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Abstract: Beamspace MIMO-NOMA is an effective way to improve spectral efficiency. This paper
focuses on a downlink non-orthogonal multiple access (NOMA) transmission scheme for a beamspace
multiple-input multiple-output (MIMO) system. To increase the sum rate, we jointly optimize precod-
ing and power allocation, which presents a non-convex problem. To solve this difficulty, we employ
an alternating algorithm to optimize the precoding and power allocation. Regarding the precoding
subproblem, we demonstrate that the original optimization problem can be transformed into an
unconstrained optimization problem. Drawing inspiration from fraction programming (FP), we
reconstruct the problem and derive a closed-form expression of the optimization variable. In addition,
we effectively reduce the complexity of precoding by utilizing Neumann series expansion (NSE). For
the power allocation subproblem, we adopt a dynamic power allocation scheme that considers both
the intra-beam power optimization and the inter-beam power optimization. Simulation results show
that the energy efficiency of the proposed beamspace MIMO-NOMA is significantly better than other
conventional schemes.

Keywords: beamspace MIMO-NOMA; sum rate; precoding; power allocation; FP

1. Introduction

With the coverage of mobile connections expanded, wireless communications systems
are facing an escalating demand for data traffic, which poses challenges in terms of spectral
efficiency and energy efficiency. Non-orthogonal multiple access (NOMA) technology
has emerged as a key solution for improving spectral efficiency and supporting massive
links, as it enables multiple users to share the same spectrum resource simultaneously.
The application of NOMA in conventional terrestrial communication systems, benefiting
from its superior spectral efficiency capability and capacity to accommodate massive con-
nectivity, has been thoroughly investigated in many aspects [1]. Additionally, beamspace
multiple-input multiple-output (beamspace MIMO) as another key technology also has
several advantages. It leverages the abundant spectrum resources in the millimeter wave
band, enabling terminal equipment to achieve high-rate data transmission. Furthermore,
by employing large-scale MIMO, beamspace MIMO forms directional beams with high
gain, effectively mitigating the challenge of substantial signal transmission path loss inher-
ent in millimeter wave communication. Consequently, beamspace MIMO is recognized
as a promising technology for future wireless communications [2]. Does this mean we
can combine the NOMA and beamspace MIMO technologies to effectively leverage their
advantages in the power and spatial domains, leading to improved spectral efficiency? The
answer is affirmative. Specifically, considering the characteristics of these two technologies,
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beamspace MIMO requires a large number of radio frequency (RF) chains, which leads
to high energy consumption and renders the all-digital structure unsuitable for direct
application [3]. Moreover, in beamspace MIMO, the number of supported users cannot
exceed the number of RF chains, thereby limiting the system’s capacity to accommodate
users. However, NOMA excels in increasing the number of system access users. Conse-
quently, the integration of NOMA with mmWave massive MIMO, known as beamspace
MIMO-NOMA, has emerged as a promising solution for significantly increasing the num-
ber of connections and further enhancing spectral efficiency. This approach has garnered
growing research interest [4].

1.1. Prior Works

Typically, the optimization of precoding and power allocation designs is considered a
means to improve the performance of beamspace MIMO-NOMA systems. These problems
have been investigated jointly or partially. However, the presence of inter-beam and
intra-beam interference makes these problems non-convex and challenging to solve [5].
Fortunately, researchers have developed efficient algorithms to tackle these challenges.

Some works have focused on separately designing precoding or power allocation
to improve performance. In [6], the authors propose a ZF precoding scheme to mitigate
interference between users and employ the Karush–Kuhn–Tucker (KKT) conditions to
investigate the power allocation problem for maximizing the sum rate. Furthermore, [7]
explores energy efficiency maximization through power allocation and presents a two-layer
iterative algorithm to tackle the non-convex optimization problem. The outer layer converts
the original fractional objective function by using the Dinkelbach method, while the inner
layer utilizes alternating optimization to solve the transformed problem. In [8], the authors
introduce a low-complexity iterative algorithm called mean square error-based dynamic
power allocation algorithm (MSE-DPA), which achieves near-perfect performance. Ref. [9]
proposes a criterion based on correlation for user pairing to reduce inter-user interference,
with ZF precoding applied to the paired users. The results demonstrate that the proposed
scheme achieves higher spectral efficiency compared to the conventional scheme. In [10],
the main objective is to design a low-complexity hybrid precoder (HP), where the authors
propose a symmetric successive over-relaxation (SSOR) algorithm combined with complex
regularized zero-forcing (CRZF) linear precoding.

