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Abstract: Spin bowling deliveries in cricket, finger spin and wrist spin, are usually (Type 1, T1)
performed with forearm supination and pronation, respectively, but can also be executed with
opposite movements (Type 2, T2), specifically forearm pronation and supination, respectively. The
aim of this study is to identify the differences between T1 and T2 using an advanced smart cricket
ball, as well as to assess the dynamics of T1 and T2. With the hand aligned to the ball’s coordinate
system, the angular velocity vector, specifically the x-, y- and z-components of its unit vector and its
yaw and pitch angles, were used to identify time windows where T1 and T2 deliveries were clearly
separated. Such a window was found 0.44 s before the peak torque, and maximum separation was
achieved when plotting the y-component against the z-component of the unit vector, or the yaw angle
against the pitch angle. In terms of physical performance, T1 deliveries are easier to bowl than T2; in
terms of skill performance, wrist spin deliveries are easier to bowl than finger spin. Because the smart
ball allows differentiation between T1 and T2 deliveries, it is an ideal tool for talent identification and
improving performance through more efficient training.

Keywords: smart cricket ball; performance analysis; spin rate; spin bowling; wrist spin; finger spin;
Type 1; Type 2; artificial intelligence

1. Introduction

Cricket is a sport that engages two main combatants: batters and bowlers. The bowlers
are akin to the pitchers in baseball, attempting to get the batters “out” (or “dismiss” them)
for the least number of runs. The bowlers form two distinct lineages: first, the fast bowlers
releasing the ball at high speed, so as to reduce the time-window for the batter to perceive,
react, and respond to the oncoming ball [1] and second, the spin bowlers imparting spin to
the ball, so as to cause the ball to deviate in flight through the Magnus force and deviate off
the pitch through friction [2], posing a more complex challenge to the batter, one in which
the bat and body must move in response to an approximate prediction of changing flight
and bounce trajectories.

Each of the spin-bowling groups ramifies into the sub-lineages of wrist spin and
finger spin [3]. Both these terms are misnomers based on historic usage rather than formal
biomechanics since the fingers and wrist operate in each of these types of spin bowling.
However, they label the two most basic methods of spinning the ball in different directions.
For instance, a right-hand bowler delivering a finger spinner would cause the ball to deviate
to the right (or leg side) after landing; whereas in the case of a wrist spinner, the ball would
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deviate to the left (or off side) [2,4]. The directions of ball deviation would be reversed for a
left-handed bowler.

Kinematic differences between these generic types of spin bowling have been found,
which are presented subsequently. Beach et al. [3] found significant technical and per-
formance differences between wrist spinners and finger spinners in the direction of spin
angular velocity, approach speed, release height, and rear leg kinematics. In addition,
wrist-spin bowlers tend to release the ball with a higher spin rate, a larger component of
side-spin, and a lower absolute angle of spin axis elevation than finger spinners [3,5]. In
addition, kinematic differences have been found between elite and non-elite spin bowlers.
Spratford et al. [5] found that elite finger spinners bowled with significantly more spin
rate and ball velocity than the development pathway finger spinners. The better perfor-
mance of these elite finger spinners could be linked to a technique that includes a higher
hip–shoulder separation angle, a mid-way pelvis angle and a relatively side-on shoulder
angle at the front foot [6].

From these early studies in spin bowling biomechanics, it has been established that
technical and performance differences exist between wrist spin and finger spin. Hence, it is
not considered effective coaching practice to specify one standard technical protocol for
both wrist-spin and finger-spin bowlers [3]. Furthermore, in recent times, it has been found
that each of wrist spin and finger spin can be produced through two distinct mechanisms.
These mechanisms were first coined as Type 1 and Type 2 by Beach et al. [3], who found
the existence of both types in a cohort of high-performance spin bowlers relative to their
age. In Type 1 spin, both the forearm angular velocity and spin torque are in the same
directional sense of rotation, whereas in Type 2 spin, they are in the opposite directional
sense. Hence, Type 1 wrist-spin is bowled with forearm pronation and Type 2 wrist-spin
with forearm supination: the process is the opposite for Type 1 and 2 finger-spin. (Table 1;
Figures 1 and 2).

Table 1. Explanation of Type 1 and Type 2 deliveries.

Bowling Classification Type Finger Movement Forearm Movement Fingers and Forearm
Move in the:

Finger spin (off spin) Type 1 ulnar abduction supination same direction

Finger spin (off spin) Type 2 ulnar abduction pronation opposite direction

Wrist spin (leg spin) Type 1 radial abduction pronation same direction

Wrist spin (leg spin) Type 2 radial abduction supination opposite direction

In the same manner that technical differences exist between the broad categorical
types of leg spin and finger spin [3], technical differences could differentiate between Type
1 and Type 2 subtypes. The kinematics of the arm in athletic motions are dependent on
motions remotely located in the kinetic chain, because a joint torque in a multi-segmental
system can induce angular accelerations at all other joints in the system through dynamic
coupling [7]. Hence, it is unlikely that spin bowlers can change the direction of forearm
rotation independently of the other body segments, such as the thorax and pelvis that
form part of the kinetic link chain. If this principle holds true then this implies that a
Type 1 leg-spin bowler will require a different coaching scheme to that of a Type 2 leg-spin
bowler, one that could differ in terms of body positioning, segmental sequencing, relative
segmental planes of motion, and segment velocity contributions to spin rate.

The discovery of these sub-types of spin bowling has been relatively recent, so spin
bowlers have generally not been informed as to whether they supinated or pronated their
forearms during the process of applying spin torque to the ball. The current method
of identifying Type 1 and 2 spin bowling follows the traditional protocol: the testing of
spin bowlers in a biomechanics laboratory with a marker-based motion analysis system
operating at 200 Hz or higher. The basic process is to use a marker-based joint coordinate
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system to compare the directions of forearm rotation and spin angular velocity vectors to
determine whether Type 1 or Type 2 spin has been bowled.
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Figure 1. Directions of forearm and finger rotations when executing finger (F) spin and wrist (W)
spin Type 1 and Type 2 deliveries; W1 = wrist spin type 1; F1 = finger spin type 1; W2 = wrist
spin type 2; F2 = finger spin type 2; U = ulnar abduction of fingers; R = radial abduction of fingers;
S = supination of forearm; P = pronation of forearm (cf. Table 1 and Figure 2).

Motion analysis is limited in its ability to assess these subtypes of spin. Firstly, the
fingers are very difficult to track to quantify finger kinematics. The high number of markers
required to define the motions of the finger segments would make it impractical: markers
would be occluded during the bowling action and the excessive number of markers on
the fingers would significantly impede performance. Secondly, the calculation of finger
torque on the ball would be inaccurate. Finally, it would take a long time to process the
data, rendering real-time feedback of performance virtually impossible.

