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Abstract: To cope with the challenges of autonomous driving in complex road environments, the need
for collaborative multi-tasking has been proposed. This research direction explores new solutions at
the application level and has become a hot topic of great interest. In the field of natural language
processing and recommendation algorithms, the use of multi-task learning networks has been proven
to reduce time, computing power, and storage usage in various task coupling cases. Due to the
characteristics of the multi-task learning network, it has also been applied to visual road feature
extraction in recent years. This article proposes a multi-task road feature extraction network that
combines group convolution with transformer and squeeze excitation attention mechanisms. The
network can simultaneously perform drivable area segmentation, lane line segmentation, and traffic
object detection tasks. The experimental results of the BDD-100K dataset show that the proposed
method performs well for different tasks and has a higher accuracy than similar algorithms. The
proposed method provides new ideas and methods for the autonomous road perception of vehicles
and the generation of highly accurate maps in visual-based autonomous driving processes.

Keywords: road feature extraction; multi-task learning network; traffic object detection; lane line
segmentation; drivable area segmentation; attention mechanisms

1. Introduction

The rapid development of artificial intelligence technology based on deep learning has
made it possible to achieve low-cost, vision-based autonomous driving technology. One of
the key issues in autonomous driving technology is how to build an efficient environment
perception system. Currently, most assisted autonomous driving technologies are based
on high-precision maps. However, the generation of such maps often requires the use of
multiple sensors for data collection and extensive post-processing work. If a low-cost vision
camera can be used to construct a real-time environment perception system, it can greatly
reduce the time and cost required for high-precision map generation, and even achieve
updates to the map through vehicle networking, thus having more practical application
prospects. In addition, the information provided by the three technologies of traffic object
detection, lane line segmentation, and drivable area segmentation plays a crucial role in
driving the decision making of vehicles [1]. There is still a lot of research space on how to
efficiently complete these three tasks.

This paper proposes a multi-task learning network model based on shared encoders
and introduces a feature extraction module called C3GC, which can improve the overall ac-
curacy of the model while reducing computational complexity. In addition, we incorporate
the transformer and squeeze excitation attention mechanism modules into the model, fur-
ther improving its accuracy. Extensive experiments on the BDD100K dataset demonstrate
the effectiveness of our approach (Figure 1).
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7] have been developed. The two-stage methods have higher accuracy but poor real-time 
performance, while the one-stage methods have slightly lower accuracy but are more suit-
able for real-life production needs because of their high real-time performance. In terms 
of lane segmentation and drivable area segmentation, traditional segmentation algorithms 
have been rapidly replaced by large-scale applications of convolutional neural networks 
in recent years. Many high-performance segmentation models have been developed, such 
as the encoder–decoder structure in UNET [8] and the feature pyramid structure used in 
FPN [9], which allows the network to obtain features of different scales, greatly improving 
the accuracy of the segmentation network. In addition, the RESA [10] method, SCNN [11] 
method, and Lanenet [12] method have also shown excellent results in the field of lane 
segmentation. 

In the application scenarios of autonomous driving, multiple tasks usually need to 
work simultaneously to provide services. Considering that the computing resources of the 
onboard computer are limited and there is a high real-time requirement, it is impractical 
to set up separate models for each task. Therefore, a method is needed to couple these 
similar tasks together to enable them to use fewer resources while maintaining real-time 
requirements. Multi-task learning networks [13] provide an effective solution to this prob-
lem, allowing related tasks to share the use of feature extraction networks, thereby saving 
time, space, and resources. Its effectiveness has been proven in the field of natural lan-
guage processing and recommendation algorithms [14–16]. In the field of computer vi-
sion, many models adopt the idea of Faster RCNN [17] and use the ResNet [18] structure 
for feature extraction. This fully demonstrates its powerful feature extraction ability, 
which can meet the needs of multi-task learning networks. LSNet [19], MultiNet [20], 
YOLOP [21], and HyBridNet [22] all use a ResNet-based shared encoder, and the results 
show that multi-task learning networks can simultaneously complete multiple related 
tasks with only a small increase in time and resource consumption.  

