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Abstract: Birds play a vital role in the study of ecosystems and biodiversity. Accurate bird identi-
fication helps monitor biodiversity, understand the functions of ecosystems, and develop effective
conservation strategies. However, previous bird sound recognition methods often relied on single
features and overlooked the spatial information associated with these features, leading to low ac-
curacy. Recognizing this gap, the present study proposed a bird sound recognition method that
employs multiple convolutional neural-based networks and a transformer encoder to provide a
reliable solution for identifying and classifying birds based on their unique sounds. We manually
extracted various acoustic features as model inputs, and feature fusion was applied to obtain the
final set of feature vectors. Feature fusion combines the deep features extracted by various networks,
resulting in a more comprehensive feature set, thereby improving recognition accuracy. The multiple
integrated acoustic features, such as mel frequency cepstral coefficients (MFCC), chroma features
(Chroma) and Tonnetz features, were encoded by a transformer encoder. The transformer encoder
effectively extracted the positional relationships between bird sound features, resulting in enhanced
recognition accuracy. The experimental results demonstrated the exceptional performance of our
method with an accuracy of 97.99%, a recall of 96.14%, an F1 score of 96.88% and a precision of 97.97%
on the Birdsdata dataset. Furthermore, our method achieved an accuracy of 93.18%, a recall of 92.43%,
an F1 score of 93.14% and a precision of 93.25% on the Cornell Bird Challenge 2020 (CBC) dataset.

Keywords: bird sound recognition; feature fusion; multiple acoustic features; biodiversity

1. Introduction

Bird species protection plays a vital role in biodiversity conservation [1,2]. The abun-
dance of bird populations directly reflects local biodiversity levels, emphasizing the im-
portance of bird recognition in ecological research and biodiversity conservation. Bird
sound-based recognition methods offer significant advantages over other bird recognition
methods that are commonly used in ornithological studies, such as image-based methods
and the marked-recapture method [3]. They have wider recognition ranges, are immune to
forest obstructions, and experience reduced interference from human activities, making
them the preferred solutions for bird recognition [4].

In recent years, bird populations have experienced a noticeable decline due to human
and environmental factors. Morrison et al. [5] conducted a study that presented compelling
evidence of a substantial decrease in the diversity and intensity of bird soundscapes across
over 200,000 sites in the Northern Hemisphere over the past 25 years. This decline can
be attributed to significant decreases in bird species and individual abundance, which
have far-reaching consequences on ecosystem health and biodiversity. Therefore, swiftly
and accurately recognizing birds through sound analysis is critical for bird population
monitoring and ecological conservation efforts.
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Traditional bird sound-based methods for bird species recognition, which rely on
manual differentiation, suffer from subjectivity and lack reliable verifications [6]. With
advancements in machine learning techniques, the field of bird sound recognition has
shifted from manual differentiation to machine learning implementation. Generally, there
are two types of implementation approaches for bird sound recognition based on machine
learning [7]. The first type of approach is template matching [8], such as the dynamic time
warping (DTW) algorithm [9]. The second approach involves feature-based recognition
methods, including Gaussian mixture models [10], hidden Markov models [11], support
vector machines [12] and random forests [13,14]. The application of these machine learning-
based methods mitigates the effect of human perceptual bias on bird sound recognition to
some extent [6]. However, when confronted with highly variable and complex bird sounds,
these methods often struggle to achieve high recognition rates. These challenges call for
the development of more robust and accurate techniques to attain improved bird sound
recognition performance.

Recently, deep learning methods have gained significant popularity in the field of bird
sound recognition due to their ability to automatically extract features from inputs [15]
and their greater robustness against environmental noise [16]. As most bird sounds are
recorded in the field, where ambient noise is significant [12,17], quantile-based noise esti-
mation techniques such as spectral subtraction [18] and silence detection [19] are commonly
applied during data preprocessing to mitigate the impacts of noise and silent segments
on bird sound recognition. The continuous development of deep learning architectures,
including convolutional neural networks (CNNs) [20,21] and recurrent neural networks
(RNNs) [22], has solidified their position as popular choices for bird sound recognition.
The study conducted by [23] demonstrated the superiority of deep learning methods over
traditional machine learning methods in the field of bird sound recognition. For instance,
Sankupellay and Konovalov [24] employed ResNet50 for automatic bird sound recognition
using spectrograms obtained from the sounds of 46 distinct bird species as inputs [7],
achieving a maximum accuracy of 72%.

In recent years, transformers have also garnered significant attention in the field of
bird sound recognition. Puget [25] introduced a transformer-based bird sound recognition
model, the STFT-Transformer, which utilizes log-mel spectrograms as transformer inputs for
bird sound recognition. The results demonstrated that the STFT-Transformer outperformed
traditional CNNs in terms of accuracy and speed. Tang et al. [26] employed a ViT model to
encode visual features based on a multihead attention mechanism. They emphasized that
the multihead attention mechanism allows their model attending to information derived
from various locations and features, facilitating the extraction of bird sound features across
multiple dimensions. Gunawan et al. [27] employed an efficient attention mechanism called
the CBAM to encode the spatial information within bird sound features. This mechanism
incorporates both channel attention and spatial attention modules. The utilization of
the spatial attention module can complement the spatial perception capability of the
channel attention module, thus efficiently capturing the spatial information contained in
the bird sound features. This is in contrast to transformer models that rely on a multihead
attention mechanisms, which can more easily capture global information as well as spatial
positional relationships in bird sound features because the attention is computed across
all inputs [28]. Many studies have demonstrated that utilizing a combination of acoustic
features for bird sound recognition outperforms the use of only a single feature set [29].
Xiao et al. [30] employed the MFCC-CST feature set, which includes MFCC, Chroma,
spectral contrast, and Tonnetz features. Utilizing these features, they trained an AMResNet
network with an attention mechanism and achieved an impressive accuracy of 90.1% on
the Birdsdata dataset. The experimental results indicated that this combination of features
was efficient. Similarly, Hidayat et al. [31] achieved a remarkable accuracy of 96.08% on
a dataset comprising seven bird species by combining log-mel spectrograms and MFCC
features. According to [32,33], visual representations of the acoustic features derived from
bird sounds have been demonstrated to be effective in bird sound recognition tasks, as
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spectrograms can adeptly capture the spatial information that is present in sounds. Based
on their study, we use MFCC, chroma and Tonnetz features from the MFCC-CST feature
set [13] and log-mel spectrograms [31] as model inputs.

The previously mentioned AMResNet [30], which is derived from residual networks
and incorporates attention layers, achieves high recognition accuracy on the Birdsdata
dataset. However, the attention layer used by AMResNet needs to be added manually,
which complicates the model construction process. Furthermore, Adavanne et al. [34]
argued that CNNs overlook the distinctive characteristics of bird sounds as time-series
signals, thus failing to capture comprehensive features. Furthermore, bird sounds often
display temporal discontinuities, with the intervals between bird sounds lasting several
seconds [35]. However, the translational invariance property of CNNs presents challenges
when capturing the positional relationships among these disconnected features [36]. To
address this challenge, we combine CNN-based networks with a transformer encoder
to leverage the CNN-based networks’ powerful spectrogram texture feature extraction
capabilities [7] and compensate for their shortcomings in terms of capturing long-term
contextual spatial information from feature sequences [36].

This study makes a significant contribution by introducing a novel bird sound recog-
nition method. Our method combines two CNN-based networks and an improved trans-
former encoder, incorporating various acoustic bird sound features. Feature fusion is
employed to obtain more comprehensive feature information [23]. The proposed method
effectively leverages the strengths of CNN-based networks in terms of extracting log-mel
spectrogram features [7] while utilizing the transformer encoder’s capabilities to capture
the long-term contextual information contained in feature sequences [28]. Log-mel spec-
trograms are fed into pretrained EfficientNetB3 [37] and ResNet50 [38] models to obtain
a fused feature vector. Additionally, an improved transformer encoder is utilized to en-
code the MFCC, Chroma, and Tonnetz feature sets, generating an additional set of feature
vectors. Subsequently, these two feature vectors are fused and utilized for classification
using a light gradient boosting machine (LightGBM) [39]. This method allowed us the
extraction of distinctive features from different networks and their fusion, leveraging the
CNN-based networks’ capability to extract image features and the transformer’s profi-
ciency in processing long sequences. As a result, the model’s feature extraction capacity
was increased, leading to improved classification accuracy. The method proposed in this
paper achieves 97.99% and 93.18% accuracy on two publicly available datasets, the Birds-
data dataset and the CBC dataset, respectively. The experimental results demonstrate the
great potential of this method for applications in biodiversity monitoring, animal acoustics
research, and ecological environmental protection. The rest of this paper is organized as
follows. Section 2 provides a detailed description of the model and methodology employed
in this study. Section 3 presents the experimental results and evaluates the performance
of the proposed model. Finally, in Section 4, we conclude the paper, discuss the study’s
practical implications, and suggest potential directions for future research.

