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Abstract: Convolutional neural networks (CNNs) play a crucial role in many EdgeAI and TinyML ap-
plications, but their implementation usually requires external memory, which degrades the feasibility
of such resource-hungry environments. To solve this problem, this paper proposes memory-reduction
methods at the algorithm and architecture level, implementing a reasonable-performance CNN
with the on-chip memory of a practical device. At the algorithm level, accelerator-aware pruning is
adopted to reduce the weight memory amount. For activation memory reduction, a stream-based
line-buffer architecture is proposed. In the proposed architecture, each layer is implemented by a
dedicated block, and the layer blocks operate in a pipelined way. Each block has a line buffer to
store a few rows of input data instead of a frame buffer to store the whole feature map, reducing
intermediate data-storage size. The experimental results show that the object-detection CNNs of
MobileNetV1/V2 and an SSDLite variant, widely used in TinyML applications, can be implemented
even on a low-end FPGA without external memory.

Keywords: convolutional neural networks; CNN accelerator; pruning

1. Introduction

Many EdgeAI and TinyML applications are related to computer-vision tasks like
object detection, where convolutional neural networks (CNNs) are showing great perfor-
mance [1–9]. However, CNNs require an enormous amount of memory and computation,
so special hardware is usually adopted to implement them. In various kinds of CNN
hardware, a CNN accelerator in ASIC or FPGA shows high efficiency.

Many CNN accelerators have been proposed [10–15], and some have focused on object
detection [16–22]. One of the main concerns in designing a CNN accelerator is how to
reduce the use of external memory. The processing of a CNN requires a large amount of
memory, so the data are usually stored in an external memory like DRAM. Accessing an
external DRAM consumes much power [23] and occupies long latency, which is a critical
obstacle in the adoption of an edge application. Furthermore, adding a part largely affects
the form factor of a small board like a TinyML environment.

There are two trivial solutions to this problem, namely embedding a large amount of
on-chip memory [24–26] or using a very simplified CNN model [26]. However, these solu-
tions are not so practical because of cost and degraded performance. It is still a challenging
problem to reduce the required memory amount so that a CNN model frequently used for
edge applications [27,28] can fit in the on-chip memory of a small device in an EdgeAI and
TinyML environment like a low-end or mid-range FPGA device.

In this work, we reached this goal, all-on-chip implementation, by adopting two
approaches. The CNN processing stores two kinds of data in memory, namely the weights
and the intermediate activation data. To reduce the amount of weight memory, we exploit
the pruning scheme [23,29–31], especially accelerator-aware pruning [32]. Pruning schemes
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can reduce the weight amount, but the irregularity leads to inefficient implementation. The
accelerator-aware pruning prunes weights considering the base accelerator, so it does not
harm the accelerator performance.

To reduce the amount of intermediate data memory, this work proposes a stream-
based line-buffer architecture. The main component of a CNN is a convolutional layer.
The proposed architecture is specialized to process a convolutional layer, storing only a
few rows of intermediate data for each layer. A convolution is a local operation, so the
calculation of an output activation requires only a few neighboring input data. If the input
data are streamed into the processing block, only a few rows are required to be stored. To
take full advantage of the line-buffer structure, a proper dataflow will be proposed, too.
With the combination of the two schemes reducing the weight and the intermediate data
memory, named AoCStream, an object-detection CNN widely used in EdgeAI and TinyML
applications can be implemented in a low-end FPGA without an external memory.

This work is organized as follows. Section 2 introduces the basics of CNN computa-
tions, and Section 3 analyzes the memory sizes of CNN accelerators. The accelerator-aware
pruning is introduced in Section 4, and the proposed architecture is described in Section 5.
After the experimental results are shown in Section 6, related works are summarized in
Section 7. Section 8 makes the concluding remarks.

2. Convolutional Neural Networks

A CNN consists of many layers, which are stacked from input to output. The data
usually flow from input to output. The main layer in a CNN is a convolutional layer. A
convolutional layer assumes N input feature maps whose height and width are H and W.
A convolutional layer performs a convolution operation with K × K kernels on the input
feature maps as described in the following equation and produces M output feature maps.

f o(m, y, x) =
N−1

∑
n=0

K−1

∑
i=0

K−1

∑
j=0

w(m, n, i, j)× f i(n, S × y + i, S × x + j) + bias(m), (1)

where f i() and f o() are a piece of the input and output feature map data, an input and
output activation, respectively, w() is the weights, and S is the stride.