With these limitations, lab-based motion analysis does not offer a practical means
of establishing a cohesive taxonomy of spin bowling types. Apart from inhibiting spin
bowling performance, the technology simply cannot generate the required number of
critical kinematic and kinetic variables to classify the major mechanisms of spin bowling.
However, another means of instrumental analysis can be used that is even suitable for the
playing field: an advanced smart cricket ball has been developed [8–12] that can calculate
four physical parameters (resultant torque, spin torque, power, and angular acceleration)
and five skill parameters (precession, normalised precession, precession torque, efficiency,
and ratio of angular acceleration to spin rate), while measuring the spin angular velocity
at 815 Hz [10–12]. Armed with this diverse assortment of variables, the biomechanist is
better equipped to formulate a hierarchical taxonomy of spin bowling in which deliveries
are organized into groups or types based on biomechanical parameters.
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Figure 2. Schematic of the kinematics of forearm and finger movements when executing finger (F)
spin and wrist (W) spin Type 1 (T1) and Type 2 (T2) deliveries; ulnar: left hand palmar view or right
hand dorsal view, the fingers rotate the ball clockwise in ulnar direction; radial: left hand palmar
view or right hand dorsal view, the fingers rotate the ball counterclockwise in radial direction; the
terms “same direction” and “opposite direction” refer to the directions in which forearm and fingers
move (cf. Table 1 and Figure 1); W1 = wrist spin type 1; F1 = finger spin type 1; W2 = wrist spin
type 2; F2 = finger spin type 2.

Taxonomies are commonly developed in sports to classify techniques according to
common characteristics. In tennis, the standard taxonomy of grips includes the continen-
tal, Eastern, semi-Western, and Western, listed in order of increasing supination for the
forehand, and conversely in the order of increasing pronation for the backhand. Several
injury types have been associated with this taxonomy, including radial side injuries in
the Eastern grip, and ulnar side injuries in the semi-Western and Western grips [13]. The
notable aspect here is that the more widely separated the grips in terms of taxonomy, the
greater the difference in corresponding techniques. A more striking example can be found
in table tennis between players who use the conventional “shake hands” grip and the
“pen-holder” grip [14–16]: the technical demands of the forehand and the backhand differ
considerably, even resulting in contrasting strategic processes of play. If the mere method of
holding the end-effector in sports can affect the entire execution of the stroke or shot, then
it should be expected that differences between Type 1 and Type 2 spin, which are defined
by dynamic differences, would likewise result in technical differences in their execution. It
then becomes of paramount importance to identify these sub-types of spin so that coaches
can match the correct technical models with Type 1 and Type 2 spin bowlers (wrist spin or
finger spin).

The aim of this study is to assess whether an advanced smart cricket ball can identify
the differences between Type 1 and Type 2 spin based on kinematic, kinetic and dynamic
variables that are difficult, and in some cases impossible, to measure using conventional mo-
tion analysis. The hypothesis is that the smart cricket ball can explore the inter-relationships
in the variables that differentiate between the sub-types of spin that will assist in the de-
velopment of a taxonomic spin bowling classification based on biomechanical parameters.
It is envisaged that such a taxonomy will assist biomechanists to identify the relationship
between Type 1 and Type 2 spin, providing a basis for coaches to prescribe type-matched
techniques and sets of variations.
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2. Materials and Methods
2.1. The Smart Ball

The smart cricket ball was developed in late 2011 [8,9], and is a typical example of
instrumented or ‘smart’ sports equipment [17]. The electronics (printed circuitry board,
battery) were miniaturized, and wireless data transfer and charging was implemented in
2014 [10]. The ball is instrumented with 3 high-speed gyros that are aligned orthogonally
and measure the spin rate (angular velocity ω) of the ball at 815 Hz [12]. The raw ω data are
filtered with a Butterworth low-pass filter of the 3rd order with a cut-off frequency of
30 Hz [18–20]. The smart ball is of legal mass and fully balanced. The ball is con-
trolled (switch on/off, data download) via laptop or smartphone. The smart ball provides
10 performance parameters, 5 physical and 5 skill parameters. From the measured ω, the
angular acceleration α is calculated from ω’s 1st time derivative. From Euler’s equations
(and ω and α) the resultant torque TR is determined. The TR vector has two components:
the spin torque Ts, which is parallel to, and changes the magnitude of, ω; and the preces-
sion torque Tp, which rotates the ω vector into the TR vector with respect to the ball [12].
Finally, the power p is calculated from ω and Ts. In terms of skill parameters, in addition to
Tp, the precession p is calculated from Tp and ω, and corresponds to the angular velocity of
the moving spin rate vector ω. The normalised precession pn denotes the angle between
TR and ω vectors. The efficiency η is the ratio of the actual rotational energy of the ball to
the ideal energy, if TR = Ts, and Tp = 0. The frequency (α/ω) is the ratio of maximum α to
maximum ω, which explains how efficiently α increases ω. From a coaching perspective,
the physical performance parameters (ω, α, TR, Ts, p) have to be maximized, whereas the
skill parameters Tp, p, pn and α/ω have to be minimised and η to be maximized [12].

2.2. Participant

The participant, a retired first-class cricketer and the first author of this paper, is
proficient in bowling a wide range of deliveries, including topspin, sidespin, and backspin,
all of them for both finger and wrist spin. Only one participant was found who had
demonstrated the ability to bowl both Type 1 and Type 2 sub-variants of finger spin and
wrist spin, an ability based on years of bowling and demonstrating these deliveries at
high-level competition and coaching at international levels, respectively. The participant
was therefore able to bowl all 4 deliveries, finger spin types 1 and 2 (F1, F2), and wrist
spin types 1 and 2 (W1 and W2) at the same perceived performance level. All bowling
trials were performed indoors in dry conditions. If any moisture appeared on the ball, the
participant cleaned the ball on his trousers, as in normal playing conditions. This study was
granted ethics approval by the Swinburne University Human Ethics Committee (approval
no. 20191582-3216) and adhered to the Declaration of Helsinki.

2.3. Experiments

The participant bowled the 4 deliveries identified in Table 1 and Figures 1 and 2 (all of
them are sidespin deliveries) 6 times each with the smart cricket ball. The ball had to be
held such that the z-axis of ball’s sensor coordinate system points out of the palm in left
handers, and into the palm in right handers; and index finger is placed at intersection of
the positive x-axis and the seam. This convention allows distinguishing between finger and
wrist spin, as the z-component of the angular velocity vector is positive in wrist spin after
release, and negative in finger spin.