2. Materials and Methods

This section presents a detailed description of the proposed method employed in this
paper and the two public datasets used. The preprocessing steps involve performing noise
reduction and silence detection on bird sound fragments. Next, we introduce acoustic bird
sound features as model inputs. Additionally, we offer comprehensive explanations of
the deep feature extraction process and the specific implementation of the feature fusion
approach. A LightGBM is used as the classifier. The specific process is illustrated in
Figure 1.

2.1. Dataset

High-quality bird sound recognition studies require reliable, extensive, and accurate
publicly available datasets. In this study, we utilized two such datasets that are publicly
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available: the Beijing Hundred Birds dataset (Birdsdata) and the Cornell Bird Challenge
2020 (CBC) dataset.

Figure 1. The process of the proposed method. The bird sounds were preprocessed, and the manually
extracted log-mel spectrograms were then fed into two pretrained CNN-based networks to acquire
a set of deep features. Three more manually extracted features (MFCC, Chroma, and Tonnetz
features) were combined, forming a feature set that was subsequently encoded by an improved
transformer encoder. Finally, both resulting deep feature vectors were fused and passed to a classifier
for classification.

2.1.1. Birdsdata

The Birdsdata dataset, curated and collected through a collaboration between the
Beijing Zhiyuan Institute of Artificial Intelligence and Hundred Birds Data, is highly
regarded for its credibility and precision [26,30]. The dataset comprises recordings of
20 prevalent bird species. All bird sound clips underwent rigorous noise reduction and
were trimmed to uniform lengths. Consequently, no further data preprocessing was
applied. With 14,311 bird sound clips each lasting 2 s, approximately 90% of the species
possessed over 300 samples, while approximately 5% of the species included less than
50 samples, ensuring comprehensive representations; https://data.baai.ac.cn/details/
Birdsdata, accessed on 28 June 2023.

2.1.2. Cornell Bird Challenge 2020 (CBC) Dataset

The Cornell Bird Challenge 2020, organized by the Cornell Lab of Ornithology at Cor-
nell University, is a bird sound recognition challenge aimed at advancing the technology
in this field and promoting collaboration among researchers and developers. The CBC
dataset, provided by the Cornell Lab of Ornithology, consists of a diverse collection of bird
sound recordings from various bird species worldwide. In total, the dataset contains vo-
calizations from 264 bird species. The original audio files in the CBC dataset were in the
MP3 format but were converted to the WAV format for more efficient processing and anal-
ysis in this study. To ensure consistency across the data, normalization techniques were

https://data.baai.ac.cn/details/Birdsdata
https://data.baai.ac.cn/details/Birdsdata
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applied by considering the varied durations of the raw audio files [40]. Through the appli-
cation of noise reduction, silence detection, and segment cutting techniques, we obtained
114,287 bird song segments, each lasting 5 s. Approximately 72% of the bird species in the
dataset had over 300 samples, while only approximately 3.4% had fewer than 50 samples.
https://www.kaggle.com/c/birdsong-recognition/data, accessed on 16 June 2023.

2.1.3. Partitioning of the Dataset

The extensive use of these two datasets [26,30,41], along with the high-quality data
samples, ensured that our study had a reliable and accurate database. The length of the
bird sound segments in the Birdsdata dataset was 2 s. However, in the CBC dataset, where
a larger number of bird species were present, the bird sound segments processed through
denoising and silence detections were uniformly trimmed to 5 s to ensure that each bird
sound segment encompassed sufficient information. We standardized the dimensionality of
the manually extracted bird sound features to counter the impact of the varying bird sound
segment lengths between the Birdsdata and CBC datasets on the model’s performance. To
train, validate, and test our models effectively, we divided each dataset into three subsets:
a training set, a validation set, and a testing set. Table 1 provides specific details about
teh distribution of the data, with 60% of the samples assigned to the training set and 20%
allocated to each of the validation set and testing set. During the partitioning process, we
employed a stratified sampling approach to maintain a proportional distribution of bird
species categories across the training, validation, and testing sets. This approach ensured
that the same category distribution observed in the entire dataset was preserved.

Table 1. Detailed partitioning strategy used for the training, validation and testing sets of two
datasets.

Dataset Training Set
(Classes)

Validation Set
(Classes) Testing Set (Classes)

Birdsdata 8587 (20) 2862 (20) 2862 (20)
CBC 68,573 (264) 22,857 (264) 22,857 (264)

2.2. Data Preprocessing

To ensure accurate bird sound recognition, preprocessing the audio recordings col-
lected in real-world environments is essential [14,17,19]. This is due to the nonsmooth
characteristics of bird sounds and the presence of environmental noise [7].

2.2.1. Denoising

To enhance the accuracy of bird sound recognition in real-world environments, the
application of denoising techniques to obtain cleaner bird sound segments is crucial [12].
In this study, we utilized a quantile-based noise estimation method for spectral subtraction
to reduce the noise in the bird sound segments [18]. The method automatically estimated
the noise within each segment by leveraging the inherent characteristics of bird sounds,
allowing for efficient noise removal while minimizing interference with the bird sound
signals. The effectiveness of this approach is demonstrated in Figure 2. We started the
denoising process by applying a high-pass filter to eliminate low-frequency noise from
the bird sounds. Next, we calculated the power spectrum of the bird sound signal and
employed a quantile noise estimation method [18] to determine the noise threshold. To
obtain a reliable noise estimate, an appropriate quantile was selected, and median filtering
was applied to the estimated noise values of consecutive frames. This smoothing process
enhanced the stability of the noise estimation process. The noise threshold was calculated as

T( f ) = α ·median{P( f , n)}. (1)

The chosen quantile for noise estimation is represented by α, and P( f , n) indicates the
frequency of f at the nth power spectrum value.

https://www.kaggle.com/c/birdsong-recognition/data
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Figure 2. (a) The log-mel spectrogram of the sound produced by a common quail; (b) the log-mel
spectrogram of the sound produced by the common quail after applying denoising. The effectiveness
of the quantile-based noise estimation method for spectral subtraction used in this study is evident in
the elimination of the noise present in the bird vocalizations.

A mask threshold was calculated to eliminate the silent frames in the bird sounds that
had values smaller than the noise threshold. Subsequently, the corrected power spectrum
was recalculated using the mask threshold. To reconstruct the noise-reduced bird sound
signals, we conducted an inverse short-time Fourier transform with the phase information
of the bird sounds. This process effectively removed noise while preserving the valuable
bird sounds due to the adaptive adjustment of the mask threshold based on the statistical
characteristics of the bird sound signals. Due to its adaptability and efficiency, this method
for reducing bird sound noise is suitable for real-time application in field bird sound
recordings and can be employed in embedded environments [42].

2.2.2. Silence Detection and Segmentation

To improve the accuracy of bird sound recognition by mitigating the impact of silent
segments inside the bird sound fragments, the average envelope threshold method was
utilized for silence detection in the bird sound fragments. This method analyzed the
average envelope of the frames within a sliding window to determine whether a fragment
corresponded to a silent portion. By eliminating the silent frames, only the valid bird
sounds remained, enabling a more focused analysis of the bird sounds. The method can be
described using the following equation:

ymean [n] =
1
L

L−1
2

∑
k=− L−1

2

|y[n + k]|,

mask[n] =

{
True if ymean [n] > threshold
False otherwise

.

(2)

In this equation, y[n] represents the first n frames of the bird sound signal, L denotes
the length of the sliding window, ymean [n] denotes the average envelope within the window,
mask[n] determines whether the first n frame is silent or not, and threshold is the predefined
threshold value. Subsequently, the processed bird sound files were divided into equal-
length segments.

2.3. Construction of the Input Features

Previous studies [30,31] have demonstrated the effectiveness of incorporating aggre-
gated features into bird sound recognition, leading to improved classification performance.
Building upon these findings, our method adopted manually extracted log-mel spectro-
grams and MFCC, Chroma, and Tonnetz features. By utilizing these diverse acoustic
features, our goal was to capture a comprehensive representation of the bird sounds,
ultimately improving the performance of our model.

Figure 2. (a) The log-mel spectrogram of the sound produced by a common quail; (b) the log-mel
spectrogram of the sound produced by the common quail after applying denoising. The effectiveness
of the quantile-based noise estimation method for spectral subtraction used in this study is evident in
the elimination of the noise present in the bird vocalizations.

A mask threshold was calculated to eliminate the silent frames in the bird sounds that
had values smaller than the noise threshold. Subsequently, the corrected power spectrum
was recalculated using the mask threshold. To reconstruct the noise-reduced bird sound
signals, we conducted an inverse short-time Fourier transform with the phase information
of the bird sounds. This process effectively removed noise while preserving the valuable
bird sounds due to the adaptive adjustment of the mask threshold based on the statistical
characteristics of the bird sound signals. Due to its adaptability and efficiency, this method
for reducing bird sound noise is suitable for real-time application in field bird sound
recordings and can be employed in embedded environments [42].