Figure 1. Result of our network.

The main contributions of this article are as follows:

1. Designing a road feature extraction network model based on multi-task learning,
which can simultaneously accomplish three tasks: lane line segmentation, traffic
object detection, and drivable area segmentation.

2. Designing an adaptive group convolution module, which can improve the accuracy of
the model in this paper without increasing the number of parameters; in addition, the
design of a squeeze excitation and transformer attention mechanism module, which
effectively improves the accuracy of the model in this paper.

3. Extensive experiments were conducted on the BDD100K dataset, which demonstrated
the effectiveness of the proposed method in this paper. Moreover, compared to similar
algorithms, the accuracy has been significantly improved.

2. Related Work

The three tasks of traffic object detection, lane segmentation, and drivable area segmen-
tation have been extensively studied in their respective fields. In terms of object detection,
a series of two-stage object detection algorithms represented by RCNN [2], Fast-RCNN [3],
and one-stage object detection algorithms represented by the YOLO series [4–7] have been
developed. The two-stage methods have higher accuracy but poor real-time performance,
while the one-stage methods have slightly lower accuracy but are more suitable for real-life
production needs because of their high real-time performance. In terms of lane segmenta-
tion and drivable area segmentation, traditional segmentation algorithms have been rapidly
replaced by large-scale applications of convolutional neural networks in recent years. Many
high-performance segmentation models have been developed, such as the encoder–decoder
structure in UNET [8] and the feature pyramid structure used in FPN [9], which allows the
network to obtain features of different scales, greatly improving the accuracy of the segmen-
tation network. In addition, the RESA [10] method, SCNN [11] method, and Lanenet [12]
method have also shown excellent results in the field of lane segmentation.

In the application scenarios of autonomous driving, multiple tasks usually need to
work simultaneously to provide services. Considering that the computing resources of the
onboard computer are limited and there is a high real-time requirement, it is impractical
to set up separate models for each task. Therefore, a method is needed to couple these
similar tasks together to enable them to use fewer resources while maintaining real-time
requirements. Multi-task learning networks [13] provide an effective solution to this
problem, allowing related tasks to share the use of feature extraction networks, thereby
saving time, space, and resources. Its effectiveness has been proven in the field of natural
language processing and recommendation algorithms [14–16]. In the field of computer
vision, many models adopt the idea of Faster RCNN [17] and use the ResNet [18] structure
for feature extraction. This fully demonstrates its powerful feature extraction ability, which
can meet the needs of multi-task learning networks. LSNet [19], MultiNet [20], YOLOP [21],
and HyBridNet [22] all use a ResNet-based shared encoder, and the results show that
multi-task learning networks can simultaneously complete multiple related tasks with only
a small increase in time and resource consumption.
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3. Methodology

This paper adopts a multi-task learning method based on shared encoders for the
network. In the Backbone part, a unified network model based on the improved YOLOv5s
Backbone was used. Multiple attention mechanisms were integrated in the Neck part, and
group convolution was also adopted to improve computational efficiency. Afterwards,
unique decoder heads were set for different branch tasks, making it possible to simultane-
ously execute multiple tasks. In this section, we will introduce the structure and related
parameters of the multi-task learning road feature extraction network used in this article.
In the first subsection, we will introduce the implementation of its shared feature extraction
module and discuss how it works collaboratively to complete traffic object detection, lane
segmentation, and drivable area segmentation tasks. The second subsection will describe
the calculation method of the loss function in our method and how to use it to control the
weight of different tasks.

