576 points
and, in conjunction with the integrated motion sensors, builds the depth map for each
video image [38]. We choose an image resolution of 1440 × 1920 pixels, considering that
ARKit does not provide the raw information of the depth measurements, but resorts to a
combination of the image pixel color and the LiDAR information to build the depth map
of the scene by means of an AI algorithm [39]. From this depth grid we developed the
algorithm to create an ordered point cloud, whose density depends directly on the selected
frame rate. The grid was established as a 118 × 158 points mesh, which resulted from the
threshold that allowed us to process in parallel the maximum number of frames with an
available memory of 4 GB.

Below, in Section 5.4, is an example of the graphical feedback that climbers receive on
their recordings, indicating the errors made and the error count, allowing them to compare
their performance on each new attempt.

5. Evaluation

The test setup is presented below, followed by the methodology applied in the evalua-
tion, and concluding with an analysis of the obtained results.

5.1. Evaluation Setup

We selected four experienced climbers, defined as those who had mastered the six
climbing techniques we were interested in evaluating. These individuals, of different sizes,
were tested on three reference routes designed to demonstrate the three climbing phases
and detect the six possible climbing errors described in this paper. The climbers were
instructed to execute a climbing route three times: first time trying to perform a clean climb,
i.e., free of errors; second time, having at least one error per phase or transition; and finally,
executing a middle performance, with not a specific number of correct or wrong movements
and poses. Overall, 21 RGB-D videos of an average duration of 20 s were recorded at 60 FPS,
which were manually labeled by defining the range of frames where the climbing error was
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evident. This labeling included 58 decoupling, 32 weight-shift, 46 hip-close-to-the-wall,
16 both-feet-set, 35 shoulder-relaxing, and 48 reaching-hand-supports error actions.

5.2. Evaluation Methodology

The six defined rules were applied in parallel on each video recording. For each frame
of the video sequence, the climbing phase in which the climber was located was determined
and the errors corresponding to that phase were evaluated. This procedure results in a set
of frame-tuples for each kind of error, indicating the video sequence intervals in which the
climbing error is detected. Afterwards, these detection frame-tuples were overlaid on the
corresponding set of ground truth frame-tuples, as shown in Figure 7, to apply a decision
index and, thus, obtain a set of TP, FN, and FP values used to construct the precision–recall
curves, as explained below.

The error counting was performed per phase, i.e., if more than one error-tuple type is
detected in a given climbing phase, this is counted as a single error for the phase and for
such an error type.

Figure 7. Schematic of the overlap between detection range frames and ground truth for a given
climbing error. Here, IoU > 0.5 is used as the threshold to distinguish TP from FN.

5.2.1. IoU Index

To assess the accuracy of our climbing error evaluations, we apply the Jaccard simi-
larity index, also known as the intersection over union (IoU) method. As shown in [40],
the IoU is a measurement commonly used in ML to evaluate object detectors on specific
image datasets. The method compares the ground truth bounding box Bgt of a target with
the predicted bounding box Bp by dividing the overlap between Bgt and Bp by their union,
as shown in Equation (23). The IoU index measures how close the prediction bounding box
is to the ground truth, with values ranging from 0 to 1 indicating the matching: 0 for no
overlapping and 1 for a perfect match.

IoU =
|Bgt ∩ Bp|
|Bgt ∪ Bp|

(23)

In our experiments, we use the 1-D case of the IoU method, where the bounding boxes
consist of the ground truth and detection frame ranges. The IoU index gives us a measure
of the overlap between the labeled video frames for each climbing error and the detection
range produced by our algorithm. To differentiate true positives (TPs) from false negatives
(FNs) we use a variable threshold for IoU greater than zero; the variation of which will
later allow us to find the optimal value, and we assume false positives (FPs) if IoU = 0,
as shown in Figure 7.