2.4. Data Analysis 1—Performance Assessment

The raw data provided by the smart cricket ball were processed with the smart
cricket ball software [11]. The software calculates the vector diagram of the angular
velocity as well as the performance parameters [11]. To detect differences in performance
across the 4 deliveries, all 10 performance parameters were compared in pairs (F1 and F2,
W1 and W2, F1 and W1, F2 and W2, F2 and W1, F1 and W2) with the Mann–Whitney U
test, and the p-values and effect sizes (r = 1–2 U n1

−1 n2
−1) were calculated. The effect
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sizes were interpreted according to McGrath and Meyer [21]. Note that the performance
parameters do not necessarily reflect the performance of a bowler, but also express the
inherent dynamics of individual deliveries. According to Fuss et al. [12], topspin deliveries
are more efficient than backspin deliveries, and wrist-spin deliveries are more efficient than
finger-spin deliveries. Subsequently, each performance parameter was normalised to its
rank within the data range across all 4 deliveries, where higher performance corresponds
to higher ranks. The normalised data of both performance groups (physical and skill) were
compared pairwise with the Mann–Whitney U test.

2.5. Data Analysis 2—Clustering of the 4 Deliveries

For separating all 4 deliveries, we used the angular velocity (ω) data provided by the
smart ball software (Figure 3a). To align the data dynamically, we set the timestamp at the
torque peak to t = 0. We distinguished the T1 and T2 deliveries from the relative magnitude
of ω (x,y,z-components of unit vector), and its direction (Euler angles, i.e., yaw and pitch)
in the ball coordinate system (xy-plane = plane of the seam).
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Figure 3. x-component of the unit vector of the angular velocity (ω) vs. time; (a): raw data (6 datasets
per delivery); (b): average ±1 standard deviation; W1 = wrist spin type 1, W2 = wrist spin type 2.

We verified the continued separation of Type 1 and 2 data from the included angle
between angular velocity unit vectors, calculated from the inverse cosine of their dot
product, of finger spin Type 1 and 2, and wrist spin Type 1 and 2.

At each timestamp, we determined the average and the standard deviation of each
parameter (e.g., x-component of the ω-unit vector of wrist spin Type 1; Figure 3b), as well
as the p-value of the corresponding Type 1 and 2 data. The p-value served for identifying
the periods during which the Type 1 and 2 data are not significantly different, and thus
cannot be used for distinguishing between the 2 types. The 5 parameters (ωx, ωy, ωz, yaw
angle, pitch angle) were subsequently reduced to 4 by excluding one not suitable for clearly
separating the 2 types.

Subsequently, we plotted the averages of the 4 deliveries identified in Table 1 and
Figure 1 for each parameter, and unveiled common and uncommon behaviour, suitable
for distinguishing between Type 1 and 2 deliveries. The best timestamp for maximally
separating the deliveries’ parameters resulted from the maximum of the p-values’ average,
or, more precise, from the average of –log10(p), under the condition that all 8 p-values must
be smaller than 0.05. The 8 p-values result from the comparison of type 1 and 2 for finger
spin and wrist spin, in terms of ωy, ωz, yaw, and pitch).

The method described herein represents the first step for the development and train-
ing of an artificial intelligence model for automated decision making and detection of
Type 1 and 2 deliveries.



Sensors 2023, 23, 8012 7 of 24

3. Results

The results section is organized in the following way. The subsection Performance
Analysis establishes the similarities and differences between the four deliveries, and shows
that the four deliveries are individual and separate entities. The differences are shown by
means of the kinematic parameters (movement of the spin axis, ω-vector, with respect
to the ball), and 10 performance parameters (5 physical and 5 skill parameters). The
performance parameters provide information about which delivery is more efficient when
bowling or produces a higher spin rate.

The second subsection, Clustering of the data of each delivery, provides the foundation
for an artificial intelligence algorithm that selects the kinematic parameters (x,y,z unit
vectors of ω, and its yaw and pitch angles) and the right point in time to achieve maximal
separation of the four deliveries on a two-dimensional map.

3.1. Performance Analysis

The average angular velocity vector diagrams of all four deliveries are shown in
Figure 4a. To understand the differences of the rotating ball when executing the deliveries,
the intersection points of the consecutive vectors with the surface of the ball, i.e., the paths
of the spin axis, are shown by means of a plate carrée map projection in Figure 4b,c. F1 and
F2 deliveries exhibit similar trends and shapes of the spin axis paths, whereas W1 and W2
deliveries are different.

Table 2 shows that the performance data of individual pairs were completely sepa-
rated (not overlapping) in 58%. Across the 10 performance parameters and 6 pairs per
performance parameter, W1 proved to be superior in terms of performance over the other
three deliveries, followed by F1 and W2 with similar performance, and finally by F2 with
the lowest performance. In terms of physical performance, W1 had a higher performance,
followed by F1; F2 and W2 had the lowest and similar performances (Table 3). In terms of
skill performance, W1 led, followed by W2, F1 and finally F2.

The torque diagrams are shown in Figure 5. There is no difference between F1 and F2
in terms of shape and magnitudes of TR, Ts and Tp, which matches the results of Figure 4b.
The Tp spike is located in the first half of the TR spike. The difference between W1 and W2
is obvious from the Tp data: a single Tp spike in the second half of TR for W1, and two Tp
spikes with the second one being excessively high for W2. Equally, this striking difference
matches the results of Figure 4c.

3.2. Clustering of the Data of Each Delivery

The kinematics of Type 1 and 2 spin-bowling data are clearly different (Figure 6).
The angular velocity vectors of Type 1/2 finger-spin deliveries are separated from 0.8 s
before the torque peak up to the torque peak (t = 0 s) by an included angle between 0◦

(at –0.8 s and 0 s) and 107◦ (at approximately –0.5 s) on average (Figure 6). The included
angle between angular velocity vectors of type 1 and 2 finger spin and type 1 and 2
wrist spin is greater than 40◦ for a substantial portion of time prior to release, clearly
demonstrating the differences between the Type 1 and Type 2 deliveries. The angular
velocity vectors of Type 1/2 wrist-spin deliveries are already separated earlier than 0.8 s
before the torque peak up to the torque peak (t = 0 s) by an angle between 0◦ (at 0 s) and
97◦ (at approximately –0.2 s) on average (Figure 6).