3.1. Network Structure

Previous research, such as YOLOP and HybridNet, has shown that the current main-
stream feature extraction networks, such as Darknet [7], can perform well in feature extrac-
tion tasks. Therefore, in this article, the main structure of the backbone network adopts a
similar design concept. However, transformer [23] and SE attention mechanism [24], as
well as a grouped convolution structure, were added on this basis. These additions were
used to make the feature extraction in the backbone network more efficient. In the decoder
head, the FPN idea was also used in this article, connecting the features of some layers in
the backbone network to the output part of the decoder. The detailed network structure is
shown in Figure 2.
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3.1.1. Backbone

The backbone network of this article’s network is mainly composed of CBH and
adaptive group convolution modules. The original RGB image was inputted and alternately
passed through the CBH and adaptive group convolution modules, and the extracted
feature map was further extracted through the SPP [25] module in the neck part and the
transformer attention module, SELayer module, to perform feature extraction. Afterwards,
the extracted features were upsampled multiple times to obtain the final feature map, which
was provided to the decoder heads of different tasks. The structure of the backbone is
shown in Figure 3.



Sensors 2023, 23, 8182 4 of 14

Sensors 2023, 23, x FOR PEER REVIEW 4 of 14 
 

 

map, which was provided to the decoder heads of different tasks. The structure of the 
backbone is shown in Figure 3. 

  
Figure 3. The architecture of the backbone. 

3.1.1.1 CBH Module: The CBH module in this article consists of convolutional blocks, 
a BatchNorm2d module, and a Hardswish activation function. The formula of the 
Hardswish activation function is shown in Formula (1), and the structure of the CBH mod-
ule is shown in Figure 4. 

𝐻𝑎𝑟𝑑𝑠𝑤𝑖𝑠ℎሺ𝑥ሻ = ൞ 𝑥               𝑥 ൐ 30            𝑥 ൏ െ3𝑥ଶ + 3𝑥6      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (1)

 
Figure 4. Structure of CBH. 

3.1.1.2 C3GC: In this article, we replaced the common BottleneckCSP [26] module 
with the C3 module and added an adaptive grouped convolution module [27] based on 
the C3 module, which we named C3GC. The structure of the C3GC module is shown in 
Figure 5. This module mainly modifies the Bottleneck structure in the C3 module to our 
designed adaptive convolution module. This module consists mainly of two CBH layers 
and an adaptive group convolutional layer. The structure of the adaptive convolution 
module is shown in Figure 6. 

 
Figure 5. Structure of the group convolution block. 

Figure 3. The architecture of the backbone.

3.1.1.1 CBH Module: The CBH module in this article consists of convolutional blocks, a
BatchNorm2d module, and a Hardswish activation function. The formula of the Hardswish
activation function is shown in Formula (1), and the structure of the CBH module is shown
in Figure 4.

Hardswish(x) =


x x > 3
0 x < −3

x2+3x
6 otherwise

(1)
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Figure 4. Structure of CBH.

3.1.1.2 C3GC: In this article, we replaced the common BottleneckCSP [26] module with
the C3 module and added an adaptive grouped convolution module [27] based on the C3
module, which we named C3GC. The structure of the C3GC module is shown in Figure 5.
This module mainly modifies the Bottleneck structure in the C3 module to our designed
adaptive convolution module. This module consists mainly of two CBH layers and an
adaptive group convolutional layer. The structure of the adaptive convolution module is
shown in Figure 6.
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3.1.1.3 C3TR: Due to the interpretability, efficiency, and scalability of the transformer,
and its frequent application in contextually related scenarios between different positions,
tthis article introduces the C3TR module, which combines the transformer module with
the C3 module by replacing the bottleneck structure in the traditional C3 module with a
transformer block structure. This article refers to this structure as C3TR. The structures
of the C3TR module, transformer block module, and transformer layer are shown in
Figures 7–9.
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3.1.1.4 SELayer: The SELayer, also known as the channel attention module, is referred
to as the SELayer in this article. Due to the often consistent color of the lane and lane
markings, the SE attention can adaptively learn the importance of each color channel to
improve the performance of the model. Therefore, this paper introduces the SE attention
mechanism to enhance the ability to extract lanes and lane markings. The structure used in
this article is similar to the structure in SENet. It consists of a global average pooling layer,
two fully connected layers, and parts that use ReLU and sigmoid activation functions. The
structure of the SELayer module is shown in Figure 10.
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3.1.2. Decoder Head