To reduce the amount of weight and computation, a convolutional layer can be divided
into a depthwise convolutional layer and a point-wise convolutional layer [2], where a
point-wise convolution is a normal 1 × 1 convolution. In the depthwise convolution, the
number of the input feature maps, N, is equal to that of the output feature maps, M, and
an output feature map is calculated from the corresponding input feature map as follows:

f o(n, y, x) =
K−1

∑
i=0

K−1

∑
j=0

w(n, i, j)× f i(n, S × y + i, S × x + j) + bias(n). (2)

CNNs are usually used for computer-vision tasks including object detection. One
of the most popular CNN types for object detection is the single-shot multi-box detector
(SSD) [5]. The SSD exploits an image classification CNN like VGG, ResNet, and MobileNet
as a base CNN. The feature maps shrink further with auxiliary layers, and the detection
box information is generated through a few more layers. There are some SSD variants,
and SSDLite [3] uses depthwise convolutional layers instead of normal convolutional
layers in the auxiliary part.

3. Memory Size of CNN Accelerators

One of the most important factors in designing CNN accelerators is the amount of
required memory. Processing a neural network usually requires a huge amount of memory,
usually larger than the on-chip memory size of a practical device. A CNN accelerator,
therefore, usually uses external memory like DRAMs.
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A CNN accelerator stores two types of data in memory, weights and intermediate
activations. The amount of the weight memory is determined at the algorithm level by the
CNN structure. The amount of the activation memory is also determined at the algorithm
level, but it can be determined at the architecture level, too.

Traditionally, the memory amount for weights is believed to be much larger than
that for the activations. In traditional CNNs, however, most of the weights belong to
the fully connected layers [23]. The recent CNNs use only one or none fully connected
layers [1,3], and the object-detection CNNs do not use fully connected layers at all [5–7]. In
convolutional layers, the memory requirement for weights is not much larger than that for
activations, compared to those in fully connected layers.

Furthermore, the activation amount is proportional to the square of the input image
size. If the height and width of the input image are doubled, so are those of feature maps,
and the activation amount increases by four times. This is not a big problem when the
target application is the image classification because the input image size is usually very
small, around 224. However, the modern object-detection CNNs use large input images
varying from 300 [5] to 1280 [8]. In the current trend of processing larger input images, the
activation amount will become larger in the future.

This activation amount directly affects the activation memory size of the conventional
CNN accelerators, which usually exploit the frame-based architecture. In the architecture,
a neural network is processed layer by layer. A whole input feature map is stored in a
memory, called a frame buffer, and a CNN accelerator reads activations from the frame
buffer, processes them, and stores the output activations. After generating the whole output
feature maps, the CNN accelerator starts to process the next layer. Therefore, the CNN
accelerator requires memory for the whole input or output feature maps, and the amount
is doubled if the double buffering scheme is applied. Some structures process a few layers
at the same time [13,33], but they store the intermediate data between the layer blocks, too.

The memory sizes are analyzed in Figure 1 for the object-detection CNNs consisting
of MobileNetV1 [2] and SSDLiteX [34], a variant of SSDLite. The CNNs are built for images
with various sizes from 320 to 640. The number of auxiliary layer stages changes with the
input sizes: four stages for the input sizes 320 and 384 and five stages for 448 to 640. The
figure compares the memory amounts for each type of data with 8-bit quantization. For
small input images, the memory amount for the activation frame buffer is around one third
of that for the weights, which were denoted as Act.(Frame Buf.) and Weight in the figure,
respectively. With large input images, however, the activations occupy almost the same
memory as the weights do. Furthermore, the weight amount can be reduced by pruning.

320 384 448 512 640
0

2

4

6

Input Image Size

M
em

or
y
A
m
ou
nt
(M

B
)

Weight Weight(Pruned)
Act.(Frame Buf.) Act.(Line Buf.)

Figure 1. Memory amount for MobileNetV1 and SSDLiteX.
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4. Accelerator-Aware Pruning

Pruning is a scheme to reduce the number of weights and computation by forcing
some weights to be zero [23,29–32]. Recent research on pruning shows the amount of
weight can be reduced by three quarters in convolutional layers [23,32]. If the pruning is
applied, the memory amount for weights is smaller than that for activations even with
small input images (Weight(Pruned) in Figure 1).

There are two classes of pruning schemes: structured and unstructured. The structured
pruning prunes weights in a regular pattern. A representative one is channel-wise pruning,
where some whole kernels are selected and pruned. The unstructured pruning selects weights
to be pruned with no regular patterns. Unstructured pruning can prune more weights than
structured, but the irregular pruning pattern degrades the accelerator efficiency.