2.2.2. Silence Detection and Segmentation

To improve the accuracy of bird sound recognition by mitigating the impact of silent
segments inside the bird sound fragments, the average envelope threshold method was
utilized for silence detection in the bird sound fragments. This method analyzed the
average envelope of the frames within a sliding window to determine whether a fragment
corresponded to a silent portion. By eliminating the silent frames, only the valid bird
sounds remained, enabling a more focused analysis of the bird sounds. The method can be
described using the following equation:

ymean [n] =
1
L

L−1
2

∑
k=− L−1

2

|y[n + k]|,

mask[n] =

{
True if ymean [n] > threshold
False otherwise

.

(2)

In this equation, y[n] represents the first n frames of the bird sound signal, L denotes
the length of the sliding window, ymean [n] denotes the average envelope within the window,
mask[n] determines whether the first n frame is silent or not, and threshold is the predefined
threshold value. Subsequently, the processed bird sound files were divided into equal-
length segments.

2.3. Construction of the Input Features

Previous studies [30,31] have demonstrated the effectiveness of incorporating aggre-
gated features into bird sound recognition, leading to improved classification performance.
Building upon these findings, our method adopted manually extracted log-mel spectro-
grams and MFCC, Chroma, and Tonnetz features. By utilizing these diverse acoustic
features, our goal was to capture a comprehensive representation of the bird sounds,
ultimately improving the performance of our model.
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2.3.1. Log-Mel Spectrograms

A log-mel spectrogram of bird sounds provides a visual representation of how the
frequency components of bird sounds change over time using a logarithmic scale [7]. First,
we applied the short-time Fourier transform (STFT) [43] to the bird sound fragments to
obtain a spectrogram. Subsequently, we used a filter bank with 128 frequency bands to map
the spectrogram to the mel scale because it aligns better with the human auditory system’s
perception and is more suitable for bird sound feature extraction [44]. Then, we performed
a logarithmic transformation to obtain the log-mel spectrogram. The log-mel spectrogram
holds significant biological relevance and interpretability and possesses extensive appli-
cations in various fields, including sound recognition and audio classification [45]. The
log-mel spectrograms of selected bird sound clips are shown in Figure 3.
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Figure 3. The log-mel spectrograms associated with specific labels. (a) and (b) depict different
vocalizations of the same bird species. The figure shows that each bird species displays distinct
texture features in its corresponding log-mel spectrogram. Thus, these log-mel spectrograms can
serve as a foundation for bird sound recognition.

2.3.2. MFCC, Chroma, and Tonnetz Features

Mel frequency cepstral coefficients (MFCCs) [46] have found wide applications in
audio signal processing and are commonly utilized in bird sound recognition [47]. MFCCs
simulate the functioning of the human auditory system by transforming a bird sound signal
from the time domain to the frequency domain and employing mel filters for filtering.
The resulting filtered signal is then subjected to a discrete cosine transform (DCT) [48],
generating a set of MFCCs that serve as a characteristic representation of the bird sounds.

Chroma features [49] are commonly used to describe the frequency distributions of
different tones in music without considering their specific positions. By viewing bird songs
as high-frequency sound signals [50], the frequency distribution characteristics of tones
provide an alternative perspective for identifying bird sounds. Initially, the bird sound
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vocalizations of the same bird species. The figure shows that each bird species displays distinct
texture features in its corresponding log-mel spectrogram. Thus, these log-mel spectrograms can
serve as a foundation for bird sound recognition.

2.3.2. MFCC, Chroma, and Tonnetz Features

Mel frequency cepstral coefficients (MFCCs) [46] have found wide applications in
audio signal processing and are commonly utilized in bird sound recognition [47]. MFCCs
simulate the functioning of the human auditory system by transforming a bird sound signal
from the time domain to the frequency domain and employing mel filters for filtering.
The resulting filtered signal is then subjected to a discrete cosine transform (DCT) [48],
generating a set of MFCCs that serve as a characteristic representation of the bird sounds.

Chroma features [49] are commonly used to describe the frequency distributions of
different tones in music without considering their specific positions. By viewing bird songs
as high-frequency sound signals [50], the frequency distribution characteristics of tones
provide an alternative perspective for identifying bird sounds. Initially, the bird sound
signal was divided into frames, and a Fourier transform was performed on each frame
to obtain its spectrum. The spectrum was then partitioned into multiple bands, and the
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average amplitude in each band was calculated, resulting in a 12-dimensional vector that
represented the frame chromaticity.

Tonnetz features [51] capture the distribution of audio signals in the pitch space.
Given the similarities between bird calls and the harmonic structure of music, Tonnetz
features are utilized to capture pitch variations and harmonic characteristics in bird sounds.
Mapping bird sound signals onto the Tonnetz space allows the tranformation of complex
bird sounds into feature vectors that are easily computable and comparable, facilitating
identification and classification. Initially, we performed pitch estimation based on the
spectral information contained in bird sounds. Then, we mapped the pitch information
to the Tonnetz space. Tonnetz features were then computed based on the connections,
distances, and angles between the nodes in the Tonnetz space, resulting in a Tonnetz vector.

According to [30], the combination of these three features yields excellent bird sound
recognition performance. According to their experimental results, using a log-mel spectrogram
alone as an input achieved an accuracy of 88.7%, using MFCCs alone as inputs achieved
an accuracy of 88.1%, and using a combination of MFCC-CST features as inputs resulted
in an accuracy of 90.1%. The experimental results demonstrated that combining features
could provide a more comprehensive representation, leading to higher accuracy in bird sound
recognition tasks. However, they also concluded that combining too many features may
introduce redundancy and result in a decrease in recognition accuracy. Based on their research,
we combined MFCC, Chroma, and Tonnetz features to obtain a multidimensional perspective
for bird sounds. However, to address the redundancy in the acoustic feature combination [30],
it was necessary to reduce the dimensionality of the resulting high-dimensional features using
principal component analysis (PCA) [52] before inputting them into the transformer encoder.
This process generated a more compact feature vector, enhancing computational efficiency
without sacrificing the representational power of the features.

2.4. Deep Feature Extraction and Feature Fusion

As illustrated in Figure 4, the manually extracted log-mel spectrograms were used
as inputs for the pretrained EfficientNetB3 [37] and ResNet50 [38] networks. The outputs
of each network were then fused to obtain a set of deep feature vectors. We retained the
feature extraction layer of the EfficientNetB3 model while discarding its top network. The
features extracted by both CNN-based networks were fused, and an average pooling layer
was applied to compute the average of each channel in the matrix, resulting in a feature
vector with a size of (7, 7, 3340). To reduce the dimensionality of the fused deep feature
vector, a dense layer was added, followed by a normalization layer. The normalization layer
served multiple purposes, including accelerating the network training and convergence
processes, controlling gradient explosion, and preventing gradient vanishing [53]. Finally,
a set of deep feature vectors with a size of (1, 512) was obtained.

The manually extracted MFCC features had a size of (20, 87), the chroma features had
a size of (12, 87), and the Tonnetz features had a size of (6, 87). Initially, we flattened and
concatenated these features to create a feature vector with a size of (1, 3306). To reduce the
dimensionality of the features and obtain a more compact representation, we applied PCA,
resulting in a feature vector with a size of (1, 512). We fed the reduced-dimensional feature
vector as input into the improved transformer encoder to extract another set of deep features.

2.5. The Improved Transformer Encoder

The transformer encoder consisted of multiple blocks, each containing several multi-
headed attention layers and feedforward layers. Before inputting the reduced-dimensional
feature vector into the encoder, we included position encodings. This involved utilizing
an embedding layer to encode the input as a 512-dimensional vector and then applying a
multihead attention layer to perform self-attention calculations on the position encoding
layer output. Residual operations and normalization processes were also applied. Next,
we employed a feedforward layer to perform nonlinear mapping on the features and ap-
plied another round of residual operations and normalization. Given the strong temporal
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correlations exhibited by bird sound features [7], we paid special attention to the spatial
positional relationships between the features during bird sound processing. To capture
the global and local relationships of bird sound features more effectively, we introduced a
new multiheaded attention layer that specifically focused on the positional axis. The newly
added attention layer employed only the positional dimension of attention, enabling the
re-encoding of the spatial positional information among the features. This enhanced the
acquisition of the spatial positional relationships either between features or within them.
The output of the new multiheaded attention layer was updated and served as the input
for the subsequent block. After completing the encoding process, we utilized a GlobalAver-
agePooling1D layer to conduct pooling operations on the final output and finally obtained
another set of deep feature vectors of size (1, 512) that contained the positional information
between the features. The specific process is illustrated in Figure 5.

Figure 4. The process of deep feature extraction conducted by using log-mel spectrograms as inputs.

