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Abstract: In this paper, an adaptive and robust Kalman filter algorithm based on the maximum
correntropy criterion (MCC) is proposed to solve the problem of integrated navigation accuracy
reduction, which is caused by the non-Gaussian noise and time-varying noise of GPS measurement in
complex environment. Firstly, the Grubbs criterion was used to remove outliers, which are contained
in the GPS measurement. Then, a fixed-length sliding window was used to estimate the decay factor
adaptively. Based on the fixed-length sliding window method, the time-varying noises, which are
considered in integrated navigation system, are addressed. Moreover, a MCC method is used to
suppress the non-Gaussian noises, which are generated with external corruption. Finally, the method,
which is proposed in this paper, is verified by the designed simulation and field tests. The results
show that the influence of the non-Gaussian noise and time-varying noise of the GPS measurement is
detected and isolated by the proposed algorithm, effectively. The navigation accuracy and stability
are improved.

Keywords: adaptive and robust Kalman filter; maximum correntropy criterion (MCC); sliding
window method; global positioning system (GPS); strapdown inertial navigation system (SINS)

1. Introduction

The global positioning system (GPS) outputs the velocity and position information
of the carrier based on the satellite signals, which contain the characteristics of continuity,
real-time, stability, and so on, but its positioning accuracy is easily corrupted by the
external environment. Moreover, it cannot output the positioning information without the
external satellite signals. Thus, the self-contained characteristic of the GPS is poor [1–4].
The strapdown inertial navigation system (SINS) is an autonomous navigation system
based on Newton’s law of kinematics [5,6]. The three-dimensional attitude, velocity, and
position information of the carrier can be obtained by integrating the specific force and
angular velocity with inertial navigation algorithm. Its characteristics, which are strong
autonomy, anti-interference, and high sampling rate, are the major advantages of the
integrated navigation system. But the errors of the SINS accumulate over time, and its
stability is poor [7]. Therefore, the integration of the GPS and SINS can effectively make up
for the defects of each and improve the stability and reliability of the integrated navigation
system [8].

However, in practical applications, the GPS measurements are easily corrupted by the
external environment, resulting in measurement noises and outliers, which are no longer
obeying Gaussian distribution. Under the assumption of the noises with the Gaussian
distribution, the Kalman filter is the optimal unbiased estimation of information fusion.
When the measurement noise is no longer obeying Gaussian distribution, the estimation
accuracy of the Kalman filter cannot be maintained [9]. To solve this problem, many
researchers put forward several methods to improve the performance of the Kalman filter.
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The Kalman filter based on Huber’s core function, which is based on the l1 and l2 norms, is
designed to suppress non-Gaussian noise in [10]. However, these methods still assign some
weight to invalid measurements. Using a maximum correlation entropy improvement,
the Kalman filter can be improved to address non-Gaussian noises [11–13], and the weights
of measurement information are updated in real time. The Kalman filter obtains better
performance when the non-Gaussian noises are suppressed. Bayesian estimation uses the
maximum posterior probability to update the measurement covariance matrix [14], which
improves the adaptive characteristics of the Kalman filter. Other methods, which are based
on student-t distribution models, are devised in [15], and these methods give the optimal
solution with Bayesian estimation, which requires accurate prior information. However,
the mixing probability in the time-varying non-Gaussian case does not change fast. At this
time, the prior information is no longer reliable.

The above methods deal with one of the non-Gaussian characteristics, and the time-
varying characteristics, of the GPS measurement noises, but they fail to deal with both
non-Gaussian noise and time-varying noise. Therefore, an adaptive and robust Kalman
filter algorithm, which is based on the MCC criterion, is proposed in this paper to suppress
non-Gaussian noise and time-varying noise at the same time. Moreover, before giving
weight to the different types of measurement information with the MCC criterion, the new
outliers in the fixed-length sliding window were detected and eliminated by the Grubbs test
method, and the measurement noise covariance matrix was estimated adaptively. In this
way, the time variability and non-Gaussian characteristics of measurement noise were
processed simultaneously. Moreover, the estimation accuracy of integrated navigation
system was improved.