Figure 2 illustrates a convolutional layer processing in a sparsity architecture like
Cambricon-X [35] when the layer is pruned by unstructured pruning. In the accelerator
structure of the figure, a group of Npar input activations is fetched and broadcasted to
processing elements (PEs). In the part of a kernel corresponding to the fetched activations,
some weights are pruned to be zero (grey in the figure) and some weights are remained
to be non-zero (red in the figure). Each PE has two multipliers and reads two non-zero
weights from the weight memory. The PE selects activations corresponding to the non-zero
weights and multiplies the weights and activations to sum and accumulate the results. In
the unstructured pruning, there is no pattern, so in some kernels, three non-zero weights
can be remained for the fetched group of activations, as shown in the upper kernel. Then
one more cycle is required to process the third non-zero weight. In some kernels, only one
non-zero weight can remain for the feature group of activations, as shown in the lower
kernel, and then a multiplier in PE1 is in an idle state, doing nothing. Furthermore, for
the additional cycle for the process of the third non-zero weight in the upper kernel, both
multipliers in PE1 are in an idle state, too. The unstructured pruning leads to additional
processing cycles and low multiplier utilization.

Npar

Accumulator

C

H

W

K

K

Npar

Input activations

Kernel 0

Npar

K

K

Kernel 1

Accumulator

PE0

PE1

This multiplier is 

in idle.

This non-zero 

weight requires one 

more cycle.

Fetched input 

activations are 

broadcasted to PEs.

Figure 2. Convolutional layer processing with unstructured pruning.
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The algorithm part of the proposed AoCStream exploits the accelerator-aware pruning,
which prunes weights with a regular pattern proper to an accelerator architecture [32]. As
shown in Figure 3, the weights are pruned so that an equal number of weights remains for
every activation group fetched together. With the accelerator-aware pruning, no additional
processing cycles are required, and multipliers can be fully utilized, as shown in Figure 4.
Even with the regular pattern, the pruning scheme can prune as much as the unstructured
pruning without degrading the accelerator efficiency [32].

Corresponding to 

activation fetch group

K

K

pruning

Figure 3. Accelerator-aware pruning.

Npar

Accumulator

C

H

W

K

K

Npar

Input activations

Kernel 0

Npar

K

K

Kernel 1

Accumulator

PE0

PE1
No idle multipliers

No additional 

processing cycles

Figure 4. Convolutional layer processing with accelerator-aware pruning.

5. Stream-Based Line-Buffer Architecture

As mentioned in the previous section, the size of the weight memory can be reduced
at the algorithm level with a method like pruning. However, there is no method to reduce
the activation memory. The only way is by using a smaller input image despite the
performance degradation or using another architecture. This section will focus on the
reduction of the activation memory in the architecture and dataflow level, proposing a
stream-based line-buffer architecture for all-on-chip CNN implementation, the architecture
part of AoCStream.
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5.1. Top Architecture

The proposed accelerator processes a CNN in a layer-level pipelined way. Each layer
has a corresponding processing block as shown in Figure 5. When a group of data are
input to a block, the block processes the input data and generates a group of output data
if possible. The generated group of data streams into the next block. Since each block
does not wait for the previous block to complete the whole corresponding layer operation,
all the blocks can operate in parallel. The structure of a layer block is determined by the
corresponding layer type.

Convolutional Layer Block

Layer 0

block

input

image

Layer 1 

block

Layer 2 

block

Layer 

L-1 

block

... output

W
e

ig
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e
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Acc. Buffer
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u

tp
u

t

U
n

it

PE 
PE 

PE 
PE 
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K
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L
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e
 B

u
ff

e
r

Figure 5. Stream-based line-buffer architecture.

5.2. Convolutional Layer Block

The base operation of a convolutional layer is the two-dimensional convolution. In
conventional image processing circuits, the two-dimensional convolution is usually pro-
cessed by a stream-based structure with a line buffer of size (K − 1) lines. In the structure,
the input data are assumed not to reside in memory, but to stream in one by one. When
one piece of input data streams in, the circuit processes the possible convolution operation.

As the typical image processing circuits, the proposed convolutional layer block uses
the line buffer to hold the activations to be used with the input coming later. The current
input data and the data in the line buffer are combined and broadcast to the processing
elements (PEs), as shown in Figure 5. In the PEs, the activation data are multiplied
with weights and accumulated with an accumulation buffer. When the accumulation is
completed, the resulting data are quantized and output through the output unit.

The block has three memories, the line buffer, the weight memory, and the accumula-
tion buffer. Theoretically, the shortest size of a line buffer is (K − 1) lines. To reach this size,
however, proper operation scheduling, called a dataflow, should be adopted.