5.2.2. Precision–Recall Curves

According to [41], in a rare event problem composed of unbalanced data, the receiver
operating characteristic (ROC) score can be misleading, and the precision–recall curve
(P-RC) is a better choice for assessing the model. We consider the climbing error detection
an unbalanced data problem, as the percentage of non-events of a given error type is
significantly higher than the percentage of error events; therefore, we have preferred the
P-RC analysis to the ROC score.
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To perform the P-RC analysis, we determined the number of TPs, FNs, and FPs for
each type of climbing error in each of the 21 videos in the evaluation set. To obtain P-RC
performance metric we used a series of 20 thresholds between 0 and 1 for the IoU index,
and calculated the precision and recall indicators according to Equation (24).

precision =
TP

TP + FP
, recall =

TP
TP + FN

(24)

5.3. Results and Discussion

The conditions set out in Section 4.7 for the identification of the climbing errors
include different thresholds, which are defined here as independent constants for each case.
Table 1 presents the values for these constants, which were determined on the basis of the
specifications given by our climbing expert and the fine-tuning carried out after many tests.

Table 1. Values of the thresholds used in the defined validations.

Validation Constant Description

Decoupling and Kε = 130◦ Threshold angle for open elbow
shoulder relaxing Kθ = 120◦ Threshold angle for open shoulder

Reaching hand supports Kt = 1 s Threshold grip time of the supporting hand

Weight shift Kdknee
= 20 cm Threshold distance from knee to foot

Hip close to the wall Kdhip
= 5 cm Threshold hip distance to the reference climber’s hip

Motion segmentation Kµ = 30 Threshold number of frames for a valid movement

Once the experiments had been carried out, the data collected, and the P-RC analysis
performed, as detailed in the previous sections, we found that the proposed algorithms
generally produced reliable results with optimal points for precision and recall above 0.7
and 0.75, respectively, as shown in Figure 8.

The most accurate validation occurs for the both-feet-set error type, which has an
optimal IoU threshold of 0.85, as shown in Table 2. This is consistent with the fact that the
algorithm does not include any additional rules apart from the limb movement and position
verification, which in turn means that the TP rate is directly related to a good detection of
the climber’s pose where the lower extremities do not present major occlusions. On the
other hand, the most complex validation turns out to be the weight-shift error, with an IoU
of 0.4. The rules for this error type include the distance knee–ankle dknee evaluated in the
middle of the reaching phase FR, for which we apply the validation within the middle two
quartets of the frame interval. The difficulty in this detection lies in the fact that the climber
does not always move the hip laterally when the next target to be grasped is within arm’s
reach in an upward direction, therefore, the expected condition is not fulfilled, and an FP
is produced.

Decoupling and shoulder relaxing show similar results in correctly validating the
predicted Kε and Kθ angles for the elbow and shoulder, respectively. This can be understood
by noting that both perform the measurements on the arms, which may be influenced by
similar conditions such as light or jittering in the detection of their joints. Nevertheless,
shoulder relaxing has lower precision due to the arm being more exposed to occlusions in
the stabilization phase FS.
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Figure 8. Precision–recall curves for the six error evaluations.

Table 2. Optimal thresholds for the IoU index differentiated by climbing error type.

Climbing Error Optimal IoU Optimal Precision Optimal Recall

Decoupling 0.8 0.8 0.75

Shoulder-relaxing 0.75 0.7 0.85

Reaching-hand-supports 0.45 0.7 0.75

Weight-shift 0.4 0.73 0.75

Hip-close-to-the-wall 0.9 0.75 0.85

Both-feet-set 0.85 0.84 0.85

The reaching-hand-supports scenario presents problems with high thresholds for the
IoU index, and the results are more reliable when a low IoU is used to discern between TPs
and FPs. This is explained by considering that the wrist joint is often hidden and, therefore,
the estimated position varies within the time interval Kt, which induces motion detections
that trigger error marking and increase the FP rate.

The hip-close-to-the-wall error is a direct result of the DTW algorithm and the error
mark depends on the Kdhip

constant. The latter measures the distance of the climber from
the climbing wall according to the reference, but as some test subjects had larger body
proportions than the reference climber, the Kdhip

value cannot be applied consistently
for all climbers. Nevertheless, the overall result is accurate, with an optimal IoU of 0.9.
In addition, video synchronization with hip tracking, which relies on the same DTW
algorithm, occurs correctly.