In addition, a significant focus of the work is to design a joint optimization scheme for
precoding and power allocation to enhance system performance. In [11], the authors adopt
a ZF-based precoding scheme to mitigate inter-beam interference and propose a dynamic
power allocation method based on minimum mean square error (MMSE) to maximize
the achievable sum rate in beamspace MIMO-NOMA systems. Ref. [12] addresses the
limitations of complicated successive interference cancellation (SIC) that were disregarded
in [11]. Based on the ZF beamforming technique, the power allocation optimization problem
is represented as a fractional programming (FP) problem, which was transformed into a
convex optimization problem using sequential convex approximation (SCA) and second-
order cone (SOC) transformation. In [13], the authors formulate a joint hybrid beamforming
and power allocation problem to maximize the sum rate. They employ the approximate
ZF method to design the digital beamforming for minimizing inter-group interference
and solve the analog beamforming problem with a constant-modulus constraint using
a proposed boundary-compressed particle swarm optimization algorithm. In [14], the
authors design ZF precoding matrices and evaluate power allocation coefficients based on
optimal spectral efficiency to mitigate intra-beam interference. Additionally, they derive a
tight closed-form formula for optimal spectral efficiency using KKT analysis. In [15], from
the perspective of spectral efficiency, the authors propose a joint optimization framework
and employ the quadratic transformation (QT) method to convert the non-convex power
allocation problem into a convex problem. They also design an iterative approach to obtain
optimal power allocation and digital beamforming. In [16], the authors propose a hybrid
precoder that combines user channel alignment and the ZF algorithm to enhance the SINR.
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Furthermore, they address the non-convex optimization problem by transforming it into a
convex optimization problem for inter-cluster power allocation, which can be solved by
using the KKT conditions.

1.2. Motivations and Contributions

While the aforementioned research contributions have established a strong foundation
for beamspace MIMO-NOMA, further investigation and improvements are still necessary
to address practical considerations. Firstly, there is scope for enhancing the optimization of
key performance indicators that impact spectral efficiency through various methodologies.
Secondly, there is a need for research to focus on reducing computational complexity while
improving spectral efficiency simultaneously, which remains an open area of exploration.
These observations have inspired our primary research objectives in this study. In this
work, our main goal is to maximize the sum rate of beamspace MIMO-NOMA in downlink
communications and propose an optimal design scheme for joint precoding and power
allocation, building upon the previous research. Against this backdrop, we emphasize the
following four aspects that constitute the contributions of our paper:

• Firstly, we employ block optimization to optimize the joint problem of precoding and
power allocation in beamspace MIMO-NOMA systems. In the precoding optimization
part, we demonstrated that the original constrained problem can be transformed into
an unconstrained problem. Moreover, we elucidated the quantitative relationship
between the solutions of the original problem and the equivalent unconstrained
problem. For the power allocation part, we adopted a dynamic power allocation
method based on a joint power optimization problem, taking into account power
optimization within and between beams.

• Secondly, we devised a precoding scheme based on FP to decouple the optimization
variables, effectively transforming the unconstrained problem into three equivalent sub-
problems. Subsequently, we derived closed expressions for the optimization variables.

• Thirdly, as the number of antennas at the BS and the number of users accessing the
system increase, the hardware and signal processing complexity also escalates. Since
the precoding optimization algorithm involves complex matrix inversion operations,
its calculation complexity is O

(
NRF

3), which grows cubically with the increase in the
number of RF connections. To mitigate this complexity, we utilized the Neumann
series expansion (NSE) method to approximate the inverse of the precise matrix and
expand the lower-order terms, thereby reducing the complexity of the matrix inversion
operation to O

(
NRF

2).
• Finally, we validated the performance of the proposed scheme through simulation.