As an overall differentiation between deliveries, all deliveries can be categorised into
specific zones according to their angular velocity components and pitch and yaw angles.
The five individual kinematic parameters (x-, y-, and z-components of the unit vector of the
angular velocity ω, and Euler angles [pitch, yaw] of the unit vector; Figure 7) are partially
overlapping as shown by the yellow zones in Figure 7.
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When considering the averages of the five individual kinematic parameters of all
four deliveries (Figure 8a–e), we can distinguish between common and opposite trends. For
example, the unit vectors of ωy (Figure 8b) show common trends for Type 1, whereas the
trends of Type 2 deliveries are not comparable. At t ≈ –0.5 s, the unit vector of ωy is 0 ± 1/4

for Type 1, whereas for Type 2, the ωy values for finger and wrist spin are extreme, greater
than +3/4 and smaller than –3/4, respectively. The unit vectors of ωy (Figure 8b) and the yaw
angles (Figure 8d) of the unit vectors show the same behaviour before t = –0.3 s for Type 1.
The same applies to the unit vectors of ωz (Figure 8c) and the pitch angles (Figure 8e) of
the unit vectors before t = –0.3 s for Type 2. For the unit vectors of ωx (Figure 8a), common
features are only local: finger spin at –0.75–−0.7; Type 1 at –0.65; Type 2 at –0.65–−0.6;
wrist spin at –0.45–−0.4; pronation at –0.35–−0.3; and supination at –0.35–−0.2. The unit
vector of ωx is therefore not suitable for clearly distinguishing between Type 1 and Type 2,
and we therefore excluded ωx from further analysis.
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Table 2. Pairwise comparison of the 4 deliveries (F1 = finger spin type 1; F2 = finger spin type 2; W1 = wrist spin type 1; W2 = wrist spin type 2) resulting in
6 pairs for all 10 performance parameters; the common feature explains what the 2 deliveries of a specific pair have in common, according to Figure 2
(F = finger spin, W = wrist spin, T1 = type 1, T2 = type 2, P = pronation, S = supination); median 1 and 2 are the medians of the first and second delivery of each
specific pair; U = unbiased estimator (statistic of Mann–Whitney test), p = probability (p-value), shown in bold font if p < 0.05; r = effect size (biserial correlation);
effect = interpretation of r according to McGrath and Meyer [21], i.e., very small, small, medium or large (the term ‘zero’ indicates no effect at all, when U is at its
maximum, and ‘separated’ means the data clusters do not overlap, when U = 0); the medians of the two deliveries of each pair are compared by means of a greater
(>) sign or an equality (=) sign, depending on the p-value; the delivery with greater performance indicates which delivery out of one specific pair of deliveries shows
the higher performance unless they have the same performance if p < 0.05 and thus are ‘equal’ (note that lower values are associated with higher performance for the
following skill performance parameters: precession, normalised precession, precession torque, and α/ω).

Pairs Common Feature Median 1 Median 2 U p r effect Comparison of Medians Delivery with
Greater Performance

spin rate (angular velocity ω; revolutions per second)

F1 F2 F 22.14 19.11 0 0.0051 1 separated F1 > F2 F1

W1 W2 W 27.10 23.93 3 0.0203 0.833 large W1 > W2 W1

F1 W1 T1 22.14 27.10 0 0.0051 1 separated W1 > F1 W1

F2 W2 T2 19.11 23.93 0 0.0051 1 separated W2 > F2 W2

F2 W1 P 19.11 27.10 0 0.0051 1 separated W1 > F2 W1

F1 W2 S 22.14 23.93 8 0.1285 0.556 large W2 = F1 equal

precession p (rad/s)

F1 F2 F 27.11 32.63 0 0.0051 1 separated F2 > F1 F1

W1 W2 W 9.19 19.43 0 0.0051 1 separated W2 > W1 W1

F1 W1 T1 27.11 9.19 0 0.0051 1 separated F1 > W1 W1

F2 W2 T2 32.63 19.43 0 0.0051 1 separated F2 > W2 W2

F2 W1 P 32.63 9.19 0 0.0051 1 separated F2 > W1 W1

F1 W2 S 27.11 19.43 0 0.0051 1 separated F1 > W2 W2
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Table 2. Cont.

Pairs Common Feature Median 1 Median 2 U p r effect Comparison of Medians Delivery with
Greater Performance

normalised precession pn (◦)

F1 F2 F 54.62 58.78 10 0.2301 0.444 large F2 = F1 equal

W1 W2 W 20.10 22.07 18 0.9362 0 zero W1 = W2 equal

F1 W1 T1 54.62 20.10 0 0.0051 1 separated F1 > W1 W1

F2 W2 T2 58.78 22.07 0 0.0051 1 separated F2 > W2 W2

F2 W1 P 58.78 20.10 0 0.0051 1 separated F2 > W1 W1

F1 W2 S 54.62 22.07 0 0.0051 1 separated F1 > W2 W2

resultant torque TR (Nm)

F1 F2 F 0.212 0.193 1 0.0083 0.944 large F1 > F2 F1

W1 W2 W 0.227 0.216 11 0.2983 0.389 large W1 = W2 equal

F1 W1 T1 0.212 0.227 11 0.2983 0.389 large W1 = F1 equal

F2 W2 T2 0.193 0.216 11 0.2983 0.389 large W2 = F2 equal

F2 W1 P 0.193 0.227 0 0.0051 1 separated W1 > F2 W1

F1 W2 S 0.212 0.216 17 0.9362 0.056 very small F1 = W2 equal

spin torque Ts (Nm)

F1 F2 F 0.195 0.175 1 0.0083 0.944 large F1 > F2 F1

W1 W2 W 0.213 0.160 0 0.0051 1 separated W1 > W2 W1

F1 W1 T1 0.195 0.213 5 0.0455 0.722 large W1 > F1 W1

F2 W2 T2 0.175 0.160 3 0.0203 0.833 large F2 > W2 F2

F2 W1 P 0.175 0.213 0 0.0051 1 separated W1 > F2 W1

F1 W2 S 0.195 0.160 0 0.0051 1 separated F1 > W2 F1
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Table 2. Cont.

Pairs Common Feature Median 1 Median 2 U p r effect Comparison of Medians Delivery with
Greater Performance

precession torque Tp (Nm)

F1 F2 F 0.107 0.099 5 0.0455 0.722 large F1 > F2 F2

W1 W2 W 0.084 0.171 0 0.0051 1 separated W2 > W1 W1

F1 W1 T1 0.107 0.084 6 0.0658 0.667 large F1 = W1 equal

F2 W2 T2 0.099 0.171 0 0.0051 1 separated W2 > F2 F2

F2 W1 P 0.099 0.084 8 0.1285 0.556 large F2 = W1 equal

F1 W2 S 0.107 0.171 0 0.0051 1 separated W2 > F1 F1

angular acceleration α (rad/s2)

F1 F2 F 2508 2247 1 0.0083 0.944 large F1 > F2 F1

W1 W2 W 2742 2055 0 0.0051 1 separated W1 > W2 W1

F1 W1 T1 2508 2742 5 0.0455 0.722 large W1 > F1 W1

F2 W2 T2 2247 2055 3 0.0203 0.833 large F2 > W2 F2

F2 W1 P 2247 2742 0 0.0051 1 separated W1 > F2 W1

F1 W2 S 2508 2055 0 0.0051 1 separated F1 > W2 F1

power p (W)

F1 F2 F 17.15 12.97 0 0.0051 1 separated F1 > F2 F1

W1 W2 W 24.26 15.92 0 0.0051 1 separated W1 > W2 W1

F1 W1 T1 17.15 24.26 0 0.0051 1 separated W1 > F1 W1

F2 W2 T2 12.97 15.92 6 0.0658 0.667 large W2 = F2 equal

F2 W1 P 12.97 24.26 0 0.0051 1 separated W1 > F2 W1

F1 W2 S 17.15 15.92 13 0.4715 0.278 medium F1 = W2 equal
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Table 2. Cont.