Sensors 2023, 1, 0 10 of 20

Figure 5. The process of encoding a combination of multiple acoustic features into a set of feature
vectors using a transformer encoder.

3. Experiments and Results
3.1. Settings

The proposed model combined the log-mel spectrogram feature set with the MFCC,
Chroma, and Tonnetz features, as described in Section 2.3. The true category labels were
used as the reference output. EfficientNetB3 and ResNet50 were trained to extract the
fused features by optimizing the stochastic gradient descent (SGD) process for log-mel
spectrogram features [54]. To prevent overfitting, a dropout probability of 0.3 was applied to
each fully connected layer. During training, a batch size of eight and an initial learning rate
of 0.01 were used. If the validation loss did not improve for two consecutive training rounds,
the learning rate was reduced by a factor of 0.7. The transformer encoder was configured
with eight multiheaded self-attention layers and two stacked layers. The feedforward layer
was utilized for nonlinear feature mapping. In the subsequent classification stage, the
LightGBM served as the classifier, as it was designed explicitly for multiclassification tasks.
The decision trees in the LightGBM were configured with 31 leaf nodes, and the learning
rate was set to 0.01. The number of categories was individually determined for each dataset.
To ensure the validity and impartiality of the experiments, a consistent configuration, as
summarized in Table 2, was applied across all trials.

Table 2. Settings.

Designation Parameters

CPU 13th Gen Intel Core i7-13700KF
Memory 32 GB DDR5

GPU NVIDIA GeForce RTX 3070
System platform Windows 10

Software environment Tensorflow-gpu 2.8.0, Keras 2.8.0
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Figure 5. The process of encoding a combination of multiple acoustic features into a set of feature
vectors using a transformer encoder.
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3. Experiments and Results
3.1. Settings

The proposed model combined the log-mel spectrogram feature set with the MFCC,
Chroma, and Tonnetz features, as described in Section 2.3. The true category labels were
used as the reference output. EfficientNetB3 and ResNet50 were trained to extract the
fused features by optimizing the stochastic gradient descent (SGD) process for log-mel
spectrogram features [54]. To prevent overfitting, a dropout probability of 0.3 was applied to
each fully connected layer. During training, a batch size of eight and an initial learning rate
of 0.01 were used. If the validation loss did not improve for two consecutive training rounds,
the learning rate was reduced by a factor of 0.7. The transformer encoder was configured
with eight multiheaded self-attention layers and two stacked layers. The feedforward layer
was utilized for nonlinear feature mapping. In the subsequent classification stage, the
LightGBM served as the classifier, as it was designed explicitly for multiclassification tasks.
The decision trees in the LightGBM were configured with 31 leaf nodes, and the learning
rate was set to 0.01. The number of categories was individually determined for each dataset.
To ensure the validity and impartiality of the experiments, a consistent configuration, as
summarized in Table 2, was applied across all trials.

Table 2. Settings.

Designation Parameters

CPU 13th Gen Intel Core i7-13700KF
Memory 32 GB DDR5

GPU NVIDIA GeForce RTX 3070
System platform Windows 10

Software environment Tensorflow-gpu 2.8.0, Keras 2.8.0
Cuda 11.4, Anaconda 3

3.2. Model Evaluation

We evaluated the obtained results using various evaluation metrics, including the
accuracy, recall, F1 score, and Precision measures.

Accuracy: This is the ratio of the number of samples correctly classified by the model
to the total number of samples. It provided an assessment of the overall correctness of the
model’s classification results and was calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
. (3)

Recall: This is the ratio of the number of samples correctly predicted by the model as
positive cases to the number of true-positive samples. It was used to assess the true-positive
case coverage of the model and was calculated as follows:

Recall =
TP

TP + FN
. (4)

F1 score: This is the sum of the precision and recall of the model. It was used to assess the
comprehensive performance of the model and was calculated as follows:

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
. (5)

Precision: This is the proportion of samples correctly classified as positive out of all samples
labeled as positive:

Precision =
TP

TP + FP
. (6)

The accuracy, recall, F1 score and precision range from 0 to 1, with higher values indicating
better model performance.
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Additionally, we employed the log loss to assess the classification performance of the
tested models. A smaller log loss indicates a closer match between the model’s predicted
probabilities and the actual labels.

logloss = − 1
N

N

∑
i=1

K

∑
j=1

yi,j log yî,j. (7)

K is the number of categories, the actual label of sample i is yi,j, and the probability
predicted by the model is yî,j (0 ≤ yî,j, j ≤ 1).

3.3. Results
3.3.1. Model Performance

During the training and validation processes, the accuracy curves of the bird sound
recognition method proposed in this study exhibited a rapid increase followed by con-
vergence and stabilization, as illustrated in Figure 6. For the Birdsdata dataset, a testing
set consisting of 2862 bird song sound fragments was utilized, yielding a stable testing
accuracy of 97.99% and a consistent log loss of approximately 0.1032. Similarly, on the CBC
dataset, which employed a test set comprising 22,857 bird sound fragments, the accuracy
stabilized at 93.18% with a consistent log loss of approximately 0.6816. These experimental
results provide strong evidence supporting the superior performance of the proposed
method in bird sound recognition. To further evaluate the effectiveness of the model, addi-
tional evaluation metrics were employed. On the Birdsdata dataset, the recall rate reached
96.14%, the F1 score reached 96.88% and the precision reached 97.97%. Similarly, on the
CBC dataset, the recall rate reached 92.43%, the F1 score reached 93.14% and the precision
reached 93.25%, as shown in Table 3. These results further validate the effectiveness of the
proposed method in bird sound recognition and demonstrate its robustness in complex
acoustic environments.

Sensors 2023, 1, 0 12 of 20

Figure 6. The figure illustrates the accuracy and loss curves obtained during the training and testing
phases on two datasets. (a) The multilog loss curve of CBC. (b) The accuracy curve of CBC. (c) The
multilog loss curve of Birdsdata. (d) The accuracy curve of Birdsdata.

Table 3. Comparison with the results of other models on the Birdsdata and CBC datasets.

Experiment Model Features Accuracy Recall F1 Score Precision

Birdsdata CBC Birdsdata CBC Birdsdata CBC Birdsdata CBC

1 ResNet50+softmax [38] log-mel 94.5% 61.2% 94.1% 60.3% 91.0% 60.5% 94.4% 62.0%
2 EfficientNetB3+softmax [37] log-mel 95.2% 76.5% 91.5% 76.1% 92.6% 74.3% 92.8% 74.5%
3 DenseNet121+softmax [57] log-mel 93.5% 70.9% 93.1% 70.2% 90.7% 68.8% 91.7% 71.3%
4 VGG16+softmax [58] log-mel 94.2% 64.1% 92.1% 61.5% 90.8% 63.9% 92.8% 64.0%
5 EffcientNetB3+ResNet50+softmax log-mel 96.0% 81.3% 93.6% 80.7% 94.1% 80.2% 94.8% 81.3%
6 EffcientNetB3+ResNet50+LightGBM log-mel 97.1% 90.8% 96.0% 89.2% 93.9% 90.6% 93.8% 90.2%
7 EffcientNetB3+ResNet50+softmax MFCC+Chroma+Tonnetz 85.6% 71.4% 85.5% 66.3% 83.9% 68.7% 85.0% 67.3%
8 LightGBM [39] MFCC+Chroma+Tonnetz 88.5% 81.2% 86.3% 81.2% 87.6% 79.8% 88.6% 81.5%
9 Transformer encoder+LightGBM [28,39] Chroma+Tonnetz 81.6% 78.5% 82.3% 76.9% 82.9% 76.6% 82.9% 77.0%

10 Transformer encoder+LightGBM MFCC+Chroma+Tonnetz 89.4% 83.1% 89.2% 82.9% 88.5% 80.2% 89.6% 80.5%
11 Transformer encoder+LightGBM MFCC+Chroma+Tonnetz+Spectral contrast 88.5% 83.5% 89.0% 81.7% 87.9% 82.2% 89.3% 82.1%
12 BirdNET [56] spectrogram 86.7% 68.3% 87.9% 66.5% 86.3% 68.1% 86.5% 67.9%
13 AMResNet [30] log-mel+Spectral contrast+Chroma+Tonnetz 88.7% 82.1% 88.0% 82.4% 88.5% 82.1% 88.1% 81.9%

14 Methodology of this article log-mel+MFCC 98.0% 93.2% 96.1% 92.4% 96.9% 93.1% 97.8% 93.3%+Chroma+Tonnetz

During the testing phase, the predicted and actual labels of each sample were recorded.
A multiclass confusion matrix was generated using Birdsdata as an example, as presented
in Figure 7. This confusion matrix enabled the calculation of accuracy, recall, and F1 score
values for each bird species, as outlined in Table 4. Notably, the recall and F1 scores obtained
for the gray partridge and Eurasian buzzard were considerably lower than those produced
for the other birds. Specifically, the recall rate achieved for the gray partridge was 66.7%,
accompanied by an F1 score of 80.0%. In contrast, the Eurasian buzzard demonstrated a
recall rate of 87.9% and an F1 score of 90.3%, as depicted in Table 4. This could be attributed
to the relatively small numbers of training samples available for these two birds compared

Figure 6. The figure illustrates the accuracy and loss curves obtained during the training and testing
phases on two datasets. (a) The multilog loss curve of CBC. (b) The accuracy curve of CBC. (c) The
multilog loss curve of Birdsdata. (d) The accuracy curve of Birdsdata.
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Table 3. Comparison with the results of other models on the Birdsdata and CBC datasets.