The results demonstrated that the algorithm significantly improves spectral efficiency.
Furthermore, the simulation results confirmed that the proposed precoding and power
allocation scheme outperforms the benchmark methods.

1.3. Organization and Notations

The remainder of the paper is organized as follows. Section 2 outlines the system model
of beamspace MIMO-NOMA. Based on this model, Section 3 formulates the maximum
sum rate problem, and an introduction to the proposed algorithm is provided. Section 4
presents the simulation results to evaluate the performance. Finally, Section 5 concludes
the paper.

Notation: Denote C as the set of complex numbers, and Re{•} as the real part. We use
the superscript to denote the Hermitian transpose of a matrix and overline the complex
conjugate. The bold lower-case letter denotes a vector; the bold upper-case letter denotes a
matrix; the calligraphic upper-case letter denotes a set. In denotes the identity matrix of
dimension n.(•)T , (•)H , (•)−1 and ‖·‖F denote transpose, Hermitian transpose, inversion,
and Frobenius norm operations, respectively.
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2. System Model and Problem Formulation

In this section, we first review the beamspace MIMO system model, followed by a
detailed description of the beamspace MIMO-NOMA system model.

2.1. System Model of Beamspace MIMO

As illustrated in Figure 1, the system depicted represents a single-cell downlink
mmWave MIMO communication system. The BS is equipped with N antennas and NRF RF
chains, serving K randomly distributed single-antenna users simultaneously [17]. Employ-
ing the usual uniform linear array (ULA) structure, utilizing a well-designed lens antenna
array at the BS. The received signal vector y = [y1, y2, · · · , yK]

T is represented as:

y = HHWPs + n, (1)

where s = [s1, s2, · · · , sK]
T ∈ CK×1 represents the transmitted signal vector for all K users

satisfied with E
(
ssH) = IK, P = diag(p1, p2, · · · , pK) is the diagonal power allocation matrix,

W = [w1, w2, · · · , wK] ∈ CN×K is the precoding matrix, and H = [h1, h2, · · · , hK] ∈ CN×K is
the Rayleigh fading channel matrix, where hk ∈ CN×1 denotes the channel vector between
the BS and the kth user. In addition, n is the noise vector that follows the distribution
CN

(
0, σ2 IK

)
. We consider the widely used Saleh–Valenzuela channel model for mmWave

communications, hk can be represented as

hk = βk,0a(θk,0) +
L

∑
l=1

βk,la(θk,l), (2)

where βk,0 denotes the LoS complex path gain, while a(θk,0) represents the array steering
vector for the LoS path, similarly, βk,l and a(θk,l) denote the complex gain and steering vec-
tor for the lth NLoS path, respectively. Furthermore, L denotes the number of NLoS paths.
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For the typical ULA, the expression of a(ϕ) is can be expressed as follows [18]:

a(θ) =
1√
N

[
e−j2πθm

]
m∈J(N)

, (3)

where J(N) = {i− (N − 1)/2, i = 0, 1, · · · , N − 1} is a symmetric set of indices centered
around zero. The spatial direction of the channel is defined as θ = d

λ sin(ϕ), λ represents
the wavelength, d = λ

2 denotes the antenna spacing, and ϕ denotes the physical direction of
the corresponding path satisfying −π

2 ≤ θ ≤ π
2 .The lens antenna array serves as a discrete

Fourier transformation matrix U, defined as

U =
[
a
(
θ1
)
, a
(
θ2
)
, · · · , a

(
θN
)]H

, (4)
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where θn = 1
N

(
n− N+1

2

)
for n = 1, 2, · · · , N are the predefined spatial directions.

Then, the received signal vector y in the beamspace MIMO systems is given by

y = HHUHWPs + n = HHWPs + n, (5)

where H = UH is the beamspace channel matrix. We employ the classic maximum-
magnitude-based beam selection method to choose a subset of the N orthogonal beams to
serve all K users without obvious performance loss [19]. Consequently, the number of RF
chains is reduced from N to NRF. Thus, the received signal can be written as

y = HH
r WrPs + n, (6)

where Hr = H(m, :), m ∈ M is the dimension-reduced beamspace channel matrix with
size |M| × K, and M is the index set of selected beams. It is important to note that in
this system, one RF chain generates one beam, resulting in the number of selected beams
|M| being equal to the number of RF chains NRF [11]. In addition, the dimension-reduced
digital precoding matrix Wr, has a size of |M| × K. Since Wr has a smaller row dimension
compared to the original precoding matrix W, the number of required RF chains can be
significantly reduced [20].