5.3. Input-Centric Dataflow

There have been proposed many dataflows for the convolutional layer operation [11],
but most of them assume the frame-based architecture. The main focus of the dataflows
was to reduce the number of DRAM accesses by reusing the already-fetched data as many
times as possible. However, such dataflows may increase the memory size in the all-on-chip
implementation of this work.

To raise the possibility of the all-on-chip implementation, the memory size reduction
should be focused on. As previously mentioned, the minimum line-buffer size is (K − 1)
lines. This line-buffer size, however, cannot be achieved by the previous reuse-focusing
dataflows. To reach the size, the old input activations should be consumed with the current
input activations as fast as possible.

For this purpose, this paper proposes the input-centric dataflow, where the operations
that can be processed with the oldest input data in the line buffer are processed first. The
input-centric dataflow assumes that the input data are streamed in the row-major order. For
each spatial location, N channel data are divided into Gi groups, and a group of N/Gi = Ni
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data are streamed in together. Two consecutive groups are separated by the interval of Ii
cycles as shown in Figure 6.

With the Ni data in a group, the layer block performs all the computations that can
be done with the input data and the data stored in the buffer as shown in Figure 7. When
gth group data, f i(gNi, y, x) ∼ f i((g + 1)Ni − 1, y, x), are input, the layer block calculates
the following partial sums for outputs f o(m, Y, X), where 0 ≤ m < M, Y = y − K + 1, and
X = x − K + 1.

f og(m, Y, X) =
(g+1)Ni−1

∑
n=gNi

K−1

∑
i=0

K−1

∑
j=0

w(m, n, i, j)× f i(n, Y + i, X + j), (3)

where the stride S is assumed to be 1 for simplicity, but the structure is not limited to that.

fi(0,y,x)~

fi(Ni−1,y,x)

fi(Ni,y,x)~

fi(2Ni−1,y,x)

fi((Gi−1)Ni,y,x)~

fi(N−1,y,x)

Partial sums

by fi(0,y,x)~fi(Ni−1,y,x)

Partial sums

by fi((Gi−1)Ni,y,x)~fi(N−1,y,x)

fi(0,y,x+1)~

fi(Ni−1,y,x+1)

fo(0,Y,X)~fo(M−1,Y,X)

Input

Partial 

sums

PE 

output

fo(0,Y,X)~

fo(Mo−1,Y,X)

fo(Mo,Y,X)~

fo(2Mo−1,Y,X)

fo(2Mo,Y,X−1)~

fo(3Mo−1,Y,X−1)

fo(Mo,Y,X−1)~

fo(2Mo−1,Y,X−1)

Output

Input interval Ii

Output interval Io

Figure 6. Convolutional layer processing timing with the input-centric dataflow.

C

H

W

Current input 

activation

K

Ni

Line Buffer

Dataflow

Figure 7. Input-centric dataflow.

The partial sum requires K × K × Ni × M × (1 − r) MAC operations, where r is the
pruning ratio, and the operations should be done in Ii cycles. Therefore, the required
number of MAC operators is K × K × Ni × Mi × (1 − r), where Mi = M/Ii. The layer
block has Mi PEs, and a PE with K × K × Ni × (1 − r) MAC operators calculates a partial
sum of the output at each cycle.

When a partial sum is calculated, it is accumulated with an accumulation buffer of
size M. When all the data of a spatial location, f i(n, y, x) for 0 ≤ n < N, are input through
Gi groups, the calculation of the output data, f o(m, Y, X) for 0 ≤ m < M, is completed
through the accumulation. The output data are collected at the output unit and streamed
out in Go groups of M/Go = Mo data at the interval of Io cycles. If the spatial size of the
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input feature maps is equal to that of the output feature maps, the following relationship
should be satisfied.

N
Ni

× Ii ≥
M
Mo

× Io (4)

5.4. Depthwise Convolutional Layer Block

The depthwise convolutional layer block also requires a line buffer of (K− 1)-line size
as the convolutional layer block in the previous subsection. In the depthwise convolution,
the accumulation is not required between the input data groups. When f i(gNi, y, x) ∼
f i((g + 1)Ni − 1, y, x) data are input, we can calculate f o(gNi, Y, X) ∼ f o((g + 1)Ni −
1, Y, X). The required number of MAC operations is K × K × Ni. Each PE has a MAC unit,
and the number of PEs should satisfy

Number of PEs ≥ K × K × Ni
Ii

. (5)

In the proposed layer block structure, an output is designated to a PE. Therefore, the
number of PEs should be a divisor of the number of outputs to be calculated. The number
of PEs is determined under this constraint and Equation (5).