In terms of traffic object detection tasks, considering that the YOLOv5 object detection
network already has high performance, this article retains the design scheme of YOLOv5
and adopts an anchor-based multi-scale detection scheme. The bottom-up feature aggrega-
tion network is combined with the feature pyramid network, and then assigned to anchor
points of different scales for object detection.
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We found through experimentation that, in terms of lane and crosswalk segmentation,
using only features extracted from the last layer of the neck in the YOLOP method resulted
in lower accuracy. Therefore, in this article, we decided to design a decoder head for these
two tasks based on their characteristics.

This paper takes into account the long and scattered characteristics of lane line in the
design of lane line segmentation tasks, which often span multiple convolution blocks and
cannot extract enough features in larger convolution blocks, resulting in the loss of semantic
information in the feature extraction process. Therefore, this paper adopted the idea of
FPN (Feature Pyramid Network). It combines the shallow low-level semantic information
of the first two layers in the main network with the results obtained in Section 3.1.1 before
upsampling. This allows the decoder head to better identify some small-scale semantic
information that disappears during convolution. The design of the decoder head is shown
in Figure 11.
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In terms of segmentation in the drivable area, this article found that using a decoder
head similar to the lane line segmentation task can also improve accuracy. As the area of the
drivable region is large but the edge area is irregular, most algorithms have poor extraction
performance in the edge area. Similar designs can effectively improve segmentation
performance in the edge area. However, since the accuracy of similar networks in this task
is already high, the improvement in this article is limited, and this will result in a loss of
about 0.003 s of inference time per frame.

3.2. Loss Function

For multitask learning networks, a common method for setting the loss function is to
independently calculate the losses for different tasks and then perform a weighted average.
The calculation method for the overall loss Lall is shown in Formula (2).

Lall = α1Ldet + α2Lda + α3Lll (2)

Formula (1) contains the loss function Ldet which is composed of three parts, classifi-
cation loss Lclass, object loss Lobj and bound-ing box loss Lbox, specifically designed for the
traffic object detection task. The computation of the loss function is performed through
weighted averaging, as shown in Formula (3).

Ldet = β1Lclass + β2Lobj + β3Lbox (3)

In Formula (2), Lclass and Lobj are focal losses used to evaluate the quality of classifica-
tion, and Lbox is used to measure the similarity between the generated predicted boxes and
the actual values. The calculation method of Lbox adopts the calculation method of LIoU.
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The loss for Lda in the task of drivable area segmentation and Lll in the task of lane
line segmentation in Formula (1) are calculated using the traditional segmentation loss
calculation method, the cross-entropy loss function LCE.

Finally, the total loss is obtained by summing up these losses with weights α1, α2, α3,
β1, β2, β3, corresponding to each part of the loss in Equations (1) and (2). In multi-task
learning networks, the weight setting between different tasks is often controlled by the
weight of the loss function, so the weight of different tasks has a great impact on the
accuracy of different tasks in the network. However, similar algorithms such as YOLOP
and HybridNet do not consider the impact of weight setting on the final network accuracy.
However, in our previous research work, suitable task weight allocations for this type
of multi-task learning task have already been obtained. Specifically, for the traffic object
detection task, it was less sensitive to the weight size, followed by lane segmentation tasks,
while lane line segmentation tasks were the most sensitive to weight changes. Therefore,
the emphasis of the weight setting in this paper is on the lane line and road segmentation
tasks, while the weight setting for the traffic object detection task is relatively low.

