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Abstract: This paper presents a high-precision component-type vertical pendulum tiltmeter based on
an FPGA (Field Programmable Gate Array) that improves the utility and reliability of geophysical
field tilt observation instruments. The system is designed for rapid deployment and offers flexible
and efficient adaptability. It comprises a pendulum body, a triangular platform, a locking motor
and sealing cover, a ratiometric measurement bridge, a high-speed ADC, and an FPGA embedded
system. The pendulum body is a plumb-bob-type single-suspension wire vertical pendulum capable
of measuring ground tilt in two orthogonal directions simultaneously. It is installed on a triangular
platform, sealed as a whole, and equipped with a locking motor to withstand a free-fall impact of
2 m. The system utilizes a differential capacitance ratio bridge in the measurement circuit, replacing
analog circuits with high-speed AD sampling and FPGA digital signal processing technology. This
approach reduces hardware expenses and interferences from active devices. The system also features
online compilation functionality for flexible measurement parameter settings, high reliability, ease
of use, and rapid deployment without the need for professional technical personnel. The proposed
tiltmeter holds significant importance for further research in geophysics.

Keywords: tiltmeter; digital signal processing; FPGA

1. Introduction

A high-sensitivity tilt survey serves as a crucial method for crustal deformation obser-
vation and plays a vital role in geodetic, seismological, and geophysical research. In recent
years, geoscientific research has placed great emphasis on geotilt observations, such as
Plate Boundary Observations (PBO), an important component of the Earth Lens Program
implemented in the United States and the China Seismic Proving Ground Project, which
have deployed numerous tilt observation instruments [1–3]. Traditional geophysical field
tilt observation instruments, including horizontal pendulum tiltmeters, vertical pendu-
lum tiltmeters, and water pipe tiltmeters, offer a sensitivity of 0.2 mas (milliarcseconds),
enabling the observation of solid earth tides, small crustal deformation, and co-seismic
responses [4–8]. However, these instruments, being delicate and lacking impact resistance
and reliability, require installation and operation by skilled engineering technicians. This
limitation hinders widespread and rapid deployment.

In the traditional vertical pendulum tilt meter detection circuit shown in Figure 1,
the circuit is mainly AC excitation, transformer, differential capacitance sensor, voltage
follower, phase sensitive detector, low-pass filtering circuit, etc. The direction of the
pendulum is always vertically downward but with the change of tilt angle, the pole–plate
spacing changes to change the capacitance. The transformer and differential capacitance
sensor form an AC bridge, and as the capacitance changes, the unbalanced signal output
from the bridge circuit is output to the ADC acquisition unit through a voltage follower,
phase-sensitive detector, and low-pass filtering. Since the tilt observation requires two
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components, north–south and east–west, and two sets of the same sensors and circuits are
required to accomplish this.
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Figure 1 is a classic and widely used tilt measurement circuit, but with the deepening
of geophysical research and the increasing requirements of tilt observation, the limitations
of the above measurement circuit have gradually appeared.

First, tilt measurement requires two sets of vertical pendulums and detection circuits,
making it difficult to achieve an integrated design. Secondly, the phase-sensitive detector
and low-pass filter circuits are built by analog devices, which inevitably introduce electrical
noise, which makes the measurement accuracy of the circuits limited by the performance
of the devices. Parameters such as frequency band, amplification, phase angle, etc., of the
measurement system are all determined by analog devices and cannot be flexibly changed
when used.

Currently, some scholars have integrated the measurements of north–south and east–
west directions into a single sensor under laboratory conditions while utilizing FPGAs
for signal processing to separate the two tilt signals. However, the excitation source still
consists of analog circuits. After the measurement in one direction exceeds the limit, the
data will be in error and cannot continue to complete accurate measurements [9].