The rest of this paper is organized as follows. Section 2 gives the models of the
SINS/GPS integrated navigation system. All of the system equations and the measurement
models are shown in detail. In Section 3, the robust Kalman filter, which is based on
the MCC criterion, is designed. Moreover, the adaptive filter method, which is based
on the adaptive decay factor, is devised with the fixed-length sliding windows method.
The simulation and field tests are designed to verify the performance of the proposed
method in Section 4. Finally, the conclusions are drawn in Section 5.

2. Models of SINS/GPS Integrated Navigation System

In this section, the model of the SINS/GPS integrated system is derived, and the
derivations of the model are also investigated. The inertial coordinate frame, which is a
non-rotation frame, is defined as i-frame. The earth coordinate frame, which is the earth-
centered earth-fixed (ECEF) frame, is defined as e-frame. The navigation coordinate frame,
which is the east–north-up frame, is defined as n-frame. The carrier coordinate frame,
which is the right–forward–up frame, is defiend as b-frame. And the coordinate frame,
which is obtained by SINS calculation, is n′-frame.

2.1. The System Model of the SINS/GPS Integration

In this paper, the state vector of SINS/GPS integrated navigation is defined as follows:

x =

[
(ϕ)> (vn)> (δp)>

(
εb
)> (

∇b
)> ]>

(1)

where ϕ =
[

ϕE ϕN ϕU
]

denotes the attitude error between the n-frame and calculated
n’-frame. δvn =

[
δvE δvN δvU

]
denotes the velocity error. δp =

[
δL δλ δh

]
is

the position error, being, respectively, the latitude error, longitude error, and height error.
εb and ∇b are the dynamic bias of triaxis gyroscopes and triaxis accelerometers.

Based on the aforementioned analysis, the system model of SINS/GPS integrated
navigation is expressed as follows:

ẋ = Fx + w (2)
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where F denotes the state transition matrix; w denotes the process noise; and F can be
calculated by the error equation, which is obtained by the SINS calculation. And the error
equation can be expressed as follows:

ϕ̇ =−ωn
in ×ϕ+ δωn

in + Cn
b εb

δv̇n =Cn
b f b ×ϕ− (2δωn

ie + δωn
en)× vn

− (2ωn
ie + ωn

en)× δvn + Cn
b∇

b

δL̇ =
δvN

RM + h

δλ̇ =
δvE

RN + h
sec L +

vE
RN + h

sec L tan LδL

δḣ =δvU

ε̇b =0

∇̇b =0

(3)

where ωn
in denotes the angular velocity of the n-frame with respect to the i-frame expressed

in the n-frame, and δωn
in is the corresponding error. ωn

ie denotes the angular velocity of the
e-frame with respect to the i-frame expressed in the n-frame, and δωn

ie is the corresponding
error. Cn

b denotes the direction cosine matrix (DCM) from the b-frame to the n-frame.
f b denotes the specific force expressed in the b-frame. RM is the radius of curvature in
meridian, and RN is the radius of curvature in prime vertical.

2.2. The Measurement Model of the SINS/GPS Integration

In this paper, the measurement model is defined as the errors of the velocity and
position between the SINS and GPS. Thus, the measurement model of the SINS/GPS
integrated navigation system can be given as follows:

z = Hx + v (4)

where z is the observable vector. H denotes observable matrix, and v denotes measure-
ment noise.

The observable vector can be expressed as:

z =

[
vn

SINS − vn
GPS

pSINS − pGPS

]
(5)

The observable matrix can be expressed as:

H =

[
03×3 I3×3 03×3 03×3 03×3
03×3 03×3 I3×3 03×3 03×3

]
(6)

From the above derivation, it can be found that the accuracy of the integrated system
is determined by the external velocity and position, which are obtained from the GPS.
However, the positioning accuracy of the GPS is determined by the external circumstances.
If the vehicle is moving in the opening area, the positioning accuracy will be well. If the
vehicle is moving in the occluded area, the positioning accuracy will be poor. To solve
this problem, an adaptive and robust Kalman filter algorithm, which is based on the MCC
criterion, is proposed in this paper to suppress non-Gaussian noise and time-varying noise,
which are caused by the signal block of the GPS. The derivations of the proposed method
are shown in the next sections.