Experiment Model Features
Accuracy Recall F1 Score Precision

Birdsdata CBC Birdsdata CBC Birdsdata CBC Birdsdata CBC

1 ResNet50+softmax [38] log-mel 94.5% 61.2% 94.1% 60.3% 91.0% 60.5% 94.4% 62.0%
2 EfficientNetB3+softmax [37] log-mel 95.2% 76.5% 91.5% 76.1% 92.6% 74.3% 92.8% 74.5%
3 DenseNet121+softmax [55] log-mel 93.5% 70.9% 93.1% 70.2% 90.7% 68.8% 91.7% 71.3%
4 VGG16+softmax [56] log-mel 94.2% 64.1% 92.1% 61.5% 90.8% 63.9% 92.8% 64.0%
5 EffcientNetB3+ResNet50+softmax log-mel 96.0% 81.3% 93.6% 80.7% 94.1% 80.2% 94.8% 81.3%
6 EffcientNetB3+ResNet50+LightGBM log-mel 97.1% 90.8% 96.0% 89.2% 93.9% 90.6% 93.8% 90.2%
7 EffcientNetB3+ResNet50+softmax MFCC+Chroma+Tonnetz 85.6% 71.4% 85.5% 66.3% 83.9% 68.7% 85.0% 67.3%
8 LightGBM [39] MFCC+Chroma+Tonnetz 88.5% 81.2% 86.3% 81.2% 87.6% 79.8% 88.6% 81.5%
9 Transformer encoder+LightGBM [28,39] Chroma+Tonnetz 81.6% 78.5% 82.3% 76.9% 82.9% 76.6% 82.9% 77.0%
10 Transformer encoder+LightGBM MFCC+Chroma+Tonnetz 89.4% 83.1% 89.2% 82.9% 88.5% 80.2% 89.6% 80.5%
11 Transformer encoder+LightGBM MFCC+Chroma+Tonnetz+Spectral contrast 88.5% 83.5% 89.0% 81.7% 87.9% 82.2% 89.3% 82.1%
12 BirdNET [57] spectrogram 86.7% 68.3% 87.9% 66.5% 86.3% 68.1% 86.5% 67.9%
13 AMResNet [30] log-mel+Spectral contrast+Chroma+Tonnetz 88.7% 82.1% 88.0% 82.4% 88.5% 82.1% 88.1% 81.9%

14 Methodology of this article log-mel+MFCC 98.0% 93.2% 96.1% 92.4% 96.9% 93.1% 97.8% 93.3%+Chroma+Tonnetz
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During the testing phase, the predicted and actual labels of each sample were recorded.
A multiclass confusion matrix was generated using Birdsdata as an example, as presented
in Figure 7. This confusion matrix enabled the calculation of accuracy, recall, and F1 score
values for each bird species, as outlined in Table 4. Notably, the recall and F1 scores obtained
for the gray partridge and Eurasian buzzard were considerably lower than those produced
for the other birds. Specifically, the recall rate achieved for the gray partridge was 66.7%,
accompanied by an F1 score of 80.0%. In contrast, the Eurasian buzzard demonstrated a
recall rate of 87.9% and an F1 score of 90.3%, as depicted in Table 4. This could be attributed
to the relatively small numbers of training samples available for these two birds compared
to the other species, as well as their less distinctive bird sound features, resulting in lower
overall scores. Figure 8 displays the average precision curve obtained on the Birdsdata
dataset, featuring an MAP of 0.994. Furthermore, Figure 9 illustrates the precision–recall
curve for the same dataset, effectively providing a visual representation of the model’s
remarkable bird sound recognition ability.

Figure 7. The confusion matrix (Birdsdata).

Figure 8. The mean average precision curve (Birdsdata).
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Figure 9. The precision–recall curve (Birdsdata).

Table 4. The model results obtained for each bird species in the Birdsdata dataset.

Classes Accuracy (%) Recall (%) Precision (%) F1 Score (%) Samples

Gray Goose 99.6 96.1 94.6 95.3 127
Whooper Swan 99.8 98.7 99.4 99.0 160

Mallard 99.7 98.0 97.4 97.7 153
Green–Winged Teal 99.9 100 98.4 99.1 120

Grey Partridge 99.9 66.7 100 80.0 6
Common Quail 99.9 99.3 100 99.6 148

Common Pheasant 99.6 96.8 96.2 96.5 159
Red-Throated Loon 99.8 98.2 98.8 98.5 167

Gray Heron 99.8 98.2 98.8 98.5 170
Great Cormorant 99.8 99.4 97.1 98.3 171

Northern Goshawk 99.6 97.3 95.3 96.3 147
Eurasian Buzzard 99.6 87.9 92.7 90.3 58

Water Rail 99.6 96.3 98.2 95.3 136
Common Coot 99.9 97.8 98.9 98.3 92

Black–Winged Stilt 99.9 98.7 100 99.3 157
Northern Lapwing 99.9 99.4 99.3 99.4 163
Green Sandpiper 99.9 98.6 99.3 98.9 142

Common Redshank 99.8 97.5 98.7 98.0 158
Wood Sandpiper 99.9 99.4 98.8 99.0 165

Eurasian Tree Sparrow 99.5 98.3 96.3 97.3 239

3.3.2. Comparisons

This study conducted comparative experiments on the different datasets to demon-
strate the superior bird sound recognition performance of the proposed method. For the
CBC dataset, Gupta et al. [41] selected 100 bird species for identification and classification,
achieving an accuracy of 70%. The state-of-the-art (SOTA) method, applied to the CBC
dataset [58], utilizes Gammatone frequency cepstral coefficient (GFCC) features as inputs
for K-nearest neighbor (KNN) classification. It achieves a peak accuracy of 78.32% in
recognizing 264 distinct bird species. In contrast, our proposed method achieved a 93.18%
accuracy in validating 264 bird species on the CBC dataset. The AMResNet model [30],
identified as one of the SOTA models in the Birdsdata dataset, attained a 92.6% accuracy.
Notably, our method outperformed it with a 5.39% improvement in accuracy. Furthermore,
Tang et al. [26] attained an accuracy of 94.6% on the Birdsdata dataset by employing a
visual transformer with superhead attention (ViT) and MFCCs. In contrast, our method
demonstrated a 3.39% improvement in accuracy.

To comprehensively compare our approach with state-of-the-art methods in bird
sound recognition, we applied BirdNET and AMResNet, which are considered to have
superior bird sound recognition performance [30,57], to the Birdsdata dataset and the CBC
dataset. And we used the features detailed in their respective articles as inputs as shown in
Table 3, applying the BirdNET model with manually extracted acoustic spectrograms as
input features [57]. On the Birdsdata dataset, we achieved an accuracy of 86.7%, a recall
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of 87.9%, an F1 score of 86.3%, and a precision of 86.5%. Similarly, on the CBC dataset,
we obtained an accuracy of 68.3%, a recall of 66.5%, an F1 score of 68.1%, and a precision
of 67.9%. The AMResNet model, coupled with manually extracted log-mel spectrogram,
Chroma, Spectral contrast, and Tonnetz as input features [30], achieved an accuracy of
88.7%, a recall of 88.0%, an F1 score of 88.5%, and a precision of 88.1% on the Birdsdata
dataset. Similarly, on the CBC dataset, it yielded an accuracy of 82.1%, a recall of 82.4%, an
F1 score of 82.1%, and a precision of 81.9%. Notably, our proposed method in this paper
outperforms BirdNET and AMResNet on both datasets.

Furthermore, we compared our method with the mainstream networks that are com-
monly used in bird sound recognition. As demonstrated in Experiments 1–5 in Table 3, by
fusing the features extracted by EfficientNetB3 and ResNet50, we achieved better results
than those obtained using the features extracted by a single network. Experiments 5–6
in Table 3 show that the LightGBM outperformed traditional classifiers such as softmax
in terms of classification performance. A comparison among Experiments 7, 8, and 10 in
Table 3 revealed that utilizing the transformer encoder as an encoder for the feature set
consisting of MFCC, Chroma, and Tonnetz features led to better recognition results. As
shown in Experiments 9–11 of Table 3, the amalgamation of these three feature types, as
detailed in reference [30], exhibited superior performance to that achieved using only two
features. Additionally, these experiments illustrate that improper feature combinations
introduce redundancy, leading to a decline in bird sound recognition performance. Overall,
the proposed method in this paper achieved the most favorable recognition results.