This paper introduces an improved ICT (Integrated Capacitive Tiltmeter) integrated
chamber tiltmeter, namely a high-precision component-type vertical pendulum tiltmeter
based on an FPGA. FPGA compared to MCU and DSP, FPGA can combine the advantages
of both, realizing the functions of both DSP and MCU, which is suitable for computing
scenarios with fixed tasks. The system accomplishes simultaneous measurements in both
directions with a single pendulum. The system measurement circuit employs a differential
capacitance ratio bridge, where both bridges share the same pendulum as the intermediate
electrode plate of the differential capacitor, facilitating the simultaneous measurement of
ground tilt in two orthogonal components [1]. The system replaces analog circuits such
as phase-sensitive detection, phase shifting, and low-pass filtering with high-speed AD
sampling and FPGA digital signal processing technology [10]. This approach reduces
hardware expenses and mitigates interference from active devices [11]. The online con-
figuration function allows for flexible measurement parameter settings and adaptation to
various measurement environments. At the same time, in the event of an abnormality or
overrun of one of the signals, the FPGA stops the output of that channel to ensure that the
measurement continues.

By leveraging the integrated design of the tilting pendulum system and FPGA digital
signal processing technology, the improved ICT integrated chamber tiltmeter offers high
reliability, strong adaptability, user convenience, and rapid deployment without the need
for professional technical personnel. The instrument has high resolution and can accurately
record solid tides, co-seismic response, etc., which is of great significance for geophysical
field deformation observation.
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2. Design of a High-Precision Tiltmeter Based on FPGA

The integrated high-precision chamber tiltmeter based on FPGA mainly consists of
a vertical pendulum body, a triangular platform, a locking motor and sealing cover, a
ratio-metric measurement bridge, a high-speed ADC, and an FPGA embedded system.
Figure 2 illustrates the configuration of the vertical pendulum body, which serves as the
tilt-sensing unit and is installed on a triangular platform. The platform is driven using
micron-level controlled high-precision decelerated stepper motors, and the platform serves
as both a tilt leveling mechanism and an online calibration of the tilt sensor [12–15]. The
tilting pendulum and the adjusting platform adopt an integrated design; the whole is
sealed and protected, and the pendulum is equipped with a locking motor. Due to the
fragile hanging wire, it is necessary to push the pendulum to a certain side to fix it when it
is not in working condition. The instrument is usually installed in caves—the environment
is humid, so it needs to be sealed cover for protection and moisture to prevent short circuits.
It can withstand a free fall impact of 2 m when it is in a locked and wrapped state. Tilt
measurement is achieved through a ratio-metric bridge circuit. With the exception of the
power amplifier of the excitation source, the output transformer, and the signal follower,
the remaining circuitry is implemented through software programming after high-speed
ADC signal sampling under FPGA control.
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2.1. Component-Type Vertical Pendulum Tilt Sensing Unit

Ground tilt follows the vector synthesis law only in two orthogonal directions. Figure 3
depicts the schematic diagram of ground tilt, where Z represents the gravity direction
coinciding with the plumb line. The X and Y axes represent the east–west and north–south
directions, respectively. The XOY plane denotes the horizontal plane, and ABC represents
the tilting plane denoted as “t”. ∠CEO represents the dihedral angle between the tilting
plane and the horizontal plane. The tilt angle of the tilting plane is denoted as θ = ∠CEO,
and the azimuth angle of OE is denoted as Ψ. As ∠CEO represents the dihedral angle
between the tilting plane and the horizontal plane, AB⊥OE, and AB⊥CE. AB represents
the intersection line between the tilting plane and the horizontal plane, showing the strike
of the tilting plane on the horizontal plane. θ and ψ are two characteristic parameters of the
tilting plane denoted as “t”, representing the angle and direction of tilt, respectively [16–18].
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In the figure, along the direction of azimuth α (OD direction), the measured tilt is
ϕ. Then:

ϕ = θcos(α− ψ) (1)

Assuming α1 and α2 are two different azimuth angles, and the ground tilt values in
these two directions are ϕ1 and ϕ2, respectively, and assuming positive tilt values in the α1
and α2 directions and negative values in the opposite directions, Equations (2) and (3) can
be derived:

ϕ1 = θcos(α1 − ψ) (2)

ϕ2 = θcos(α2 − ψ) (3)