4. Experimental Section

This article primarily focuses on three aspects in the experimental section. Firstly, it
introduces the relevant settings of the experiments and the use of the dataset. Secondly,
it compares this paper’s method with similar methods from three different branches of
tasks. Lastly, it conducts ablation experiments, primarily exploring the effectiveness of
different modules in this paper’s method and comparing multitasking with single-tasking
to validate the effectiveness of the multitasking approach.

4.1. Experimental Setup
4.1.1. Dataset

In terms of datasets, this article used the BDD100K dataset [28]. The BDD100K dataset
is one of the more comprehensive datasets for the autonomous driving field produced
in recent years, containing 100 K frames of images and 10 task annotations related to
autonomous driving direction, making it suitable for researching multi-task learning net-
works. In addition, due to the large amount of data in the dataset, it has geographical,
temporal, and weather diversity, which makes the network trained in this article on the
dataset highly generalizable. Moreover, this dataset is often used in similar methods, so
using it in this article facilitates performance comparisons with similar methods. In terms
of dataset partitioning, this article extracted 70 K images from the 100 K image dataset as
the training set, 20 K as the validation set, and the remaining 10 K data as the test set. An
example of a dataset is shown in Figure 12.
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4.1.2. Parameters and Experimental Setup

In terms of parameter settings, this article uses the Adam optimizer for model training
and uses the warm-up and annealing algorithm to adjust the learning rate, ensuring that
the model can converge better. This ensures that this article can study the impact of multi-
task weight settings on the final accuracy of multi-task learning networks under the same
conditions. The specific parameter settings are shown in Table 1.
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Table 1. Experimental Setup.

Parameters Strategy

GPU Nvidia RTX 2070 Super
α1, α2, α3 1.1, 0.5, 0.8
β1, β2, β3 0.35, 0.7, 0.05

LR0 0.0002
CLR 0.5

Epoch 110
Batchsize 140
C3GC1-4 Inchannel: 64–512 Outchannel: 64–512

Group Size 4
C3TR Inchannel: 512 Outchaanel: 512

SELayer Channel: 512 R: 4

In terms of experiments, this paper not only compares the performance with existing
multitask learning methods, but also selects some excellent methods focusing on single
tasks, all of which have achieved excellent performance on the BDD100K dataset. Exam-
ples of these methods include YOLOv5s and Faster-RCNN, which are representatives of
one-stage and two-stage object detection algorithms, respectively. PSPNet [29] is a repre-
sentative method in the field of semantic segmentation. Since there have not been many
lane segmentation methods applied to the BDD100K dataset, this paper uses excellent
methods from other datasets for performance comparison. In addition, in this section, the
experiments in our method were conducted under the best weight settings. The specific
hardware information and settings are shown in Table 1.

4.2. Experimental Results
4.2.1. Traffic Object Detection Results

The visualization of the results of traffic object detection is shown in Figure 13. Consid-
ering that similar algorithms can only detect vehicle objects, this paper also only considers
the detection results of vehicle objects on the BDD100K dataset in this section. The re-
sults are shown in Table 2, with Recall and mAP50 selected as evaluation metrics. The
performance results show that the proposed method achieved an accuracy comparable
with mainstream object detection methods, although it still had a large gap in real-time
performance compared to faster methods such as YOLOv5s. However, the proposed ap-
proach was capable of simultaneously completing additional tasks such as drivable area
segmentation and lane segmentation. Moreover, it achieved a runtime of only 12.8 ms,
reaching 78 fps, which exceeds the commonly used 60 fps output of automotive cameras,
thereby meeting the real-time requirement.

Table 2. Traffic object detection results.