4. Discussion

Birds, being highly active species in ecosystems, serve as crucial biodiversity indicators.
Therefore, accurate and swift bird recognition is essential in the context of biodiversity
loss [59–61]. Bird sound recognition, which provides quantitative information for ecological
conservation and management decisions, offers an accurate bird recognition approach. In
this study, we proposed a bird sound recognition method that combines two CNN-based
networks and a transformer encoder, incorporating log-mel spectrograms and other three
acoustic features. Additionally, the method incorporates feature fusion as well as quantile
noise estimation [18], aiming to achieve accurate bird sound recognition in real-world
environments [14].

The experimental results of our study indicated that using log-mel spectrograms
along with MFCC, Chroma, and Tonnetz features could achieve the best performance.
This is because log-mel spectrograms, as indicated in [62], have significant potential for
addressing the challenge of bird sound recognition by capturing detailed information
about the distinctive features that are present in both high- and low-frequency ranges.
Previous studies [63–65] demonstrated the effectiveness of combining multiple features
for accurately recognizing various targets. In this study, we manually extracted log-mel,
MFCC, Chroma, and Tonnetz features as model inputs. The log-mel spectrograms of bird
sounds were fed into both EfficientNetB3 and ResNet50. The resulting features output by
these two networks were then fused to derive a set of deep feature vectors. Simultaneously,
the MFCC, Chroma, and Tonnetz features were inputted into the improved transformer
encoder, generating an additional set of deep feature vectors. Then, these two sets of deep
feature vectors were fused and fed into a LightGBM for recognition. We also considered
the redundancy introduced by combining multiple features. To mitigate this, we employed
principal component analysis (PCA) to reduce the dimensionality of the high-dimensional
data that included these features. This dimensionality reduction method enhanced the
computational efficiency and effectiveness of the combined features. By incorporating these
deep features, we comprehensively captured the time-frequency domain characteristics
of bird sounds, utilizing the complementary information conveyed in different frequency
and time dimensions. The findings in [66] indicate that using multiple networks as feature
extractors for log-mel spectrograms yields better results than using a single network alone.
Our results also showed that the fusion of the features extracted by two CNN-based
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networks and the usage of an improved transformer encoder lead to better performance.
Additionally, the feature fusion steps enhanced the comprehensiveness of the information
contained in the features, facilitating the comprehensive analysis of bird sounds and
ultimately improving the recognition accuracy of the model.

The results presented in Table 3, from Experiments 1–11, illustrate the significant
influence of model choice and feature selection on the performance of bird sound recogni-
tion. In addition to comparing with mainstream models, we applied the method described
in [30,57] to both the Birdsdata and CBC datasets, with the results presented in Experiments
12 and 13 in Table 4. Experimental results demonstrate that the method proposed in this
paper exhibits improvements in accuracy, recall, F1 score, and precision when compared
to the methods described in [57] (BirdNET) and [30] (AMResNet). For BirdNET [57], in-
corporating residual structures enhances the network’s depth. However, the inclusion of
downsampling before each residual structure diminished recognition performance when
dealing with the short bird sound segments utilized in this study [30]. For AMResNet,
the introduction of the residual structure and the attention layer makes it effective in bird
sound recognition [30]. However, the channel attention module and the spatial attention
module within the attention layer struggle to capture global feature relationships [67],
unlike the transformer encoder based on the self-attention mechanism. This limitation
hinders the achievement of high recognition accuracy.

Our method combines the strengths of CNN-based networks in terms of spectrum
feature extraction [7] with the transformer’s ability to handle long sequences [26,28,68],
thus achieving the best performance in comparison with other models. The self-attention
mechanism, a key concept in transformers, plays a crucial role in establishing relationships
between the positions in the input sequence, enabling global contextual encoding for
the feature vectors. By utilizing self-attention, the transformer allows for information
interaction and association across the entire input sequence, overcoming the sequential
processing limitations and the step-by-step passing operations of traditional sequence
models, as demonstrated in [28,68]. Additionally, we enhanced the transformer encoder by
introducing a new multiheaded attention layer and specifying the attention mechanism
to perform self-attention computations on the spatial positional relationships between
features. We believe that the encoding approach of the transformer, compared to that of
convolutional neural networks, enables the capture of the spatial positional relationships
between discontinuous features in bird sounds. This enhancement further improves the
recognition performance of the proposed model.

Accurate bird sound recognition allows us the gaining of insights into the biodiversity
and distribution of birds in a specific area, enabling the assessment of biodiversity statuses
and changes. Such monitoring aids in identifying endangered species, monitoring the
health of ecosystems, and formulating suitable conservation measures. Given the high sen-
sitivity of birds to environmental changes, bird sound recognition allows us the assessment
of environmental quality and implementation of timely measures for ecosystem protection.
As birds play a crucial role in the ecosystem by controlling insect populations and facili-
tating seed dispersal, which are vital for maintaining ecological balance, identifying bird
sounds enables us to gain a deeper understanding of their ecological functions.

Although the proposed bird sound recognition method shows promising performance
and profound implications, challenges still need to be addressed. Bird sounds exhibit
various frequency distributions and display continuous time-varying characteristics [7].
The high variability of bird sounds within the same species across different areas adds
complexity to the bird sound recognition task. Additionally, the limited availability of
large-scale standardized datasets for training and evaluation in bird sound recognition
tasks poses challenges [69]. To address these issues, it is crucial to further enhance the
model’s generalization ability by collecting a more extensive range of bird sound data
from diverse regions before the method can be extended and practically applied to bird
population detection and biodiversity conservation.
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5. Conclusions

This study was the first to propose a bird sound recognition method based on multiple
CNN-based networks and a transformer encoder. It focused on addressing the key aspects
of bird sound recognition, including noise estimation and denoising, silence detection,
feature extraction, fusion, and classification.

The proposed method incorporated quantile noise estimation to estimate environ-
mental noise and eliminate interference in bird sound recognition tasks. After perform-
ing silence detection and segmenting audio fragments, we employed EfficientNetB3 and
ResNet50 to extract the deep features of manually extracted log-mel spectrograms. Addi-
tionally, we integrated EfficientNetB3 and ResNet50 and the improved transformer encoder
to maximize their strengths and capture the distinctive characteristics of bird sounds. The
proposed method demonstrated outstanding performance on the two publicly available
datasets that we used. Specifically, on the Birdsdata dataset, we achieved an accuracy of
97.99%, a recall of 96.14%, an F1 score of 96.88% and a precision of 97.97%. On the CBC
dataset, we achieved an accuracy of 93.18%, a recall of 92.43%, an F1 score of 93.14% and a
precision of 93.25%. These results demonstrated the superiority of our proposed method
over other methods. The improved bird sound recognition accuracy of this study has
profound implications. Bird sound recognition holds significant importance in ecology,
as it aids in monitoring biodiversity, assessing environmental quality, and maintaining
ecological balance. Overall, the method presented in this paper significantly contributes
to current biodiversity conservation efforts by providing a swift and accurate method for
recognizing birds through their sounds.
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5. Morrison, C.A.; Aunin, š, A.; Benkő, Z.; Brotons, L.; Chodkiewicz, T.; Chylarecki, P.; Escandell, V.; Eskildsen, D.; Gamero, A.;

Herrando, S.; et al. Bird population declines and species turnover are changing the acoustic properties of spring soundscapes.
Nat. Commun. 2021, 12, 6217. [CrossRef] [PubMed]

6. Sainburg, T.; Thielk, M.; Gentner, T.Q. Finding, visualizing, and quantifying latent structure across diverse animal vocal
repertoires. PLoS Comput. Biol. 2020, 16, e1008228. . [CrossRef] [PubMed]

7. Zhang, X.; Chen, A.; Zhou, G.; Zhang, Z.; Huang, X.; Qiang, X. Spectrogram-frame linear network and continuous frame sequence
for bird sound classification. Ecol. Inform. 2019, 54, 101009. [CrossRef]

8. Chen, Z.X.; Maher, R.C. Semi-automatic classification of bird vocalizations using spectral peak tracks. J. Acoust. Soc. Am. 2006,
120, 2974–2984. [CrossRef]

http://doi.org/10.1111/jofo.12146
http://dx.doi.org/10.1111/j.1740-9713.2006.00178.x
http://dx.doi.org/10.5122/cbirds.2011.0024
http://dx.doi.org/10.1111/j.1474-919X.2007.00776.x
http://dx.doi.org/10.1038/s41467-021-26488-1
http://www.ncbi.nlm.nih.gov/pubmed/34728617
http://dx.doi.org/10.1371/journal.pcbi.1008228
http://www.ncbi.nlm.nih.gov/pubmed/33057332
http://dx.doi.org/10.1016/j.ecoinf.2019.101009
http://dx.doi.org/10.1121/1.2345831