From Equations (2) and (3), θ and ψ can be obtained:θ =

√
(ϕ1cos α2−ϕ2cos α1)

2+(ϕ2sin ϕ1−ϕ1sin ϕ2)
2

|sin(α2−α1)|
ψ = tan−1(x/y)

(4)

where: {
x = ϕ1cos α2−ϕ2cos α1

sin(α1−α2)

y = ϕ2sin ϕ1−ϕ1sin ϕ2
sin(α1−α2)

(5)

The quadrant where ψ is located is determined by the signs of x and y. When mea-
suring the tilt values in the north–south and east–west directions, let ξ and η represent the
ground tilt values in these two directions, respectively, with positive values for the north
and east tilts. Assuming ϕ1 = 0, ϕ2 = π

2 , Equations (4) and (5) yield:{
ξ = θcos ψ
η = θsin ψ

(6)

According to Equation (6), the following can be obtained:{
θ =

√
ξ2 + η2

ψ = tan−1 η
ξ

(7)

The vertical pendulum tilt sensor utilizes the formula’s principle to hang a gravity
pendulum vertically on a stable support. The gravity pendulum M remains in a vertical
position under the influence of Earth’s gravity. Assuming the original position of the pen-
dulum is shown in Figure 4a when the ground tilts by an angle ∆Φ, the support experiences
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a corresponding tilt of ∆Φ, causing the pendulum M to undergo a relative displacement
with the support as shown in Figure 4b. ∆δ represents the displacement between the
pendulum and the support caused by the ground tilt angle ∆Φ. The displacement of the
pendulum is directly proportional to the ground tilt angle, enabling the measurement of
small displacements to determine the tilt angle.
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The ICT tiltmeter utilizes a single-suspension wire pendulum, as shown in Figure 4c.
A capacitor pole plate is mounted on the front, back, left and right side of the pendulum.
The effective spacing between the two sets of electrode plates, when the pendulum is
removed, is fixed at 0.2 mm. The two sets of electrode plates share the pendulum as the
intermediate electrode plate of a differential capacitor, allowing simultaneous measurement
of the tilt in two orthogonal directions. The angle and direction of ground tilt are obtained
through vector synthesis.

2.2. Design of a Digital Circuit for an FPGA-Based Vertical Pendulum Tiltmeter

As shown in Figure 5, the FPGA control of high-speed ADC on the excitation signal
and bridge output signal sampling, and do phase shift, phase sensitive detector, low-pass
filtering and other digital signal processing, instead of the traditional analog circuitry,
reducing the interference introduced by the active components, improve the resolution of
the system. According to the different ground pulsation noise, the online configuration of
the filter constants of sampling frequency and phase shift angle are more flexible to adapt
to a variety of measurement needs, thus improving the efficiency of the use of equipment.
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2.2.1. FPGA High-Speed ADC Sampling and Digitization

High-speed and high-precision ADC sampling is essential for FPGA digital signal
processing. The ADC of this system needs to sample the two excitation signals and the
corresponding bridge unbalanced signal at high speed. The bridge unbalanced signal is
stored and sent by the embedded system after digital signal processing, such as phase-
sensitive detector and low-pass filtering through FPGA.

The system uses TI (TEXAS INSTRUMENTS) ADS1256 chip for analog-to-digital
conversion; ADS1256 is a low-noise 24-bit analog-to-digital converter (ADC), and the
maximum sampling rate of 30 Ksps. The ADC can communicate data with the FPGA
through an internal SPI interface with an output format of 24-bit complement and a transfer
rate of up to 1.5 Mbps [19,20].

The FPGA chip used in this system is Xilinx’s A7 series chip XC7A35TFGG484, which
has a six-input lookup table with 20 K, 250 user IO pins, 90 embedded hardware multipliers,
etc., which is rich in resources and meets the requirements of this system. Verilog HDL
programming is used to achieve the sampling of tilt data, FPGA signal processing, and
storage and transmission [21]. The system connection and ADC acquisition flowchart are
shown in Figures 6 and 7.
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The specific flow of the ADC acquisition part is as follows: after power-on, first
carry out the reset, initialization and other operations, then determine whether to start the
acquisition. If so, turn on the sampling enabler; when the/DRDY signal is low, it indicates
that the current acquisition is complete. Read out the data through the SPI interface and
carry out the digital signal processing, and after completing the processing 10 times, the
data is sent through the network port or the serial port, and the Baud rate of the serial port
adopted by the system is 115,200 bps [22,23].