Pairs Common Feature Median 1 Median 2 U p r effect Comparison of Medians Delivery with
Greater Performance

efficiency η (%)

F1 F2 F 64.64 64.43 17 0.9362 0.056 very small F1 = F2 equal

W1 W2 W 88.32 65.21 0 0.0051 1 separated W1 > W2 W1

F1 W1 T1 64.64 88.32 0 0.0051 1 separated W1 > F1 W1

F2 W2 T2 64.43 65.21 16 0.8103 0.111 small F2 = W2 equal

F2 W1 P 64.43 88.32 0 0.0051 1 separated W1 > F2 W1

F1 W2 S 64.64 65.21 17 0.9362 0.0556 very small F1 = W2 equal

α/ω (s−1; frequency, Hz)

F1 F2 F 18.02 19.08 0 0.0051 1 separated F2 > F1 F1

W1 W2 W 16.24 13.95 1 0.0083 0.944 large W1 > W2 W2

F1 W1 T1 18.02 16.24 1 0.0083 0.944 large F1 > W1 W1

F2 W2 T2 19.08 13.95 0 0.0051 1 separated F2 > W2 W2

F2 W1 P 19.08 16.24 0 0.0051 1 separated F2 > W1 W1

F1 W2 S 18.02 13.95 0 0.0051 1 separated F1 > W2 W2
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Table 3. Pairwise comparison of the 4 deliveries (F1 = finger spin type 1; F2 = finger spin type 2; W1 = wrist spin type 1; W2 = wrist spin type 2) resulting in
6 pairs for two performance parameter groups, that is, the combined physical and skill performance parameters; the combination was achieved by ranking each
performance parameter across the 4 deliveries from highest (100%) to lowest (0%), and then combining these percentages of all physical performance parameters and
all skill parameters for each delivery, resulting in 30 data per delivery and performance cohort; for further explanations cf. legend of Table 2.

Pairs Common Feature Median 1 (%) Median 2 (%) U p r effect Comparison of Medians Delivery with
Greater Performance

Physical Performance Parameters combined (physical performance order: W1 > F1 > F2 = W2)

F1 F2 F 39.38 17.83 42 <0.0001 0.907 large F1 > F2 F1

W1 W2 W 65.91 22.65 96 <0.0001 0.787 large W1 > W2 W1

F1 W1 T1 39.38 65.91 75 <0.0001 0.833 large W1 > F1 W1

F2 W2 T2 17.83 22.65 361 0.1902 0.198 small F2 = W2 equal

F2 W1 P 17.83 65.91 2 <0.0001 0.996 large W1 > F2 W1

F1 W2 S 39.38 22.65 252 0.0035 0.440 large F1 > W2 F1

Skill Performance Parameters combined (skill performance order: W1 > W2 > F1 > F2)

F1 F2 F 32.29 23.81 310 0.0394 0.311 medium F1 > F2 F1

W1 W2 W 89.06 58.95 206 0.0003 0.542 large W1 > W2 W1

F1 W1 T1 32.29 89.06 76 <0.0001 0.831 large W1 > F1 W1

F2 W2 T2 23.81 58.95 232 0.0013 0.484 large W2 > F2 W2

F2 W1 P 23.81 89.06 70 <0.0001 0.844 large W1 > F2 W1

F1 W2 S 32.29 58.95 276 0.0102 0.387 large W2 > F1 W2
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Figure 6. Angle between the angular velocity (ω) vectors of Type 1 (T1) and Type 2 (T2) plotted
against time, for finger spin (F) and wrist spin (W) separately.

From the remaining four individual kinematic parameters (ωy, ωz, yaw, pitch), the
timestamp of the maximum separation of all four deliveries was determined from the
average of –log10(p), and the maximum average separation of deliveries was found at
t = –0.44 s (cf. dashed line in Figure 8f). Table 4 shows the R2-values of the correlations
between Euler angles (yaw, pitch) and unit vectors (ωy, ωz) of the angular velocity. The yaw
angle correlated with ωy, and the pitch angle with ωz. ωx, however, was not significantly
correlated. The corresponding linear regression functions served for aligning ωy to the yaw
angle, and ωz to the pitch angle in Figure 9. Figure 9 shows the four clusters of the four
deliveries clearly separated at t = –0.44 s. This cluster diagram also shows the separation of
finger- and wrist-spin deliveries, as well as supination and pronation, comparable to the
diagram in Figure 2.

Figure 10 shows the 3D vector diagrams of the unit vector (ωx, ωy, ωz) data featured
as clusters in Figure 9. The same clusters apply, proving that the four deliveries are different
and separated entities.
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Figure 7. Kinematic parameters against time for finger spin and wrist spin Type 1 and 2 deliveries
(average ± 1 standard deviation); the kinematic parameters are: x-, y-, and z-components of the unit
vector of the angular velocity (ω), and Euler angles (yaw, pitch) of the unit vector; F1 = finger spin
type 1, F2 = finger spin type 2; W1 = wrist spin type 1, W2 = wrist spin type 2; the yellow zones
indicate time zones unsuitable for distinguishing between Type 1 and Type 2 deliveries.
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Figure 8. (a–e): kinematic parameters (components and Euler angles of unit vector ω) against
time, for identification of common and uncommon features of the averages of finger(F) spin and
wrist(W) spin Type 1 (T1) and Type 2 (T2) deliveries; F1 = finger spin type 1, F2 = finger spin type 2;
W1 = wrist spin type 1, W2 = wrist spin type 2; P = pronation, S = supination; (f) differentiation
between T1 and T2 from critical time stamps at which T1 and T2 are maximally separated (8 parame-
ters: ωy, ωz, yaw, and pitch of finger spin and wrist spin); p = p-value; log10 = decadic logarithm;
s (green) = significant: all 8 p-values < 0.05; n (purple) = not significant: at least one p-value > 0.05.

Table 4. Correlations between two variables; R2 = coefficient of determination (bold font if R2 > 0.9);
p = p-value (one-tailed); the data of the variables were taken at t = –0.44 s before the torque peak.