Sensors 2023, 23, 8099 18 of 20

9. Tan, L.N.; Alwan, A.; Kossan, G.; Cody, M.L.; Taylor, C.E. Dynamic time warping and sparse representation classification for
birdsong phrase classification using limited training data. J. Acoust. Soc. Am. 2015, 137, 1069–1080. [CrossRef]

10. Kalan, A.K.; Mundry, R.; Wagner, O.J.J.; Heinicke, S.; Boesch, C.; Kühl, H.S. Towards the automated detection and occupancy
estimation of primates using passive acoustic monitoring. Ecol. Indic. 2015, 54, 217–226. [CrossRef]

11. Lee, C.H.; Hsu, S.B.; Shih, J.L.; Chou, C.H. Continuous Birdsong Recognition Using Gaussian Mixture Modeling of Image Shape
Features. IEEE Trans. Multimed. 2013, 15, 454–464. [CrossRef]

12. Zhao, Z.; Zhang, S.; Xu, Z.; Bellisario, K.; Dai, N.; Omrani, H.; Pijanowski, B.C. Automated bird acoustic event detection and
robust species classification. Ecol. Inform. 2017, 39, 99–108. [CrossRef]

13. Leng, Y.R.; Tran, H.D. Multi-label bird classification using an ensemble classifier with simple features. In Proceedings of the Signal
and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific, Chiang Mai, Thailand,
9–12 December 2014; pp. 1–5. [CrossRef]

14. Stowell, D.; Plumbley, M.D. Automatic large-scale classification of bird sounds is strongly improved by unsupervised feature
learning. PeerJ 2014, 2, e488. [CrossRef] [PubMed]

15. Shaheen, F.; Verma, B.; Asafuddoula, M. Impact of Automatic Feature Extraction in Deep Learning Architecture. In Proceedings
of the 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Gold Coast, Australia,
30 November–2 December 2016; pp. 1–8. [CrossRef]

16. Zhang, H.; McLoughlin, I.; Song, Y. Robust sound event recognition using convolutional neural networks. In Proceedings of the
2015 IEEE international conference on acoustics, speech and signal processing (ICASSP), South Brisbane, Australia, 19–24 April 2015;
pp. 559–563.

17. Boulmaiz, A.; Messadeg, D.; Doghmane, N.; Taleb-Ahmed, A. Robust acoustic bird recognition for habitat monitoring with
wireless sensor networks. Int. J. Speech Technol. 2016, 19, 631–645. [CrossRef]

18. Stahl, V.; Fischer, A.; Bippus, R. Quantile based noise estimation for spectral subtraction and Wiener filtering. In Proceed-
ings of the 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing, Istanbul, Turkey, 5–9 June 2000;
Cat. No. 00CH37100; Volume 3, pp. 1875–1878.

19. Bardeli, R.; Wolff, D.; Kurth, F.; Koch, M.; Tauchert, K.H.; Frommolt, K.H. Detecting bird sounds in a complex acoustic
environment and application to bioacoustic monitoring. Pattern Recognit. Lett. 2010, 31, 1524–1534. [CrossRef]

20. Xie, J.; Hu, K.; Zhu, M.; Yu, J.; Zhu, Q. Investigation of different CNN-based models for improved bird sound classification. IEEE
Access 2019, 7, 175353–175361. [CrossRef]

21. Koh, C.Y.; Chang, J.Y.; Tai, C.L.; Huang, D.Y.; Hsieh, H.H.; Liu, Y.W. Bird Sound Classification Using Convolutional Neural
Networks. In Proceedings of the Clef (Working Notes), Lugano, Switzerland, 9–12 September 2019.

22. Himawan, I.; Towsey, M. 3D convolution recurrent neural networks for bird sound detection. In Proceedings of the 3rd Workshop
on Detection and Classification of Acoustic Scenes and Events, Surrey, UK, November 19–20 2018; pp. 1–4.

23. Xie, J.; Zhu, M. Handcrafted features and late fusion with deep learning for bird sound classification. Ecol. Inform. 2019, 52, 74–81.
[CrossRef]

24. Sankupellay, M.; Konovalov, D. Bird call recognition using deep convolutional neural network, ResNet-50. In Proceedings of the
Acoustics, Adelaide, Australia, 7–9 November 2018; Voume 7, pp. 1–8.

25. Puget, J.F. STFT Transformers for Bird Song Recognition. In Proceedings of the CLEF (Working Notes), Bucharest, Romania,
21–24th September 2021; pp. 1609–1616.

26. Tang, Q.; Xu, L.; Zheng, B.; He, C. Transound: Hyper-head attention transformer for birds sound recognition. Ecol. Inform. 2023,
75, 102001. [CrossRef]

27. Gunawan, K.W.; Hidayat, A.A.; Cenggoro, T.W.; Pardamean, B. Repurposing transfer learning strategy of computer vision for
owl sound classification. Procedia Comput. Sci. 2023, 216, 424–430. [CrossRef]

28. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In
Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30.

29. Su, Y.; Zhang, K.; Wang, J.; Madani, K. Environment sound classification using a two-stream CNN based on decision-level fusion.
Sensors 2019, 19, 1733. [CrossRef]

30. Xiao, H.; Liu, D.; Chen, K.; Zhu, M. AMResNet: An automatic recognition model of bird sounds in real environment. Appl.
Acoust. 2022, 201, 109121. [CrossRef]

31. Hidayat, A.A.; Cenggoro, T.W.; Pardamean, B. Convolutional Neural Networks for Scops Owl Sound Classification. Procedia
Comput. Sci. 2021, 179, 81–87. [CrossRef]

32. Neal, L.; Briggs, F.; Raich, R.; Fern, X.Z. Time-frequency segmentation of bird song in noisy acoustic environments. In Proceedings
of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27
May 2011; pp. 2012–2015. [CrossRef]

33. Xie, J.; Zhao, S.; Li, X.; Ni, D.; Zhang, J. KD-CLDNN: Lightweight automatic recognition model based on bird vocalization. Appl.
Acoust. 2022. 188, 108550. [CrossRef]

34. Adavanne, S.; Drossos, K.; Çakir, E.; Virtanen, T. Stacked convolutional and recurrent neural networks for bird audio detection.
In Proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO), Kos Island, Greece, 28 August–2 September 2017;
pp. 1729–1733. [CrossRef]

http://dx.doi.org/10.1121/1.4906168
http://dx.doi.org/10.1016/j.ecolind.2015.02.023
http://dx.doi.org/10.1109/TMM.2012.2229969
http://dx.doi.org/10.1016/j.ecoinf.2017.04.003
http://dx.doi.org/10.1109/APSIPA.2014.7041649
http://dx.doi.org/10.7717/peerj.488
http://www.ncbi.nlm.nih.gov/pubmed/25083350
http://dx.doi.org/10.1109/DICTA.2016.7797053
http://dx.doi.org/10.1007/s10772-016-9354-4
http://dx.doi.org/10.1016/j.patrec.2009.09.014
http://dx.doi.org/10.1109/ACCESS.2019.2957572
http://dx.doi.org/10.1016/j.ecoinf.2019.05.007
http://dx.doi.org/10.1016/j.ecoinf.2023.102001
http://dx.doi.org/10.1016/j.procs.2022.12.154
http://dx.doi.org/10.3390/s19071733
http://dx.doi.org/10.1016/j.apacoust.2022.109121
http://dx.doi.org/10.1016/j.procs.2020.12.010
http://dx.doi.org/10.1109/ICASSP.2011.5946906
http://dx.doi.org/10.1016/j.apacoust.2021.108550
http://dx.doi.org/10.23919/EUSIPCO.2017.8081505


Sensors 2023, 23, 8099 19 of 20

35. Selin, A.; Turunen, J.; Tanttu, J.T. Wavelets in recognition of bird sounds. EURASIP J. Adv. Signal Process. 2006, 2007, 051806.
[CrossRef]

36. Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic routing between capsules. In Proceedings of Advances in neural information
processing systems 2017, Long Beach, CA, USA, 4–9 December 2017; pp. 3856–3866.

37. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning, PMLR, Long Beach, CA, USA, 10–15 June 2019; pp. 6105–6114.

38. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

39. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision
tree. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA,
4–9 December 2017; Volume 30.

40. Sprengel, E.; Jaggi, M.; Kilcher, Y.; Hofmann, T. Audio based bird species identification using deep learning techniques. In
Proceedings of the CEUR Workshop Proceedings, Évora, Portugal, 5–8 September 2016; pp.547–559.