5.5. Pooling Layer Block

The pooling layer block can be implemented in a similar way to the structure of the
depthwise convolutional layer block. The maximum or average operators are used in the
processing elements instead of multipliers and accumulators. The structure requires the
line buffer of (K − 1) lines and an output buffer for the data rate adjustment. However, for
some configurations, the line-buffer size can be reduced. Figure 8 shows the max pooling
layer operation when K = 2 and S = 2. When the block receives f i(y0, x0) activations for
even y0 and x0, the block stores the activations. With the activations on the next position,
f i(y0, x0 + 1), the block reads the stored activations and compares them with the input
data. The larger values are stored at the same line-buffer location. On the next row, the
read-compare-write operation is repeated for f i(y0 + 1, x0) and f i(y0 + 1, x0 + 1) on the
same line-buffer location. Then the maximum value is stored in the line buffer. This
operation flow only requires a line buffer of a half line.

W/2

Line Buffer

Store fi(y0,x0) 
Read and compare 

with fi(y0,x0+1) 

Store the larger one
Read and compare 

with fi(y0+1,x0) 

Store the larger one

Read and compare 

with fi(y0+1,x0+1) 

Store the larger one

Figure 8. Pooling layer operation when K = 2 and S = 2.

5.6. Early-Delay Structure

Some of the modern CNNs use the inverted residual bottleneck scheme [3]. In the
scheme, a bottleneck residual block consists of a 1 × 1 expansion layer, a K × K depthwise
convolutional layer, and a 1 × 1 projection layer. If the input channel number is equal to
the output channel number, a skip path is built between the input and the output. The
expansion layer increases the number of channels by t-times, for example, six times in
MobileNetV2.

To implement a bottleneck residual block, two line buffers are required, in the depth-
wise convolutional layer and the skip path, as shown in Figure 9a. If the input size of
the residual block is N × H × W, the sizes of the line buffers are tN × W × (K − 1) and
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N × W × (K − 1)/2, respectively. The line buffers in the depthwise convolutional layer
may occupy a major part of the activation memory because their sizes are t-times larger
than the other line buffers.

To reduce the line-buffer size, this work proposes an early-delay structure, where the
line buffer is placed in front of the expansion layer, as shown in Figure 9b. The number
of channels is not tN but N at the input of the expansion layer, so the size of the line
buffer is N × W × (K − 1) instead of tN × W × (K − 1), reducing the memory size greatly.
However, the depthwise convolution requires the old input data as well as the current
input data, so all the required data should be processed by the expansion layer together. In
the proposed structure, the early-located line buffer outputs the current input data group
with the (K − 1) input data groups placed above the current input position. The K data
groups are processed by the K expansion layer block, which have separate PEs with shared
weight memory. The depthwise convolutional layer block receives K input data from K
expansion layer blocks at the same time. The depthwise convolutional layer block has a
K K-long shift registers, which supplies the required data to the PEs.
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Figure 9. Bottleneck residual block implementation with (a) the naive structure and (b) the proposed
early-delay structure.

With the early-delay structure, the line-buffer size can be reduced by t times, and the
delay line in the skip path can be removed, as shown in Figure 9b. Such memory size
reduction comes with the increased number of operators in the expansion layer by K times.
Table 1 compares the resource usage before and after the early-delay structure is applied
to MobileNetV2 and SSDLiteX implementation for the 320 × 320 input image. Although
the number of multipliers increases, the line-buffer size decreases much, providing the
trade-off between the two resources, the internal memory and the operators. Since internal
memory is usually a less-sufficient resource in CNN accelerators, especially in all-on-chip
implementation, the early-delay structure can be a useful design choice. The inverted
residual blocks are widely used in modern CNNs including MobileNetV3, EfficientDet,
and MobileDet, so the proposed structure can be applied to those CNNs, too.

Table 1. Effect of early-delay structure.

Resource Before After

Line Buffer (KB) 487 224
Acc. Buffer (KB) 60 129
MAC Operators 402 582
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5.7. Architecture Comparison
5.7.1. Memory Size

When a CNN is processed layer by layer as in the conventional frame-based architec-
ture, a frame buffer is required to store the input and output feature maps. For a layer l, a
frame buffer of size Hl × Wl × Nl is required for the input feature maps, and another of
size Hl+1 × Wl+1 × Nl+1 is required for the output feature maps. Since a frame buffer can
be reused between layers, the maximum size is required as follows:

Frame Buffer Size = max
l

Hl × Wl × Nl (6)

In the proposed architecture, a line buffer is used in each convolutional layer block,
depthwise convolutional layer block, and pooling layer block. Since the blocks operate in
parallel, the line buffers cannot be shared. Therefore, the total size of the line buffers is

Line-Buffer Size = ∑
l
(Kl − 1)× Wl × Nl . (7)

When the input image size is scaled up, the input image is enlarged vertically and
horizontally. The frame-buffer size in Equation (6) increases with the square of the scale.
On the contrary, the line-buffer size in Equation (7) has only the width term, Wl . The
line-buffer size is proportional to the scale linearly. In Figure 1, the frame-buffer size,
Act.(Frame Buf.), increases rapidly with the input image size. However, the line-buffer
size, denoted as Act.(Line Buf.), increases much slowly to be less than one quarter of the
frame-buffer size at the 512 × 512 input image case.