3. Adaptive and Robust Kalman Filter Based on MCC

In this section, a robust Kalman filter, which is based on the MCC criterion, is proposed
for outliers detection and isolation. Moreover, an adaptive method, which is based on the
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adaptive decay factor method, is proposed to improve the estimated accuracy of the robust
Kalman filter.

3.1. Robust Kalman Filter Based on MCC

Correlation entropy is defined as the similarity between two random variables. Define
two random variables X and Y. The correlation entropy between them can be expressed as:

V(X, Y) = E[κ(X, Y)] =
∫

κ(x, y)dFXY(x, y) (7)

where E[·] denotes the expectation of the variables, κ(·, ·) denotes the kernel function, and
FXY(x, y) denotes the joint probability density function between X and Y. In this paper, we
select the Gaussian kernel as kernel function:

κ(x, y) = Gσ(x− y) = exp
(
−‖x− y‖2

2σ2

)
(8)

where σ > 0 denotes the kernel bandwidth of correntropy. From Equation (8), we can
see that the correntropy of random variable X and Y with the Gaussian kernel reaches
its maximum if and only if X = Y. In practice, the joint probability density is always
unknown, so it is common to estimate an approximation of the correlation entropy using
the following sampling points:

V̂(X, Y) =
1
N

N

∑
i=1

Gσ(xi − yi) (9)

Then, the covariance of measurement noise is expressed as:

E
[
vkv>k

]
= λkRk = BkB>k (10)

where λk is the decay factor.
Left multiplying both sides of Equation (4) by B−1

k yields the linear regression model:

ξk = Dk − g(xk) (11)

where, ξk = B−1
k vk , Dk = B−1

k zk, g(xk) = B−1
k Hkxk.

According to the least squares principle and maximum correlation entropy criterion,
the cost function is constructed as follows:

JL(xk) =
∥∥∥xk − x̂k|k−1

∥∥∥2

(Pk|k−1)
−1 +

m

∑
i=1

ρMCC(ξk,i) (12)

where ‖x‖2
A = x>Ax denotes the quadratic form with respect to A, xk is the actual state

at time instant k, x̂k|k−1 is the prediction of state at time instant k, Pk|k−1 represents the
corresponding error covariance, ξk,i is the i− th element of ξk, and m refers to the dimension
of the measurement vector. The core function ρMCC(·) can be given by:

ρMCC(ξk,i) =

(
1− exp

(
−ξ2

k,i/2σ2
))

√
2πσ

(13)

The optimal estimate of the state vector is obtained by minimizing the cost function:

x̂k = arg min
xk

(∥∥∥xk − x̂k|k−1

∥∥∥2

(Pk|k−1)
−1 +

m

∑
i=1

ρMCC(ξk,i)

)
(14)
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The optimal solution can thus be found by differencing the cost function with respect
to xk as: (

Pk|k−1

)−1(
xk − x̂k|k−1

)
−

m

∑
i=1

ψ(ξk,i)
∂ξk,i

∂xk
= 0 (15)

where ψ(ek,i) = −Gσ(ξk,i)ek,i; by defining the function and dialog matrix Ck,i = −
ψ(ξk,i)

ξk,i
=

Gσ(ξk,i), Equation (14) can be rewritten as:(
Pk|k−1

)−1(
xk − x̂k|k−1

)
− H>k B−>k CkB−1

k (zk − Hkxk) = 0 (16)

Let Rk = BkC−1
k B>k and x̂k|k = xk; thus,

P−1
k|k−1

(
x̂k|k − x̂k|k−1

)
= H>k R−1

k

(
zk − Hk x̂k|k

)
(17)

Referring to [12] for the equation simplification and derivation process, the measure-
ment update can be given by:

x̂k|k = x̂k|k−1 + Kk

(
zk − Hk x̂k|k−1

)
Kk = Pk|k−1H>k

(
HkPk|k−1H>k + Rk

)−1

Pk|k = (I − Kk Hk)Pk|k−1(I − Kk Hk)
> + KkRkK>k

(18)

Using the aforementioned method, the outliers, which are contained in the GPS out-
puts, can be suppressed. Then, the estimated results will be stable. However, the accuracy
of the robust Kalman filter will degrade when there are outliers. To address this problem,
an adaptive filter method is investigated in the next subsection.