41. Gupta, G.; Kshirsagar, M.; Zhong, M.; Gholami, S.; Ferres, J.L. Comparing recurrent convolutional neural networks for large scale
bird species classification. Sci. Rep. 2021, 11, 17085. [CrossRef] [PubMed]

42. Kiapuchinski, D.M.; Lima, C.; Kaestner, C. Spectral Noise Gate Technique Applied to Birdsong Preprocessing on Embedded Unit.
In Proceedings of the IEEE International Symposium on Multimedia, Irvine, CA, USA, 10–12 December 2012.

43. Oppenheim, A.V. Discrete-Time Signal Processing; Pearson Education India: 1999. Available online: https://ds.amu.edu.et/xmlui/
bitstream/handle/123456789/5524/1001326.pdf?sequence=1&isAllowed=y (accessed on 17 August 2023).

44. Kurzekar, P.K.; Deshmukh, R.R.; Waghmare, V.B.; Shrishrimal, P.P. A comparative study of feature extraction techniques for
speech recognition system. Int. J. Innov. Res. Sci. Eng. Technol. 2014, 3, 18006–18016. [CrossRef]

45. Seo, S.; Kim, C.; Kim, J.H. Convolutional Neural Networks Using Log Mel-Spectrogram Separation for Audio Event Classification
with Unknown Devices. J. Web Eng. 2022, 97–522. [CrossRef]

46. Leung, H.C.; Chigier, B.; Glass, J.R. A comparative study of signal representations and classification techniques for speech
recognition. In Proceedings of the IEEE International Conference on Acoustics, Minneapolis, MN, USA, 27–30 April 1993;
pp. 680–683.

47. Ramirez, A.D.P.; de la Rosa Vargas, J.I.; Valdez, R.R.; Becerra, A. A comparative between mel frequency cepstral coefficients
(MFCC) and inverse mel frequency cepstral coefficients (IMFCC) features for an automatic bird species recognition system. In
Proceedings of the 2018 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Gudalajara, Mexico, 7–9
November 2018; pp. 1–4.

48. Ahmed, N.; Natarajan, T.; Rao, K.R. Discrete cosine transform.IEEE Trans. Comput. 1974, 100, 90–93. [CrossRef]
49. Tzanetakis, G.; Cook, P. Musical genre classification of audio signals. IEEE Trans. Speech Audio Process. 2002, 10, 293–302.

[CrossRef]
50. Zhang, X.; Li, Y. Adaptive energy detection for bird sound detection in complex environments. Neurocomputing 2015, 155, 108–116.

[CrossRef]
51. McFee, B.; Raffel, C.; Liang, D.; Ellis, D.P.; McVicar, M.; Battenberg, E.; Nieto, O. librosa: Audio and music signal analysis in

python. In Proceedings of the 14th python in science conference, Austin, TX, USA, 6–12 July 2015; Volume 8, pp. 18–25.
52. Kwan, C.; Mei, G.; Zhao, X.; Ren, Z.; Xu, R.; Stanford, V.; Rochet, C.; Aube, J.; Ho, K. Bird classification algorithms: Theory and

experimental results. In Proceedings of the 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing,
Montreal, QC, Canada, 17–21 May 2004; Volume 5, p. V-289.

53. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings
of the International Conference on Machine Learning, PMLR, Lille, France, 6–11 July 2015; pp. 448–456.

54. Prazeres, M.; Oberman, A.M. Stochastic gradient descent with polyak’s learning rate. J. Sci. Comput. 2021, 89, 1–16. [CrossRef]
55. Huang, G.; Liu, Z.; Maaten, L.V.D.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.
[CrossRef]

56. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
57. Kahl, S.; Wood, C.M.; Eibl, M.; Klinck, H. BirdNET: A deep learning solution for avian diversity monitoring. Ecol. Inform. 2021,

61, 101236. [CrossRef]
58. Andono, P.N.; Shidik, G.F.; Prabowo, D.P.; Yanuarsari, D.H.; Sari, Y.; Pramunendar, R.A. Feature Selection on Gammatone

Cepstral Coefficients for Bird Voice Classification Using Particle Swarm Optimization. Int. J. Intell. Eng. Syst. 2023, 16. [CrossRef]
59. Butt, N.; Chauvenet, A.L.; Adams, V.M.; Beger, M.; Gallagher, R.V.; Shanahan, D.F.; Ward, M.; Watson, J.E.; Possingham, H.P.

Importance of species translocations under rapid climate change. Conserv. Biol. 2021, 35, 775–783. [CrossRef] [PubMed]
60. Sueur, J.; Krause, B.; Farina, A. Climate change is breaking earth’s beat. Trends Ecol. Evol. 2019, 34, 971–973. [CrossRef]
61. Tittensor, D.P.; Beger, M.; Boerder, K.; Boyce, D.G.; Cavanagh, R.D.; Cosandey-Godin, A.; Crespo, G.O.; Dunn, D.C.; Ghiffary, W.;

Grant, S.M.; et al. Integrating climate adaptation and biodiversity conservation in the global ocean. Sci. Adv. 2019, 5, eaay9969.
[CrossRef] [PubMed]

62. Kim, B.; Yang, S.; Kim, J.; Chang, S. QTI submission to DCASE 2021: Residual normalization for device-imbalanced acoustic
scene classification with efficient design. arXiv 2022, arXiv:2206.13909.

http://dx.doi.org/10.1155/2007/51806
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1038/s41598-021-96446-w
http://www.ncbi.nlm.nih.gov/pubmed/34429468
https://ds.amu.edu.et/xmlui/bitstream/handle/123456789/5524/1001326.pdf?sequence=1&isAllowed=y
https://ds.amu.edu.et/xmlui/bitstream/handle/123456789/5524/1001326.pdf?sequence=1&isAllowed=y
http://dx.doi.org/10.15680/IJIRSET.2014.0312034
http://dx.doi.org/10.13052/jwe1540-9589.21216
http://dx.doi.org/10.1109/T-C.1974.223784
http://dx.doi.org/10.1109/TSA.2002.800560
http://dx.doi.org/10.1016/j.neucom.2014.12.042
http://dx.doi.org/10.1007/s10915-021-01628-3
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1016/j.ecoinf.2021.101236
http://dx.doi.org/10.22266/ijies2023.0228.23
http://dx.doi.org/10.1111/cobi.13643
http://www.ncbi.nlm.nih.gov/pubmed/33047846
http://dx.doi.org/10.1016/j.tree.2019.07.014
http://dx.doi.org/10.1126/sciadv.aay9969
http://www.ncbi.nlm.nih.gov/pubmed/31807711


Sensors 2023, 23, 8099 20 of 20

63. Mielke, A.; Zuberbühler, K. A method for automated individual, species and call type recognition in free-ranging animals. Anim.
Behav. 2013, 86, 475–482. [CrossRef]

64. Nanni, L.; Costa, Y.M.; Lucio, D.R.; Silla, C.N.; Brahnam, S. Combining visual and acoustic features for bird species classification.
In Proceedings of the 2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI), San Jose, CA, USA,
6–8 December 2016; pp. 396–401.

65. Pérez-Granados, C.; Bota, G.; Giralt, D.; Traba, J. A cost-effective protocol for monitoring birds using autonomous recording units:
A case study with a night-time singing passerine. Bird Study 2018, 65, 338–345. [CrossRef]

66. Ruff, Z.J.; Lesmeister, D.B.; Duchac, L.S.; Padmaraju, B.K.; Sullivan, C.M. Automated identification of avian vocalizations with
deep convolutional neural networks. Remote. Sens. Ecol. Conserv. 2020, 6, 79–92. [CrossRef]

67. Liu, H.; Liu, F.; Fan, X.; Huang, D. Polarized self-attention: Towards high-quality pixel-wise regression. arXiv 2021,
arXiv:2107.00782.

68. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M. Transformers:
State-of-the-art natural language processing. In Proceedings of the Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, Online, 16–20 November 2020; pp. 38–45.

69. Xie, J.; Zhong, Y.; Zhang, J.; Liu, S.; Ding, C.; Triantafyllopoulos, A. A review of automatic recognition technology for bird
vocalizations in the deep learning era. Ecol. Inform. 2022, 73, 101927. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.anbehav.2013.04.017
http://dx.doi.org/10.1080/00063657.2018.1511682
http://dx.doi.org/10.1002/rse2.125
http://dx.doi.org/10.1016/j.ecoinf.2022.101927

	Introduction
	Materials and Methods
	Dataset
	Birdsdata 
	Cornell Bird Challenge 2020 (CBC) Dataset 
	Partitioning of the Dataset

	Data Preprocessing 
	Denoising
	Silence Detection and Segmentation

	Construction of the Input Features 
	Log-Mel Spectrograms
	MFCC, Chroma, and Tonnetz Features

	Deep Feature Extraction and Feature Fusion 
	The Improved Transformer Encoder 

	Experiments and Results 
	Settings
	Model Evaluation 
	Results 
	Model Performance 
	Comparisons


	Discussion
	Conclusions
	References