2.2.2. FPGA Digital Signal Processing

The pendulum serves as the intermediate electrode plate of the differential capacitor
shared by the two bridges in the tilt measurement circuit, which uses two bridge circuits
with excitation sources that have different frequencies (frequency doubling relationship).
When the pendulum swings and produces displacement, the unbalanced signals of the
two bridges are superimposed on the pendulum and then output via the signal-following
circuit. The high-speed ADC samples the excitation signal and unbalanced bridge signal,
and then the FPGA performs digital signal processing, such as phase-sensitive detection
and low-pass filtering on the signals [24].

The digital signal processing depicted in Figure 8 mainly consists of five parts: the
unbalanced bridge signal (carrier), the reference signal (amplitude modulation wave),
reference signal phase shifting, phase-sensitive detection (PSD), and low-pass filtering
(LPF). Its core function is to convert the amplitude and polarity of the unbalanced bridge
signal into a DC voltage output through phase-sensitive detection [25].
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The phase-sensitive detector operation can be viewed as a multiplier, let the carrier
signal be x(t) = Vs(cosω0t + θ), Vs is the carrier amplitude. ω0 is the angular frequency,
i.e., the excitation signal frequency. The reference signal is obtained by homologous
excitation sampling and converted by the FPGA into a square wave with 50% duty cycle
and ±1 amplitude. In other words, r(t) = sign(cosω0t), and r(t) is expressed by the
Fourier series in Equation (8) [26]:

r(t) =
4
π ∑∞

n=1
(−1)n+1

2n− 1
cos[(2n− 1)ω0t] (8)

If there are interference signals of other frequencies in the carrier signal Vncos(ωnt + α),
the carrier signal can be written as Equation (9):

x(t) = Vscos(ω0t + θ) + Vncos(ωnt + α) (9)

After phase-sensitive detection, the amplitude modulation square wave is multiplied
by the carrier wave to obtain the detection signal u(t), as shown in Equation (10):

u(t) = x(t)r(t) = 2Vs
π ∑∞

n=1
(−1)n+1

2n−1 cos[(2n− 2)ω0t− θ] + 2Vs
π ∑∞

n=1
(−1)n+1

2n−1 cos(2nω0t + θ) +
2Vn
π ∑∞

n=1
(−1)n+1

2n−1 cos[ωnt + (2n− 1)ω0t + α] + 2Vn
π ∑∞

n=1
(−1)n+1

2n−1 cos[ωnt− (2n− 1)ω0t + α]
(10)
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The detection signal is then filtered by a low-pass filter to extract the carrier amplitude.
The cutoff frequency of the low-pass filter is ω, where ω << ω0. Thus, when n ≥ 2, all
terms in the above equation are AC components with frequencies greater than ω0, which
will be filtered out after passing through the low-pass filter.

Furthermore, the terms in Equation (10) for n ≥ 2 are filtered out, and only the terms
for n = 1 are retained. The detection signal can be expressed as Equation (11):

u(t) =
2Vs

π
cos θ +

2Vs

π
cos(2ω0t + θ) +

2Vn

π
cos[(ωn + ω0) t + α)] +

2Vn

π
cos[(ωn −ω0) t + α)] (11)

The second and third terms in the Equation will be filtered out after passing through
a low-pass filter, leaving only the first and fourth terms. Then, u(t) can be written as
Equation (12):

u(t) =
2Vs

π
cos θ +

2Vn

π
cos[(ωn −ω0) t + α)] (12)

It can be observed that the first term in Equation (12) represents the amplitude of
the carrier signal. When θ = 0, which means the amplitude modulation wave signal is in
phase with the carrier signal, the detection effect is optimal. The second term represents the
amplitude of the noise signal. Only when the noise frequency is very close to the carrier
frequency, i.e., |ωn −ω0| < ω, the noise be output together with the signal [21].