Variable 1 (Euler Angles of the
Angular Velocity Vector)

Variable 2 (Components of the Unit
Vector of the Angular Velocity) R2 p

yaw ωx 0.3953 0.0005

yaw ωy 0.9920 <0.0001

yaw ωz 0.0615 0.1207

pitch ωx 0.2801 0.0040

pitch ωy 0.0593 0.1255

pitch ωz 0.9938 <0.0001
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forms of spin bowling deliveries were possible. As cricket evolved, more deliveries were 
added, including the googly, flipper, carrom ball, and doosra. All these deliveries were 
loosely grouped under the categories of either wrist spin or finger spin. Although these 
categories have been universally adopted by the cricket fraternity and are useful in terms 
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and Type 2 spin-generating mechanisms have been discovered in both wrist-spin and fin-
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Figure 10. 3D vector diagram of the unit vectors identified as clusters in Figure 9; each line represents
the 3D unit angular velocity vector for a single delivery; there are 6 lines per cluster, demarcating the
territories of the spin delivery types; the angular velocity vectors are shown on the cricket ball in pole
view (a), with the same view projected on a real cricket ball held by a left hand (b); in seam view (c);
and in isometric projection (d); F1 = finger spin type 1, F2 = finger spin type 2, W1 = wrist spin type 1,
W2 = wrist spin type 2; the grip in subfigure (b) is a neutral one, applicable to all 4 deliveries (F1, F2,
W1, W2), and not a grip at 0.44 s before the peak torque (approximately 0.6 s before release), as these
grips are different (cf. Figure 1).
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4. Discussion

Spin bowling is arguably the most complex and technically diverse of the bowling
genres in cricket. Through a process of technical experimentation, spin bowlers have
been able to generate a wide array of spin bowling deliveries, each of which induces a
different combination of aerodynamical and rebound effects on the ball, for the purpose of
confounding the batter’s perception to increase the chances of dismissal. From the earliest
days of cricket, four basic directions of spin bowling were recognised, namely, off spin,
leg spin, topspin, and backspin (often referred to as “check-spin” in the early coaching
literature). Beldam and Fry [22] illustrated that a combination of topspin and sidespin was
a more practical form of delivery than “pure” sidespin, an early suggestion that hybrid
forms of spin bowling deliveries were possible. As cricket evolved, more deliveries were
added, including the googly, flipper, carrom ball, and doosra. All these deliveries were
loosely grouped under the categories of either wrist spin or finger spin. Although these
categories have been universally adopted by the cricket fraternity and are useful in terms
of demarcating basic genres of spin bowling, a formal taxonomic system of classification
of spin bowling deliveries based on strict anatomical and biomechanical criteria has not
yet been developed. Moreover, a formal taxonomy is especially needed now that Type
1 and Type 2 spin-generating mechanisms have been discovered in both wrist-spin and
finger-spin bowling [3].

4.1. Smart Ball Validation of Spin Bowling Deliveries

The objective of devising a formal taxonomy in spin bowling is to classify spin bowling
deliveries into sets or types based on their shared traits and lineage. A scientific-based
taxonomy considers the functional and logical relationships between variables as criteria
for grouping in sets. Such an endeavour is predicated on the ability to collect a range of
relevant biomechanical data on spin bowling performance. In this paper, it is proposed that
the smart cricket ball is particularly effective for this purpose. The smart cricket ball is an
instrumented cricket ball [17] that can measure various kinematic and kinetic performance
variables, including variables that cannot be measured accurately by a motion analysis
system. Furthermore, the measurement does not require the external placement of markers
on the fingers, minimising any interference with performance.

An initial indication of differentiation between spin bowling deliveries is apparent
through qualitative examination of the 4D-vector diagrams of angular velocity (Figure 4a).
The angular velocity vector traverses along the ball differently for finger spin and wrist
spin. Then a plate carrée map projection of the pitch angle against the yaw angle shows
that the F1 and F2 deliveries mapped similarly; however, the maps of W1 and W2 deliveries
were divergent in both path and magnitude characteristics (Figure 4b,c). The importance
of this cursory examination of spin angular velocity maps should not be undervalued. It
demonstrates that the smart ball could detect significant differences between spin bowling
deliveries, not merely between the traditional categories of finger spin and wrist spin,
but at a more refined level for wrist spin, between the sub-types of Type 1 and Type 2.
Furthermore, it is the angular velocity vector that distinguishes between these sub-types.
Working on the basis that kinematic differences serve as a means of differentiating between
spin bowling deliveries, it follows that a taxonomic classification of spin bowling with smart
ball data may be feasible, and this encourages a more intensive analysis, including kinetics.

Kinetics has the advantage over kinematics in that it quantifies mechanisms at a more
causal level of analysis. A qualitative observation of torque-time graphs shows distinct
variations between the spin and precession torques (Figure 5). Gross differences are seen in
the torque-time histories between finger spin and wrist spin: both T1 and T2 finger spin
show the peak precession torque occurring before the peak spin torque, whereas the timing
of these peak torques is reversed in the case of wrist spin. A further differentiation is clearly
apparent between T1 and T2 wrist spin, with the T2 spin torque being double-peaked and
of a much higher magnitude than T1 (Figure 5). Particular attention should be drawn
to the T2 wrist-spin precession torque, which is approximately 1.5 times higher than the
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other deliveries. Precession torque can be considered an “unwanted” torque, and hence the
inverse of its value is a measure of spin-generation efficiency. By this measure, T2 wrist
spin is not only clearly differentiated from the rest of the spin bowling deliveries but is a
particularly mechanically inefficient mode or technique of generating spin [12].

From the analyses conducted thus far, the smart ball can differentiate between finger
spin and wrist spin, and between top-, side-, and backspin. However, differentiation
between Type 1 and Type 2 is more effectively observed through the included angle
between the angular velocity vectors of F1 and F2, and W1 and W2 (Figure 6). For instance,
W1 and W2 angular velocities have an included angle of 60 degrees or higher until about
0.1 s before ball release. F1 and F2 have more a restricted range of included angle values
above this threshold, from −0.6 to −0.3s, but this included angle reaches even higher
values, higher than 90 degrees during the mid-portion of this period. This preliminary data
suggests that the included angle can differentiate between Type 1 and Type 2 sub-types,
justifying a more detailed analysis of the variables related to the angular velocity vector.
Hence, a graphical comparison of type 1 and 2 for finger spin and wrist spin in terms of five
individual kinematic parameters (x-, y-, and z-components of the unit vector of the angular
velocity ω, and Euler angles (pitch, yaw) of the unit vector) clearly showed differentiation
in several specific non-yellow zones (Figure 7).

By observing the trends in the averages of the five individual kinematic parameters
of all four deliveries (Figure 8a–e), it seemed unlikely that ωx would be suitable for dis-
tinguishing between Type 1 and Type 2; only local trends are observable. In addition,
correlation analysis found that ωy was correlated with yaw and ωz was correlated with
pitch, but ωx was uncorrelated (Table 4); and being unable to constitute a functional rela-
tionship with other variables, it was removed from further analysis. From the remaining
four individual kinematic parameters (ωy, ωz, yaw, pitch), the timestamp of the maximum
average separation of all four deliveries was found at t = –0.44 s (Figure 8f). Then, at this
time point, linear regression functions were calculated and plotted in a way that aligns ωy
to the yaw angle, and ωz to the pitch angle (Figure 9), resulting in four separated clusters,
their boundaries clearly demarcated. This cluster diagram is means of validating different
types of deliveries—in this case, showing that the bowler uses distinct mechanical processes
to execute F1, F2. W1, and W2, supporting the qualitative schematic of the kinematics of
forearm and finger movements in Figure 2.