3.2. Adaptive Estimation with the Decay Factor

In order to improve the estimation accuracy of the MCC algorithm when there is
time-varying noise, the unknown decay factor λk is necessary to determine in advance.
In this paper, the outliers are eliminated with the residual sliding window by the Grubbs
test, and then we use two different calculation methods of the new information covariance
matrix to estimate the decay factor adaptively. It is noted that the Grubbs test serves to
calculate the adaptive decay factor and does not eliminate the measured outliers, so it does
not play a direct role in suppressing time-varying noise.

The Grubbs test, also known as the extreme studentized deviate test, is the most
effective method to distinguish outliers in the case of normal distribution. It can be
described as:

Gi =
xi − µ

σ
(19)

where xi represents the residual in a fixed-length sliding window, µ represents the mean
value, and σ represents the standard deviation. The confidence level was set as 0.95,
and the length of the sliding window M was determined by the minimization variance
parameter [16]. When Gi > Gp(M), the data are considered as outliers and removed from
the sliding window method to be calculated.

According to the measurement equation, the new information covariance matrix can
be expressed as:

P̂zz,k|k−1 = HkPk|k−1H>k + λkRk (20)

where λk = diag{λ1, λ2, · · · , λm}.
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Under the assumption that the residual is stable, the residual covariance matrix
P̂zz,k|k−1 can also be obtained by using the residual εk = zk − Hk x̂k|k−1 in the fixed-length
sliding window:

P̂zz,k|k−1 =
1
M

M

∑
i=1

εk−iε
>
k−i (21)

Let Nk = P̂zz,k|k−1 − HkPk|k−1H>k , at this time, decay factor can be expressed as:

λi =
∑m

j=1 Rk[i, j]Nk[i, j]

∑m
j=1 R2

k [i, j]
, i = 1, 2, · · · , m (22)

Based on the aforementioned method, an adaptive and robust Kalman filtering method
for SINS/GPS is devised. In the next section, the simulation and field tests are designed for
verifying the performance of the proposed method.

4. Simulation and Field Tests

In order to verify the performance of the algorithm, which is proposed in this paper,
the comparison tests between simulation data and field tests data are presented respectively,
and the position errors of KF [6], VBKF [14], MCCKF [11], and MCCRKF are designed
for comparison.

4.1. Simulation Test

In the simulation test, a test, which lasts 996 s, is designed for the verification of
the SINS/GPS integrated navigation system. It is noted that the errors of the integrated
navigation system will converge to a stable value when the filter converges to stable
states. Thus, it is not necessary to extend the integrated time. Taking the actual sensor
parameters as an example, the simulated parameters of the designed test are shown in
Table 1. The initial position of the carrier is set as 108.9◦ E, 34.2◦ N, and 380 m height;
the initial velocity is set as 0 m/s; and the initial attitude angle is set as 0◦. The iterations of
the VBKF algorithm are set as 3, and the Gauss kernel bandwidth of the MCCKF algorithm
and the MCCRKF algorithm is set as 3. Four groups of comparison experiments were set
up. Gaussian noise was added to the measurement in test 1, non-Gaussian noise was added
to the measurement in test 2, time-varying noise was added to the measurement in test 3,
and time-varying non-Gaussian noise was added to the measurement in test 4.

Table 1. Experimental parameters.

Types Error Terms Error Value

Errors of Instruments

bias of gyroscopes 3◦/h
random walk of gyroscopes 0.03◦/

√
h

bias of accelerometers 1000 µg
random walk of accelerometers 100 µg

√
Hz

velocity errors of GPS 1 m/s
positioning errors of GPS 2.5 m

Initial Errors of SINS
attitude errors [60′′ 60′′ 60′]
velocity errors 1 m/s

positioning errors 2.5 m

In test 1, the measurement noises of the sensors and the GPS errors are shown in
Table 1. Using the designed methods, the positioning errors, which are summarized with
the different four algorithms, are shown in Figure 1. With the test results, the RMSE errors
of the positioning error are shown in Table 2.
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Figure 1. The positioning error of different algorithms under Gaussian noise.