During actual operation, the FPGA performs phase shifting on the amplitude mod-
ulation wave through zero padding to match the phase of the carrier signal and achieve
phase alignment. Therefore, the phase-sensitive detection circuit can be considered as a
narrowband filter, allowing only the carrier with a frequency close to that of the modulation
wave to pass through. In this system, the excitation signals of the two measurement bridges
exhibit a frequency-doubling relationship. The unbalanced bridge signal superimposed on
the pendulum can be separated and extracted after the respective amplitude modulation
wave phase-sensitive detection and low-pass filtering without mutual interference.

2.2.3. FPGA FIR Digital Filtering and Downsampling

In addition to filtering out the carrier and extracting the carrier amplitude, the low-
pass filter also needs to remove environmental noise and comply with the sampling law to
ensure that the output sampling satisfies the Nyquist theorem. The system utilizes a finite
impulse response (FIR) digital filter for FPGA signal processing. The system function of
the M-order FIR filter is represented by Equation (13):

H(z) =
M−1

∑
k=0

h(k)z−k (13)

This can be expressed by a difference equation where x(n) is the input sequence and
y(n) is the output sequence, as shown in Equation (14):

y(n) =
M−1

∑
k=0

h(k)x(n− k) = h(0)x(n) + h(1)x(n− 1) + . . . + h(N − 1)x(n− (N − 1)) (14)

The system presented in this paper uses the Kaiser window function to design FIR
low-pass filters [27]. The filter order is set to 15019, with a passband cutoff frequency of
0.025 Hz and a stopband cutoff frequency of 0.05 Hz. After quantizing the generated filter
coefficients, a COE (Coefficient) file is generated and run on the FPGA using Xilinx Fir IP
Kernel. The cutoff frequency of 0.025 Hz is chosen to meet the requirements of geophysical
field tilt measurement and filter out ground microtremor noise.

For geophysical field deformation observation, a tilt measurement resolution of
0.2 mas (milliarcseconds) is required, and clear, solid tides are considered the standard
for data evaluation. Since the amplitude of ground microtremor noise is similar to that of
solid tides, filtering out ground microtremor noise is necessary to observe clear solid tides.
Figure 9a shows the ground tilt measurement curve with a 0.025 Hz filter cutoff frequency,
while Figure 9b shows the measurement curve with a 1 Hz filter cutoff frequency. It can be
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observed that during the same period of tiltmeter testing, the measured values with a 1
Hz filter cutoff frequency are mixed with excessive ground microtremor noise, resulting in
unclear solid tide observations. However, the measured values with a 0.025 Hz filter cutoff
frequency filter out most of the noise, enabling clear, solid tide observation with a high
signal-to-noise ratio.
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The frequency and amplitude of ground microtremor noise vary at different observa-
tion sites. Typically, low-pass filters have a cut-off frequency of 0.01–0.03 Hz, depending on
the measurement requirements. Compared to analog circuits, FPGA-based signal process-
ing allows for the flexible adjustment of the filter cutoff frequency, making it better suited to
the measurement requirements of different stations and enhancing observation efficiency.

2.2.4. FPGA Controlling the Excitation Source

In traditional single-ratio bridge measurement circuits, when the unbalanced bridge
signal is too large, even if the signal is limited after passing through the following or
amplifying circuit, the phase-sensitive detection curve remains in a half-wave shape since
the signal’s fundamental frequency does not change. The detection curve still extracts
the carrier amplitude after low-pass filtering even when it exceeds the limit, indicating
the unbalanced degree in the bridge circuit. In this system, the pendulum serves as the
intermediate electrode plate of a differential capacitor shared by two bridge circuits. The
unbalanced signals of the two bridge circuits are superimposed on the pendulum, and the
2-channel signals are differentiated by their frequencies. However, when the tilt of the
pendulum is too large, and the output of the signal-following circuit is limited, the original
signal amplitude cannot be extracted after phase-sensitive detection and low-pass filtering.