The mechanical differences between these types of spin bowling deliveries are most
notably observed on the 3D vector diagram of unit vectors on the ball, in which the grip
shown is a neutral one, applicable to all bowlers (Figure 10). In this diagram, each line
represents the 3D unit angular velocity vector for a single delivery. Hence, the six lines
per cluster demarcate the discrete territories of the spin bowling deliveries, implying the
generation of different spin-torque for each delivery type. In other words, the fingers can
apply spin to the ball in patterns that correspond to different delivery types. The coaching
literature has not explored this aspect of spin bowling technique. The smart ball potentially
reveals the hidden layer of technique that underlies the subtle differences between spin
bowling deliveries, in particular the differences between T1 and T2, for which no theoretical
framework currently exists.

Further separation of the spin bowling deliveries (F1, F2, W1, W2) could be determined
from the Mann–Whitney U test of 10 performance factors, with separation between the
deliveries in 58 cases (Table 3). These variables could be combined in a way to provide
more meaning, as physical and skill performance factors, ending up in different rankings
of effectiveness for each of these types. This shows that the separation is clearly functional,
separating deliveries in terms of real performance outcomes and also between the efficiency
of delivering each ball, suggesting that these categories are real, affecting when they are
used, having different levels of effectiveness, and being amenable to particular styles
and strategies.
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4.2. Coaching Implications

The smart ball was shown to differentiate between finger-spin and wrist-spin de-
liveries. However, coaches could dismiss this achievement, claiming that the technical
differences between these classic types of spin bowling are easily discernible, even during
live play. However, the smart ball could also identify Type 1 and Type 2 spin bowling deliv-
eries without the use of a motion analysis system. This is an impressive accomplishment
because these categories of spin bowling have only recently been discovered, and their
distinctions can be difficult for humans to notice in real time. Although the pitch, yaw angle
and angular velocity of a cricket ball are theoretically measurable by 3D-motion analysis,
this would require intruding upon the performance within a biomechanics laboratory,
which does not constitute an environmental setting that mimics real-world conditions.
Furthermore, the smart ball has shown significant differences between F1, F2, W1, and W2
spin bowling deliveries on a cluster diagram of pitch angle vs. yaw angle of the angular
velocity vector (of the smart ball) and z-component vs. y-component of the unit angular
velocity vector (Figure 9). These four different types of spin require a varying number of
mechanical motions to be executed correctly. As such, coaching requirements may differ
depending on which delivery type a spin bowler wants to learn. Each of these sub-types of
spin deliveries is unique: this is evident by observing the relative equidistant separation of
their clusters (Figure 9)

To further understand the coaching implications with further precision and effective-
ness, it is advantageous to categorise the smart ball data into physical performance factors,
skill performance factors, and technical and strategic applications. By taking the time to
interpret the smart ball data under these categories, coaches and trainers can gain a more
comprehensive understanding of spin bowling and be better equipped to help their players
reach their full potential.

4.2.1. Physical Performance Factors

The smart ball has been proven to be able to distinguish between performance out-
comes, which include spin rate and other closely related variables (Table 2). Spin rate
is related to torque, power, and angular acceleration. These results generally indicate
better performance and can be analysed at either the individual (intra-subject) or collective
(inter-subject) levels. Intra-subject comparisons involve measuring how well the subject
performs each delivery. Hence, it is possible to conduct intra-delivery studies where one
spinner’s spin rate is compared across multiple deliveries, establishing a performance
rank of each variation of delivery. Inter-subject analyses compare different bowlers’ ability
to perform these deliveries, a means of establishing baseline performance levels of spin
bowlers or serving as a tool for talent identification. In addition, physical performance
factors can also indicate performance trends between deliveries. For instance, for the spin
bowler in this study, the W1 spin rate was higher than W2. If in subsequent studies with
multiple subjects, this result was also found, then it can be concluded that W1 and W2
differ in the property of spin rate.

It is interesting that the physical performance factors were W1, F1, F2, W2 in order
of decreasing performance. It was expected that W1 would be placed at the top of this
list because wrist spin is known to generate a higher spin rate than the other types of
delivery. Furthermore, Type 1 wrist spin, which is W1, is the conventional technique for
wrist spin, in which the bowler pronates the forearm while imparting spin to the ball. From
a conventional perspective, F1 would be considered the next best-performing spin delivery,
because it is the conventional technique of finger-spin bowling, requiring the supination of
the forearm while the fingers impart spin to the ball. Type 2 spin deliveries have been found
in the laboratory but have not been yet implemented in the published coaching literature.
Hence, coaches could be surprised that the Type 2 finger spin deliveries performed the
Type 2 wrist-spin deliveries.

These physical performance factors bring up important implications for coaches.
Coaches need to be aware of the physical performance factors that influence spin bowling
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outcomes. The spin rate generated by the T1 wrist-spin delivery is substantially higher in
comparison to both types of finger-spin delivery. Hence, it is important that wrist spinners
are given focused attention and specialised coaching in spin bowling development squads
to ensure they attain their full potential. In particular, specialised technical knowledge is
required to teach wrist-spin bowlers to optimise their techniques to bowl T1 deliveries. In
addition, the bowling action biomechanics of wrist spin differ considerably from finger
spin, implying that coaches adjust their coaching strategies according to the genre of
spin bowling [3]. Furthermore, coaches are faced with the challenge of upgrading their
knowledge to identify spin bowlers who bowl the F2 and W2 spin deliveries. These spin
deliveries can increase the level of deception of a bowler, as the spin torque applied to the
ball is opposite to the direction of the forearm rotation. As such, the coach must be able to
identify the spinners who employ these deliveries and understand exactly how these balls
can be executed as efficiently as possible, recognising that they will not generally perform
as their Type 1 counterparts do.

Ultimately, this research regarding the physical performance factors of spin deliveries
provides valuable technical insight for coaches when looking to maximise the performance
of their bowlers. Even through the qualitative observation of plate-carée maps (Figure 4)
and four-dimensional plots of pitch–yaw angular velocity components (Figure 9) generated
by the smart cricket ball, coaches and researchers will find a more effective means of
discerning and sorting spin bowling deliveries into their respective technical categories for
a better analysis.

A closer look at the skill performance factors may provide insight into the reasons
why F2 outperforms W2, as wrist-spin performance outcomes are generally higher than for
finger spin, most notably the spin rate.