Figure 10 compares the frame-buffer size and the accumulated line-buffer size in each
layer of MobileNetV1 and SSDLiteX with 512 × 512 input image. The maximum size of
the frame buffer is 4 MB at the output of the first point-wise convolution. The line buffer
in each layer is very small, so it would not be clearly shown in the figure. Instead of the
line-buffer size in each layer, the figure illustrates the accumulated line-buffer amount,
which is less than one quarter of the frame-buffer size.
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Figure 10. Frame-buffer vs. line-buffer size.

5.7.2. Latency

The frame-based architecture begins processing of a frame after the whole image
is stored from a camera image stream. After processing all the layers one by one, the
accelerator can process the next image, as shown in Figure 11a. If the latency is defined
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as the time between the start and the end of the processing, as commonly used in the
frame-based architecture, the latency is closely related to the throughput as follows:

Throughput =
1

Latency
(8)

However, if we consider the latency from the beginning of the frame input to the completion
of the processing, the end-to-end latency is the sum of the time of storing the input image
frame and that of the CNN processing. It becomes two image frame periods.

In the layer-wise pipelined architecture as the proposed one, each layer block
does not wait for the previous layer block to complete the processing of the assigned
layer. It performs the layer processing as soon as it receives the necessary data. Each
layer block occupies a certain amount of latency, summing into the whole latency, as
shown in Figure 11b. Therefore, the end-to-end latency is determined by the CNN
model structure and the architecture details. The experimental results show that the
CNN processing completes at around the 280th line of the next image input when the
MobileNetV1 and SSDLiteX are applied with the image size 512. The end-to-end latency
is around one and a half image frame periods.

...

...

Frame i Frame i+1Camera

Processing L0 L1 L2 L3 L4...L0 L1 L2 L3 L4

Processing of Frame i

Latency

End-to-End Latency

Frame i Frame i+1Camera

Processing

L0

L1

L2

L3

L4

L last

End-to-End Latency

(a)

(b)

Figure 11. Latency of (a) the frame-based architecture and (b) the proposed architecture.

5.8. All-on-Chip Accelerator

The weight pruning and the line-buffer architecture reduces the storage of the weights
and the intermediate data, so their combination, known as AoCStream, can lead to all-on-
chip implementation. The affordable amount of on-chip resources may vary depending
on the target environment. In this work, we will use the resource amount of low-end or
mid-range FPGA devices as a criterion. If directly used for accelerator implementation,
such a device may be a practical choice for an EdgeAI and TinyML environment. FPGAs
are also widely used for a prototype before ASIC manufacturing, where the implementation
on such small FPGA devices may indicate the feasibility of a small-sized chip.

As an example, the 512 × 512 input image case in Figure 1 requires a weight memory of
around 5 MB and the frame buffer memory of around 4 MB. The total memory requirement
of 9 MB cannot be afforded by a low-end or mid-range FPGA device like Xilinx XCKU5P,
whose on-chip memory size is 4 MB. The two proposed schemes, the accelerator-aware
pruning and the line-buffer architecture, can reduce the memory size by around three
quarters. The total memory size becomes around 2.9 MB, which is less than the on-chip
memory size of XCKU5P. Furthermore, the 320 × 320 input image case requires 2.5 MB,
which is affordable in an even smaller device like XC7K325T.
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The proposed scheme does not guarantee that any CNN can be implemented with
the on-chip memory of any device. There will be no such method. The proposed method,
however, broadens the possibility of the all-on-chip implementation, higher performance
CNNs on smaller devices for resource-hungry environments.

6. Experimental Results

Object-detection CNNs based on MobileNetV1/V2 and SSDLiteX with various input
sizes were trained and implemented with the proposed AoCStream architecture. The CNNs
were trained with the MS COCO data set and pruned by the accelerator-aware pruning.
The pruning ratio is 62.5% or 75%, which means five or six weights are pruned for every
eight weights along the channel axis. The pruned CNNs were quantized with 8–10 bits
without fine-tuning. The object-detection accuracy, AP50, for the MS COCO dataset is
provided after each step of training, pruning, and quantization in Figure 12. Pruning and
quantization degrade AP50 by around 0.01–0.02, but the detection accuracy is still high for
such compact CNNs. If retraining is applied with quantization, better detection accuracy
could be obtained. The final AP values are shown in the fifth row of Table 2.
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Figure 12. Object-detection accuracy for MS COCO dataset.