Table 2. The RMSE errors of four methods.

Types KF VBKF MCCKF MCCRKF

Latitude Error (m) 0.6142 0.6156 0.6146 0.6264
Longitude Error (m) 0.6427 0.6601 0.6599 0.6524

Height Error (m) 0.5853 0.6591 0.5938 0.6251

It can be found that, when the measurement noise conforms to Gaussian distribution,
the RMSE errors of the positioning errors of the four algorithms are equivalent.

The measured noise distribution in test 2 is shown in Formula (23), which represents
the heavy-tail distribution. Using these type noises, the positioning errors of the four
different algorithms are shown in Figure 2, and the RMSE errors of the positioning error
statistical are shown in Table 3.

vk ∼ 0.99N (0, Rk) + 0.01N (0, 400Rk) (23)

Figure 2. The positioning error of different algorithms under non-Gaussian noise.
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Table 3. The RMSE errors of four methods.

Types KF VBKF MCCKF MCCRKF

Latitude Error (m) 1.7963 0.8570 0.7238 0.7747
Longitude Error (m) 1.1676 1.0291 0.6381 0.6260

Height Error (m) 1.1109 0.6222 0.6153 0.6188

It can be found that, when the measurement noises are non-Gaussian, the estimated
errors of the KF algorithm increase by one time; the estimated errors of the VBKF algorithm
also increase significantly; while the estimated errors of MCCKF algorithm and MCCRKF
algorithm are equivalent, and their estimated accuracy is consistent with the same one
when the measurement noises are Gaussian.

In test 3, the measurement noise distribution is shown in Equation (24), where tk
represents the time-varying noise coefficient. The specific value is shown in Figure 3.
The positioning errors of the four different algorithms are shown in Figure 4, and the RMSE
errors of the positioning error statistics are shown in Table 4.

vk ∼ tkN (0, Rk) (24)

Figure 3. Time-varying parameters.

Figure 4. The positioning error of different algorithms under time-varying noise.
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Table 4. The RMSE errors of four methods.

Types KF VBKF MCCKF MCCRKF

Latitude Error (m) 0.9561 0.7685 0.6886 0.7897
Longitude Error (m) 1.1705 0.7881 1.7656 0.7795

Height Error (m) 0.7313 0.6989 0.6340 0.6941

It can be found that, when the measurement noises are time-varying, the estimated
errors of the four algorithms increase due to the degradation of GPS accuracy. However,
due to the time-varying noise, the MCCKF algorithm is corrupted by these type noises,
and the estimated accuracy is even lower than the same results of the Kalman filter, while
the estimation errors of the VBKF algorithm and the MCCRKF algorithm have a small
increase, which is within the normal range.

The measurement noise distribution, which is used in test 4, is shown in Formula (25).
The positioning errors of the four different algorithms are shown in Figure 5, and the RMSE
errors of the error statistics are shown in Table 5.

vk ∼ tk(0.99N (0, Rk) + 0.01N (0, 400Rk)) (25)

Figure 5. The positioning error of different algorithms under time-varying and non-Gaussian noises.

Table 5. The RMSE errors of four methods.

Types KF VBKF MCCKF MCCRKF

Latitude Error (m) 1.5112 1.1097 1.2023 0.8520
Longitude Error (m) 1.2113 1.0052 0.8344 0.7199

Height Error (m) 0.9170 0.6098 0.6296 0.5890

It can be found that the estimated errors of the MCCRKF algorithm are minimal when
the noises are time-varying and non-Gaussian. And the time-varying noise is suppressed
to a certain extent in the case of non-Gaussian noise suppression.