4.2.2. Skill Performance

A player’s skill performance is determined by the amount of precession, which is
a key factor in evaluating the quality of efficiency of the spin-generation mechanism,
which is influenced by how the fingers interact with the ball. When a bowler generates
spin torque with lower precession, the delivery will be more efficient since precession
prevents the generation of energy. In such a case, more spin torque can be applied to the
ball, causing a higher spin angular acceleration, which will lead to a higher spin rate, the
primary performance outcome. Hence, skill performance factors are at the core of most
coaching applications. As precession values are calculated per delivery type, coaches can
gain a better understanding of which bowlers can deliver the ball with a more efficient
technique. Benchmarking players by establishing a baseline performance is a standard
coaching practice. Once this benchmarking has been completed, the coach can use high-
speed motion to observe bowling technique more closely and devise technical interventions
where appropriate. Afterwards, the coach can figure out which balls should constitute a
bowler’s delivery set or what balls could be improved based on how effective each type of
delivery is.

The spin bowler in this study spun the deliveries in the following skill performance
order: W1, W2, F1, and F2 (Tables 2 and 3). Firstly, this shows that in general, his wrist-
spin bowling was more efficient than his finger-spin bowling; secondly, that the Type 1
variants within wrist-spin and finger-spin bowling were more efficient than their Type
2 counterparts. Precession, normalized precession, and precession torque are the major
determinants of calculating skill performance order. Hence, precession could differentiate
between these main types of spin bowling. From this perspective, Type 1 deliveries are
more efficient than Type 2 deliveries because they minimize the amount of energy needed
to spin the ball. Since the fingers and forearms tend to rotate in opposite directions during
a Type 2 delivery, they end up creating extra precession torque, which requires additional
energy to overcome. In contrast, Type 1 deliveries are much simpler and thus require less
energy to complete because it is much easier to rotate the fingers and forearm in the same
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rotational sense during the imparting of spin to the ball. Hence, W1 was found to be most
efficient in terms of skill performance, followed by W2, F1 and finally F2 (Table 3).

As a further note, for a spin bowler, it is imperative to analyse both the skill perfor-
mance order as well as the physical performance order of their deliveries. In terms of
analysing both of these lists, W1 is the most desirable delivery type since it is both the
most effective and efficient. However, even though W2 is the least efficient spin delivery,
it is the second-highest-performing one (Table 3). This is a sign that even though W2 is
relatively inefficient, one can still spend a large amount of energy to achieve a relatively
high-performing spin delivery. In other words, W2 should not necessarily be treated as an
inferior type of delivery to W1. Ultimately, the choice of which type of delivery to use is
up to the individual bowler: bowlers should experiment with both types of deliveries to
determine which one works best for them. With the right technique, W2 can be a highly
effective delivery type.

4.2.3. Technical and Strategic Interventions

If coaches attempt to improve wrist-spin bowling performance, they first and foremost
must be skilled enough to distinguish W1 from W2. Proficient coaches may even attempt
to intervene and change a Type 2 wrist spinner into a predominantly Type 1 wrist spinner.
To shift from a W2 to W1 delivery is not trivial: the bowling-arm plane, wrist-cocking
method, and catch position may have to be changed to minimize precession during spin
torque generation. In theory, precession would be minimized if the plane of arm motion
during W2 spin torque generation were similar to that during W1 spin torque generation.
Analogous changes in bowling-arm, wrist-cocking, and catch position will apply to finger
spinners who wish to convert to a Type 1 technique. In general, a coach must have a sound
understanding of spin bowling technique, as well as skills acquisition, to convert the actual
mechanism of spin generation of wrist spinners and finger spinners in this way.

Alternatively, a wrist spinner may keep Type 2 wrist spin but use Type 1 finger spin as
the main variation, the supination in both these deliveries used to disguise the change in
direction of spin. The only caveat would be that the wrist spinner would need to modify
the loading position of the Type 1 finger spinner so that it resembles the loading position
of the wrist spinners. The wrist spinner can also learn both Type 1 and Type 2 wrist-spin
deliveries, so that different forearm and finger motions produce the same spin direction [3].
This could serve as an effective means of deception, since batters usually associate different
forearm and finger motions with different directions of spin, leading to an erroneous
movement compensation that could lead to the batter’s dismissal.

The highest-efficiency finger spinner is F1, which holds its corresponding slot in
the performance ranking, which indicates it should be the preferred finger-spin delivery.
However, there are differences in finger-spin types among populations, with Beach at al. [3]
finding both F1 and F2 in their sample, whereas Sanders et al. [6] only found the pronation-
type mechanism in their sample of finger spinners, most likely corresponding to the Type 2
finger-spin delivery. In essence, F2 should still be considered a feasible delivery based on
its performance rating being above W2. Nevertheless, F1 and F2 should require distinct
coaching instruction and partner different variations of deliveries. In Table 2, it can be
observed that F1 can be paired with W2, since the forearm supinates in both deliveries
(Figure 2), and that F2 can be paired with W1, which both require forearm pronation
(Figure 2). Matching stock balls and variations using the same type of forearm rotation
makes it more challenging for the batter to determine what type of variation was bowled.
However, it is important to note that modified versions of W2 and W1 are used as variations
with F1 and F2, respectively. The clearest example of this is the carrom ball [23], which is
essentially W2 with a modified loading position. Correspondingly, the W1 variation that
partners the F2 stock ball is also a modified delivery to make it resemble W1.
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4.3. Limitations and Future Studies

The major limitation of this study is that we had access to only one bowler, capable of
bowling all four deliveries (F1, F2, W1, W2) at comparable performance. Nevertheless, the
aim of this study was to explore whether the smart cricket ball can identify the differences
between Type 1 and Type 2 spin, with the outlook to automatically detect these deliveries
when feeding an artificial intelligence (AI) model with the smart ball data. The method
developed in this study represents the first step in training an AI model. The recruitment
of more bowlers, specifically bowlers coached for performing Type 2 spin deliveries, will
be required for validating such an AI algorithm.

5. Conclusions

In this study, it has been shown that the smart ball can differentiate between Type 1
and Type 2 wrist spin and finger spin on a range of physical performance and skill perfor-
mance factors. These factors have implications for talent identification and performance
enhancement. For instance, coaches can evaluate the efficiency of a spin bowler’s range
of deliveries, i.e., repertoire. In addition, coaches can train to achieve difficult-to-decipher
delivery sets based on the similarity of their release mechanics. Currently, the smart ball
is the most effective way to measure these factors. Motion analysis does not seem to be
a feasible option, because it would adversely impede bowing performance and consume
excessive time and resources to test and evaluate the mechanics of the numerous finger
segments during spin generation. When used by a knowledgeable coach, the smart ball
can offer feedback on performance, suggest mechanical adjustments, and provide variation
sets with more mechanical validity. In the future we aim to use the smart ball to analyse a
greater range of deliveries, such as googlies, flippers, and swerve balls, providing a techni-
cal platform from which spin bowlers can improve their skill diversity and performance in
an ever-changing cricket landscape.
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