The AoCStream accelerator was designed at the register-transfer level (RTL) for the
quantized CNNs and implemented for a low-end Xilinx FPGA, XCKU5P, which is the
second smallest device in the UltraScale+ Kintex series with 4 MB on-chip memory. The
implementation results are shown on Table 2. The table describes the occupancy of FPGA
resources including look-up tables (LUT), registers, block memory (BRAM), ultra memory
(URAM), and operation units (DSP).

The last five rows of the table show the maximum operating clock frequency, the
throughput in frames per second (FPS), two DSP efficiencies, and the external memory use.
The first DSP efficiency is calculated by

DSP Efficiency 1 =
(Operations/Frame)× (Frames/second)

2 × (Number of DSPs)× (Clock Freq.)
, (9)

where the 2× in the denominator reflects that a DSP can process two operations, a multipli-
cation and an addition, simultaneously. The second DSP efficiency is the effective efficiency,
which includes zero-skipped operations in a sparsity architecture, so the effective efficiency
can be higher than 100% if pruning is applied. The last Ext. Mem. row with None indicates
that the proposed architecture can store the whole intermediate data and weights on the
on-chip BRAM and URAM even for the input image size 512 × 512. The table also shows
that the all-on-chip implementation leads to high throughput and efficiency. The architec-
ture can process images at 90 to 260 FPS, which is much faster than the real-time speed
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of 30 FPS. The implementation of MobileNetV2 and SSDLiteX shows a somewhat lower
efficiency, but this is because of the duplicated operations for the early-delay structure.

Table 2. FPGA implementation results of the proposed architecture.

Architecture AoCStream (Proposed)

CNN MNetV1 + SSDLiteX MNetV2 + SSDLiteX
Input Size 320 384 448 512 320

Pruning Rate 75% 75% 75% 75% 62.5%
MS COCO AP 0.211 0.231 0.247 0.253 0.203

FPGA XCKU5P
LUT (K) 145 145 154 148 169
Reg (K) 219 219 233 232 298
BRAM 454 454 476 476 361
URAM 20 20 20 36 51

DSP 458 458 468 468 588
Clock (MHz) 428 420 393 403 373

Throughput (FPS) 261.3 178.2 122.5 96.0 227.7
DSP Efficiency 1 (%) 81.2 81.2 79.7 79.7 42.4
DSP Efficiency 2 (%) 292.6 292.5 286.9 286.9 99.6

Ext. Mem. None None None None None

Some of the previous architectures for a CNN accelerator are compared in Tables 3 and 4.
For a fair comparison, the proposed architecture is implemented on two older 7-series FPGAs,
whose on-chip memory sizes are 2 MB and 4.6 MB. Because of the resource limitation, some
layers are pruned to 87.5% for XC7K325T. At the last Ext. Mem. row, W and A means the
weights and the activations are stored in external memory, respectively.

In Table 3, the AoCStream architecture is compared with the previous frame-based
architectures. Those architectures use CNNs similar to the one used in this work. The
second-column architecture used the MobileNetV1 and SSD combination [17], and its
throughput is the highest in the previous ones but similar to that of the proposed. Fur-
thermore, it uses around five times more DSPs. The architecture of the third column used
MobileNetV2 and SSDLite with a small input size [16]. Despite such a small input size
and high DSP usage, the throughput is very low. Since the two architectures do not ex-
ploit the pruning scheme, they require more multipliers than the proposed architecture.
Furthermore, the two accelerators are based on the frame-based architecture, so their DSP
efficiency is very low because of the DRAM accesses, leading to more DSP unit occupancy.

Table 3. FPGA implementation comparison with previous frame-based architectures.

Architecture [17] [16] AoCStream (Proposed)

CNN MNetV1 MNetV2 MNetV1
+SSD +SSDLite +SSDLiteX

Input Size 320 224 320
MS COCO AP 0.193 0.203 0.206

FPGA XCZU9EG ZC706 XC7K325T
LUT (K) 162 148 151
Reg (K) 301 192 194
BRAM 771 311 433

DSP 2070 728 354
Clock (MHz) 333 100 174

Throughput (FPS) 124.3 15.4 94.5
DSP Efficiency 1 (%) 22.3 8.3 77.4
DSP Efficiency 2 (%) - - 337.8

Ext. Mem. WA WA None
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Table 4. FPGA implementation comparison with previous line-buffer architectures.