Network Recall mAP50 Speed (ms)

MultiNet [20] 81.3 60.2 30.5
Faster R-CNN 81.2 64.9 29.8

YOLOv5s 86.8 77.2 3.2
YOLOP 89.2 76.5 6.4

HybridNets 92.8 77.3 28.2
Ours 89.1 75.8 12.8
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4.2.2. Drivable Area Segmentation Result

The visualization of the segmented driving area is shown in Figure 14. In this task, our
method only needed to segment the area where vehicles can drive from the background
(i.e., the road). We used mIoU as the evaluation metric for this task, and the specific
evaluation metric data are shown in Table 3. From the results, it can be seen that our
method had higher accuracy than similar methods and reached the level of the PSPNet
method. It was also faster than similar methods, meeting the real-time requirements. It can
be inferred from the results that the structure of our method produced smoother results
at the edges and reduced the results produced in the opposite lane, resulting in higher
accuracy on the test set.
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Table 3. Drivable area segmentation results.

Network mIoU Speed (ms)

MultiNet 71.6 30.5
DLT-Net [30] 71.3 -

PSPNet 89.6 23.7
YOLOP 90.9 6.4

HybridNets 90.5 28.2
Ours 91.9 12.8

4.2.3. Lane Line Segmentation Result

The visualization of the lane line segmentation results is shown in Figure 15. In this
task, the accuracy and lane IoU were used as evaluation metrics. The specific results
are shown in Table 4, which indicate a significant improvement in the performance of
our method compared to the compared methods, reducing the phenomenon of lane line
interruption during the detection process. Compared to the YOLOP method used as the
baseline, our improved method achieved an 8.2% increase in accuracy in the lane line
segmentation task. Although the added structure in our method increased the additional
inference time compared to the baseline, it still met the real-time requirements.
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Figure 15. Lane line segmentation result.

Table 4. Lane line segmentation results.

Network Accuracy Lane IoU Speed (ms)

SCNN [31] 35.79 15.84 13.8
Enet [32] 34.12 14.64 -

R-101-SAD [33] 35.56 15.96 -
ENet-SAD 36.56 16.02 5.2

YOLOP 66.6 26.0 6.4
HybridNets 85.4 31.6 28.2

Ours 74.9 27.7 12.8

4.2.4. Experiment Conclusion

Through the experiments above, it can be observed that the method proposed in
this paper achieved an accuracy similar to task-specific methods in single-task scenarios.
Additionally, compared to the YOLOP method in the context of multi-task approaches, our
method showed significant improvement in lane line segmentation and road segmentation.
In terms of lane line segmentation, there was a significant reduction in the number of
lane line interruptions compared to YOLOP. There was also a substantial improvement in
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road edge segmentation compared to YOLOP. Although there was still an accuracy gap
when compared to the HybridNets method, it could only achieve approximately 35 fps,
indicating poor real-time performance.

4.3. Ablation Experiment

This section verifies the effectiveness of the proposed method through three sections
of ablation experiments. In the first part, we will verify the effectiveness of adaptive
convolutional structures. In the second part, we will compare experiments to validate
the effectiveness of the C3TR and SE structure. In the third part, we will perform ex-
periments comparing multi-task and single-task networks to verify the effectiveness of
multi-task networks.

4.3.1. Adaptive Convolutional Block

In this section, we only conducted experiments using the C3GC module, and the
results of the experiments are shown in Table 5. From the results, it can be observed that
adding the C3GC module on top of the Baseline+C3TR module improved the accuracy of
the lane segmentation task by about 0.4%. Although there was no significant improvement
in accuracy for other tasks, we found that during training, using this module accelerated
the model convergence without increasing the inference time. Therefore, the C3GC module
in this paper can be considered effective.

Table 5. Ablation experiment.