4.2. Field Test

To further validate the performance of the proposed method, the field test, which
is carried on a vehicle in Beijing, is designed. During the test, the bias of the gyroscope
is under 3◦/h. The random walk of the gyroscope is close to 0.03◦/

√
h, and the bias of

the accelerometer is under 1000 µg. The random walk of the accelerometer is close to
100 µg/

√
Hz. The output rates of all inertial sensors are 200 Hz. In the test, the GPS
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receiver, which is a product of the NovAtel Corporation, is adopted. The velocity error of
the GPS receiver is around 1 m/s. The positioning error of the GPS receiver is about 2.5 m.
The reference system is a high-level navigation system, which is equipped with triaxial
fiber-optical gyroscopes and a triaxial quartz accelerometers. The bias of the fiber-optical
gyroscopes is under 0.01◦/h. The random walk of the fiber-optical gyroscope is close to
0.001◦/

√
h, and the bias of the quartz accelerometer is under 100 µg. The random walk

of the quartz accelerometer is close to 10 µg/
√

Hz. The velocity error of the reference
navigation is 0.01 m/s, and the position error of the reference system is 0.1 m.

The output rates of the GPS receiver is 1 Hz. The whole field test lasts for 1824 s.
In Figures 6 and 7, the measurement errors of the GPS receiver are shown. In Figures 6 and 7,
the outliers are contained. Lastly, the in-motion trajectory of the vehicle is shown in Figure 8.

1 
 

 
 
 
 

 

Figure 6. The velocity errors of the GPS outputs.

Figure 7. The positioning errors of the GPS outputs.
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Figure 8. The moving trajectory of the vehicle.

In Figures 9–11, the attitude, velocity, and positioning errors of the four methods are
shown, and the RMSE errors of the four methods are lists in Tables 6 and 7. As can be
seen from the attitude errors in Figure 9, the horizontal attitude errors do not diverge;
this is because the horizontal attitude is constrained by the accelerometers’ measurements.
However, the yaw angles diverge when the integrated system lasts for 1250 s; this is because
the yaw angle is determined by the GPS measurements. When the outliers are contained in
the GPS outputs, the accuracy of the yaw angle degrades.

Figure 9. The attitude errors.

In Figure 10, it can be found that the velocity errors converge to a small value when
there are no outliers in the GPS outputs. However, when there are outliers, the number
of errors of the KF method increase. With the robust filter method, the errors of VBKF,
MCCKF, and MCCRKF are not corrupted by the outliers. It is noted that the up velocity is
not easily corrupted by the outliers; this is because the height channel is damped in this
integrated system.
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Figure 10. The velocity errors.

Table 6. The RMSE errors of velocity.

Types KF VBKF MCCKF MCCRKF

East Velocity Error (m/s) 0.1069 0.0782 0.0842 0.0700
North Velocity Error (m/s) 0.1061 0.0762 0.0886 0.0666

Up Velocity Error (m/s) 0.0285 0.0275 0.0332 0.0309

Figure 11. The positioning errors.
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Table 7. The RMSE errors of position.

Types KF VBKF MCCKF MCCRKF

East Velocity Error (m/s) 1.2671 0.7943 0.7580 0.6481
North Velocity Error (m/s) 1.3406 0.8658 0.6964 0.6254

Up Velocity Error (m/s) 0.9871 1.1223 1.0069 0.9295

As can be seen from the position error comparison diagram, the KF algorithm and
VBKF algorithm diverge to different degrees when there are outliers in the GPS horizontal
position, while the MCCKF algorithm and the MCCRKF algorithm are almost not affected
by outliers. There is obvious time-varying noise during 130 s to 230 s of GPS celestial
position, which leads to the decrease in GPS accuracy. The estimation errors of the four
algorithms all increase, but the MCCRKF algorithm has the smallest increase, indicating
that the MCCRKF algorithm has good adaptability and robustness.

5. Conclusions

In this paper, an adaptive and robust Kalman filtering algorithm based on maximum
correlation entropy is proposed to solve the problem that the SINS/GPS integrated nav-
igation system estimation accuracy decreases due to the influence of non-Gaussian and
time-varying noises in complex environments. Based on the MCCKF algorithm, the decay
factor was calculated by a fixed-length sliding window. Then, the R matrix was estimated
by using the decay factor to suppress the time-varying noises, which are contained in
the GPS outputs. The performance of the proposed algorithm is verified by simulation
and field tests. The tests results show that the MCCRKF algorithm can not only keep the
estimation accuracy of the SINS/GPS integrated navigation system under the condition of
non-Gaussian noise but also avoid the decrease in the estimation accuracy of the SINS/GPS
integrated navigation system under the condition of time-varying noise.
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