Finally, the results show that the detection of the different types of climbing errors
is accurate in a wide range of cases, although FPs are still relevant, they occur mostly in
those parts of the video where the detection of hands or feet shows fluctuations, due to
jittering or occlusions. However, measurements on joints other than these limbs, such as
the CoM, are reliable, with a low rate of FPs; this is demonstrated by the effectiveness of
using DTW to synchronize two video sequences and allow comparison of climbers in the
same position.
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5.4. Feedback Results for Climbers

The developed application provides climbers with graphical feedback on the errors
made in the three climbing phases. As the climber reviews the video, they can see the
synchronization of their movements with those of the selected trainer on the reference route.
This is specially helpful for novice climbers, who can compare their moves at each route
step, moving the video forward and backward at will. In the video reviewing, the climber
goes through the different climbing phases and is accompanied by feedback messages on
the wrong movements performed, if any. These messages tell the climber how the trainer
expects the movement to be executed, and the errors are counted to present a summary of
the total number of errors made by type, as shown in Figure 9. This summary also includes
a description of each error type, useful for understanding how each was determined.

(a) (b) (c)

(d)

Figure 9. Application feedback for novice climbers. Different errors are presented per climbing
phase, and a summary of the total errors with hints to improve the next attempt. Image source [29].
(a) Errors in reaching phase; (b) error in stabilization phase; (c) error in preparation phase; (d) climbing
error summary.

6. Conclusions and Future Work

Electronic devices that are affordable for a large part of the population increasingly
allow us to develop innovative applications that use non-invasive sensors, as is the case
with the iPad Pro with LiDAR sensor. Thanks to this availability, we have been able to



Sensors 2023, 23, 8216 18 of 20

implement ideas that contribute to the development and popularization of sporting trends
such as sport climbing and its variant bouldering. In this work, we have presented not only
an application of sport theory that allows the user to improve themselves by following
basic concepts in climbing, but we also propose rules for defining transitions between
climbing phases based on the position and movement of the body extremities.

The movement and position evaluation of the various body joints is made possible
by the continuous development of HPE frameworks. However, the jittering and occlusion
of the body parts play an important role in obtaining an accurate set of measurements.
Therefore, in the proposed solution we have made pose detection independent of the used
device to enable continuous improvement of our application by being able to integrate new
HPE algorithms as new techniques become available.

An essential aspect of our proposal, both in the climbing error detection algorithms
and in the application design, is to make our HPE module invariant to the scenario in
which it is used. We achieve this using 3-D modeling of the climber and the climbing wall,
which provides a mechanism for making recordings with different camera configurations
from different viewpoints. However, we still depend on the sensitivity of the sensor, in this
case LiDAR, which gives us its best resolution within the range of 4 to 6 m from the target.
This limits the application to some extent when the measurement is carried out statically,
but proposes a new requirement based on a moving sensor. A future scenario would be
the application of our proposed methods in the sport climbing discipline named speed
climbing, in which the climbing wall dimensions are much larger and would require, if not
several cameras, then a moving camera following the climber during the ascent.

The movement modeling of the body joints as 3-D signals allowed us to apply tech-
niques known in the field such as DTW and standard score, and also simplified the number
of variables by considering the climber as a set of 19 joints. This also allowed us to graphi-
cally and statistically compare different situations of the climbers’ movements when making
transitions between climbing phases, thus simplifying the validations and the number
of variables used there. For a next iteration of this work, we will extend the developed
rules by replacing the used constant thresholds with models based on the proportions and
constraints of the human body.

To conclude, the perspectives regarding the development of useful applications for
athletes are very wide, in particular for sport climbing. In a next project, the present work
will serve as a basis for training a predictive model that not only highlights wrong climbing
actions, but also suggests to the user the next move, considering the rules, to obtain the
best and most energy-efficient pose.
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