As shown in Figure 10, the power supply voltage of the signal-following circuit is
±3.3 V, meaning the output signal amplitude does not exceed ±3.3 V. The north–south tilt
sensing signal frequency is 1.56 KHz with a signal amplitude of 10 V, and the east–west
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tilt sensing signal frequency is 781 Hz with a signal amplitude of 1 V. The two signals are
synthesized, as shown in Figure 10a. After passing through the signal follower, the two-
channel signals are limited and combined into the signal shown in Figure 10b, resulting
in frequency aliasing of the signal. The superimposed signals are subjected to phase-
sensitive detection at their respective frequencies, and the detection signals are shown in
Figure 10d,e. It can be observed from the figures that the north–south and east–west signals,
after low-pass filtering, have a value of 0.112 V and no longer accurately characterize the
unbalanced degree of the corresponding bridge. Hence, when either or both signals are
limited in amplitude, the final output voltage no longer clearly represents the tilt direction
and magnitude. It may even exhibit a false zero phenomenon, where the output of the
signal approaches 0 V when the pendulum swing is too large, and the signal is limited.
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(b) Amplitude-limited signal. (c) Reference signal. (d) Phase-sensitive detector output signal when
the reference signal is 1560 Hz. (e) Phase-sensitive detector output signal when the reference signal is
3120 Hz.

In this system, an FPGA generates a sinusoidal signal through DDS (Direct Digital
Frequency Synthesis) as the excitation source, which then drives the ratio transformer via a
power amplifier. By utilizing FPGA software to control the excitation source, the FPGA
can halt the excitation of one channel in case of amplitude limiting, allowing the system to
work in a single-channel measurement mode. Alternatively, it can lower the amplitude of
the excitation signal to restore the unbalanced bridge signal within the non-limiting range,
facilitating balance adjustment at a large tilt angle more conveniently and efficiently.

2.3. Design of Tilt Adjustment Triangular Platform

The structure of a capacitive vertical pendulum determines its limited dynamic range.
In practical measurements, the pendulum requires a balance adjustment to position it at
the center of the electrode plate. To facilitate this, capacitive vertical pendulum measuring
instruments are typically installed on a tilt adjustment platform, allowing for a balance
adjustment within the range of ±5◦. In this system, the pendulum is mounted on a
programmable, adjustable triangular platform, as shown in Figure 11 [28]. The triangular
platform has a two-layer structure, with the lower bottom plate serving as a solid support
foot that is directly connected to the ground. The upper platform holds the pendulum. The
support screws of the upper platform are driven by a high-precision deceleration stepper
motor controlled by a program, enabling precise adjustment of the upper platform within
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±15◦. Considering the driving accuracy of the stepper motor of 1 um, the adjustment
platform can also serve as a calibration mechanism for the sensing unit, allowing for the
online calibration of wide-range linearity and sensitivity [14,29].
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To enhance the stability and impact resistance of the tiltmeter, a locking mechanism
is installed on the upper part of the pendulum to push and lock the pendulum body.
The entire pendulum body is also equipped with an outer sheath, and the pendulum
system and upper platform are provided with sealing covers to ensure water and moisture
resistance. This design allows the pendulum and balance adjustment motor to be used in
harsh environments. When the pendulum system is locked and equipped with external
packaging, it can meet the requirements of ordinary transportation and withstand a free-fall
impact of 2 m, demonstrating high reliability.