Scheme Recall mAP50 DA mIoU LL Accuracy Lane IoU Parameter Time (ms)

Baseline 89.2 75.6 91.8 69.5 26.5 8.897 M 9.6
C3TR 89.3 75.7 92.0 73.6 26.7 10.08 M 10.1

C3GC+C3TR 89.2 75.7 92.0 74.0 27.1 8.17 M 10.4
Ours 89.1 75.8 91.9 74.9 27.7 8.301 M 12.8

4.3.2. Attention Mechanism

In this section, we conducted experiments based on Section 4.3.1, adding the trans-
former attention module and the SE attention module. From the results, it can be observed
that the transformer attention mechanism module C3TR significantly increased the accu-
racy of the model, achieving a 0.1% and 0.2% accuracy improvement in object detection
and drivable area segmentation tasks, respectively. The improvement was more noticeable
in the lane segmentation task, with a 4.5% increase in accuracy and a 0.2% increase in
Lane IoU. Although the SE attention module may not show significant improvements or
even a decrease in accuracy of about 0.1% in tasks like object detection and drivable area
segmentation, its enhancement in lane line segmentation is evident. Compared to previous
methods, the module improved Acc by 0.9% and Lane IoU by 0.6%. These experiments
demonstrate the effectiveness of the two attention mechanism modules described in this
paper. In addition, calculations were also made on the parameter amount and running
time of different structural models in the experiment. From the time results, it can be ob-
served that although adding additional structures would result in extra computations and
increase the running time, it can still meet the real-time requirement. In terms of parameter
amount, the C3TR module increased the parameter amount by approximately 1.18 M and
the SELayer increased it by approximately 0.13 M, while using the C3GC module could
reduce the parameter amount by 1.91 M. Therefore, after adding additional modules, our
method had a reduced parameter amount compared to the baseline. This indicates that our
method is feasible in terms of computational complexity and usability.

4.3.3. Multitask vs. Single Task

This section of the article verifies the effectiveness of the multi-task approach by
comparing it with the single-task approach. Performance data for executing both the single
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and multi-task approach using the network are shown in Table 6. From the performance
data, it can be observed that implementing the multi-task model can achieve even higher
accuracy than executing a single task, while also saving a lot of time. This phenomenon is
due to the faster decline of the loss function for the target detection task during the training
process, which allows for quick convergence. Additionally, the use of a shared encoder
further allows the network to remain in a pre-training state after the target detection task
has converged, which can then be utilized to improve accuracy for the other two tasks that
converge at a slower rate through the remainder of the training. The evaluation metrics
and relevant settings for the ablation experiments are consistent with those outlined in the
aforementioned content.

Table 6. Multitask vs. single task.

Method Recall mAP50 DA mIoU LL Accuracy Lane IoU

Det (Only) 89.3 75.6 _ _ _
DA-Seg (Only) _ _ 61.6 _ _
LL-Seg (Only) _ _ _ 56.4 24.2

Multitask 89.1- 75.8+ 91.9+ 74.9+ 27.7+

5. Conclusions

This article proposed a multi-task road feature extraction network that combines
transformer and SE attention mechanism and adaptive group convolution blocks, and
applies a FPN-like structure in its decoder head. These efforts enable the multi-task
learning network to efficiently perform complete traffic object detection, lane segmentation,
and drivable area segmentation tasks. At the end, the proposed method achieved 74.9%
accuracy and 27.7% Lane IoU in the lane segmentation task, 75.8% mAP50 in the traffic
object detection task, and 97.6% accuracy and 91.9% mIoU in the drivable area segmentation
task. Compared to similar algorithms, the method proposed in this paper achieved an
8% improvement in accuracy for lane line segmentation tasks and a 1% improvement in
accuracy for drivable area segmentation tasks, while maintaining a comparable level of
accuracy for traffic object detection tasks. Considering the characteristics of the backbone
network in this study, more branch tasks can be added in the future to further enhance
the method’s flexibility. This method combines multitask learning networks with high-
precision semantic segmentation and detection tasks, and can reduce the reliance on
expensive sensors in autonomous driving and assisted driving. The low-cost and high-
precision visual road feature extraction algorithms are widely applied, and they can even
be combined with technologies such as cloud computing and digital twins to share and
quickly update information. In addition, this approach can be further expanded to cover a
wider range of tasks, thus involving different usage scenarios and providing more ideas
and solutions for future real-time tasks, such as autonomous driving.
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