Architecture [18,19] AoCStream (Proposed)

CNN YOLOv2 YOLOv3 YOLOv2 YOLOv2 MNetV1
Tiny Tiny Tiny +SSDLiteX

Input Size 416 416 416 416 512
VOC mAP 0.514 - 0.514 0.529 -

MS COCO AP - 0.310 - - 0.253

FPGA XC7VX485T
LUT (K) 86 230 36 54 161
Reg (K) 60 223 47 62 235
BRAM 513 972.5 310.5 768.5 769

DSP 168 2640 9 272 468
Clock (MHz) 200 200 249 244 216

Throughput (FPS) 66.56 11.66 90.0 88.0 51.6
DSP Efficiency 1 (%) - - - 89.5 79.7
DSP Efficiency 2 (%) - 72.4 - 328.1 286.9

Ext. Mem. - W None None None

Table 4 compares the AoCSctream with a previous accelerator exploiting a line-buffer
architecture similar to the proposed one. Since the accelerator used a dataflow focusing
on the weight reuse as shown in Figure 13, the size of line buffers is (K + 1) lines. In [18],
YOLOv2-Tiny was implemented with one-bit weight quantization, and the results are
presented in the second column of the table. The same CNN with the same configuration,
no pruning, and one-bit weight quantization, is also implemented with the proposed
AoCStream architecture as described in the fourth column. Because of one-bit quantization,
no DSPs are used in the convolutional layers. The table shows the AoCStream architecture
reduces the usage of the resources, especially that of BRAM by 40%. YOLOv2-Tiny with
pruning and multi-bit quantization is also implemented in the fifth column, showing higher
accuracy with more resources.

C

H

W

Current input 

activation

K Line Buffer

Dataflow

Figure 13. Dataflow of [18].

In the third column of the table, an accelerator using YOLOv3 of [19] is compared, and
it still needs an external memory for weights because of larger line buffers. Because it used
a different CNN, it is difficult to directly compare it with the proposed one, but its DSP
efficiency is very low. Even though they adopted a sparsity architecture, the effective DSP
efficiency is not higher than 100% probably because of DRAM accesses for weights.
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HPIPE also used a line-buffer architecture [22], but it was implemented on a different
type of FPGA. Because of the different internal FPGA structure, it is not compared in the
table. However, HPIPE uses much more resources to implement a similar object-detection
CNN, 4434 DSPs and 7179 M20K BRAMs for MobileNetV1 and SSD, showing less than
50% DSP efficiency. Such resource requirement is not suitable for edge applications.

7. Related Works

Many CNN accelerators have been proposed, but most of them have the frame-based
architecture [10–17,20,21]. Such architectures require an external DRAM, and their operator
efficiency is low because of the DRAM access delay. Because the frame-buffer size is
proportional to the square of the input size, the architectures are not appropriate for object
detection in an EdgeAI and TinyML environment.

Much smaller number of works have used a line-buffer architecture for
CNNs [18,19,22,26,36–38]. However, they did not employ a dataflow proper to the line-
buffer structure. Their dataflow focuses on the weight data reuse, processing K lines above
the current input row as shown in Figure 13. Those dataflows lead to the larger line-buffer
of size K or (K + 1) lines. The large line buffers make their accelerators use external memory
for the weights [18,19,36] or require a very large FPGA device [22,26].

The proposed dataflow reuses the input feature map data as much as possible. After a
K × K × Ni input activation data block is gathered, the PEs perform all the computations
related to the block. This dataflow property enables the line-buffer size of (K − 1) lines.
However, this dataflow cannot reuse the weights, so it is proper to have a structure with all
the weights in the on-chip memory.

8. Conclusions

In this paper, object-detection CNNs with reasonable performance were implemented
only with the on-chip memory of a practical device suitable for EdgeAI and TinyML
environments. The memory amount is reduced at the algorithm level, accelerator-aware
pruning, and at the architecture level, a stream-based line-buffer architecture. In the
architecture, a dedicated block is assigned to each layer, and the layer blocks operate in
a pipelined way. The intermediate data are streamed into and out of each block, so only
a few rows are stored in each block due to the property of the convolution operation.
The reduction of the intermediate data storage is combined with the reduction of the
weight storage by pruning to remove the need for external memory. The all-on-chip
implementation greatly enhances the performance of the CNN accelerator. The architecture
can be applied to various CNNs for other computer-vision tasks in edge applications.
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The following abbreviations are used in this manuscript:
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MS COCO Microsoft Common Objects in Context
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