3. Ground Tilt Observation

The FPGA-based vertical pendulum tiltmeter was used for field observation at the
seismic station chamber in Sixian County, Anhui Province, in January 2023. The chamber
has a depth of 100 m and a relatively thick covering of over 30 m in the observation
area. The annual average temperature change inside the observation cave is within 1 ◦C,
providing a stable observation environment. The tiltmeter is installed in the side cave of the
chamber, 60 m away from the entrance. A dedicated seismic monitoring pier is prepared to
house monitoring equipment such as seismometers, gravimeters, and tiltmeters. The main
parameters of interest in the geophysical field observations are solid tides and a co-seismic
response. A solid tide refers to the phenomenon of periodic deformation of the solid earth
under the action of the gravitational tidal force of the sun and the moon. The period of a
tidal wave is about 23 h and 48 min, and the frequency is very low, approximating to 0 Hz.
After the installation of the tiltmeter, clear, solid earth tides are recorded. Figure 12 shows
the solid tide curve recorded by the tiltmeter, and the co-seismic response recorded in the
figure corresponds to a 7.1-magnitude earthquake that occurred in Papua New Guinea on
3 April 2023 (4.25◦ S, 143.1◦ E). Firstly, the moments of violent fluctuations of the curves are
consistent with the moments of earthquakes, indicating that the instrument can accurately
record the moments of earthquakes. Secondly, the clear solid tide, as well as the seismic
response, can be seen on the curve, indicating that the observation performance of the
instrument meets the requirements. The instrument has now been in stable operation for
ten months.
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Figure 12. Tiltmeter measurement curve (2–4 April 2023).

3.1. Solid Tide Prediction of Tiltmeter Observation Resolution

The tiltmeter designed in this paper has a resolution of 0.2 mas (milliarcseconds) [13];
it is difficult to calibrate the instrument due to the difficulty of obtaining an accurate
signal source in a laboratory setting. In geodetic and seismological research, the resolution
of the instrument is typically obtained by comparing the measured solid tides by the
tiltmeter with theoretical solid tides. Figure 13 shows the comparison of observed data
on 7 April 2023 with theoretical solid tides. The resolution of the measurement system is
calculated by comparing selected wave peaks or valleys. Following the testing method
of the Technical Requirements of Instruments in Network for Earthquake Monitoring
(DB/T31.2-2008) [30], the resolution of Sixian Station CH1 in the north–south direction is
found to be 0.18 mas (milliarcseconds), and the resolution of CH2 in the east–west direction
is 0.19 mas (milliarcseconds).
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3.2. Calibration of Linearity and Sensitivity

The pendulum of the tiltmeter is mounted on a triangular platform, and the balance
adjustment of the platform is driven by a stepper motor. The balance adjustment motor
provides precise angle adjustment, serving not only as a zero-setting component but also as
a calibration mechanism for the pendulum. During calibration, commands are sent through
the network to drive the zero-setting motor with a certain step size, allowing calibration of
the wide-range sensitivity, linearity, and scale value of the pendulum.

The following figure shows the complete record curve of the wide-range linearity
calibration process. During calibration, the motor takes 100 steps per stepping, which is
equivalent to a platform angle tilt of 1074 mas (milliarcseconds).

According to the calibration curve in Figure 14, the linearity of the tilt sensors in
channel 1 (north–south) and channel 2 (east–west) is 0.74% and 0.85%, respectively, meeting
the calibration requirement of geophysical field tilt linearity of better than 1%.
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4. Discussion and Conclusions

This paper introduces a high-precision component-type vertical pendulum tiltmeter
based on an FPGA. By using a plumb-bob-type single-suspension wire vertical pendulum,
it is capable of simultaneously measuring the ground tilt in two orthogonal components.
The pendulum body is equipped with a locking motor and integrated sealing protection
with the tilt adjustment platform, enhancing its reliability and impact resistance. The digital
signal processing technology of FPGAs is widely employed in the system’s measurement
circuits, replacing traditional analog circuits. This reduces hardware expenses and allows
flexible online compilation and setting of measurement parameters, enabling adaptation to
various measurement needs.

The field test at Sixian Station demonstrates that the introduced tiltmeter achieves a
ground tilt observation resolution better than 0.2 mas (milliarcseconds), allowing for clear
observation of solid tides and co-seismic responses. The harmonic analysis of the solid
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tide also meets the observation requirements of the geophysical field. During the test, the
tiltmeter exhibits high reliability, strong adaptability, ease of use, and rapid deployment
without the need for professional technical personnel. The system designed in this paper
can be well applied in tilt observation; therefore, it holds great significance for geophysical
field deformation observation.
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