Notwithstanding, reducing the number of RF chains also presents a challenge of lim-
ited connections. To overcome this fundamental limit, a novel transmission scheme known
as beamspace MIMO-NOMA, which combines the concept of NOMA with beamspace
MIMO, has been proposed. By incorporating NOMA into beamspace MIMO systems, both
spectral efficiency and connection density can be further enhanced [6].

2.2. System Model of Beamspace MIMO-NOMA

As shown in Figure 2, this is a typical beamspace MIMO-NOMA wireless commu-
nication system. We consider that there are NRF groups assigned to provide service, and
we denote the set of users Sm served by the mth beam with Sm ∩ Sn = ∅ for m 6= n and
NRF
∑

m=1
|Sm| = K. The received signal ŷm,n of the nth user in the mth beam can be expressed

as follows:

ŷm,n = hH
m,nwm

√
pm,nsm,n︸ ︷︷ ︸

desired signal

+

(
n−1

∑
k=1

hH
m,nwm

√
pm,ksm,k +

|Sm |

∑
k=n+1

hH
m,nwm

√
pm,ksm,k

)
︸ ︷︷ ︸

intra−beam inter f erences

+
NRF

∑
l 6=m

|Sl |

∑
k=1

hH
m,nwl

√
pl,ksl,k︸ ︷︷ ︸

inter−beam inter f erences

+ vm,n︸︷︷︸
noise

, (7)

where sm,n is the transmitted signal for the nth user in the mth beam with normalized
power, and pm,n is the corresponding transmitted power, wm = Wr(:, m) represents the mth
beam digital precoding vector, and vm,n ∼ CN

(
0, σ2) refers to the noise. Based on the

principle of NOMA, intra-beam interference can be mitigated by utilizing SIC. Supposing

that ‖hm,1‖2 ≥ ‖hm,2‖2 ≥ · · · ≥
∥∥∥hm,|Sm |

∥∥∥2
for m = 1, 2, · · · , NRF, within the same beam,

the ith user can sequentially detect the jth user (for all j > i) and remove the detected
signals from its received signals [21]. In the mth beam, after employing SIC to decode the
nth user’s signal, the remaining received signal can be expressed as follows:

ym,n = hH
m,nwm

√
pm,nsm,n︸ ︷︷ ︸

desired signal

+
n−1

∑
k=1

hH
m,nwm

√
pm,ksm,k︸ ︷︷ ︸

intra−beam inter f erences

+
NRF

∑
l 6=m

|Sl |

∑
k=1

hH
m,nwl

√
pl,ksl,k︸ ︷︷ ︸

inter−beam inter f erences

+ vm,n︸︷︷︸
noise

. (8)
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Therefore, the signal-to-interference-plus-noise ratio (SINR) at the nth user in the mth
beam can be expressed as follows:

γm,n =

∥∥hH
m,nwm

∥∥2
2 pm,n

ξm,n
, (9)

where

ξm,n =
n−1

∑
k=1

∥∥∥hH
m,nwm

∥∥∥2

2
pm,k +

NRF

∑
l 6=m

|Sl |

∑
k=1

∥∥∥hH
m,nwl

∥∥∥2

2
pl,k + σ2. (10)

Hence, the corresponding achievable rate can be expressed as follows:

Rm,n = log2(1 + γm,n). (11)

Consequently, the overall achievable sum rate of the beamspace MIMO-NOMA
scheme is:

Rsum =
NRF

∑
m=1

|Sm |

∑
n=1

Rm,n, (12)

Indeed, precoding optimization helps mitigate inter-beam interference, but intra-beam
interference endures within beamspace MIMO-NOMA systems. Power allocation effec-
tively mitigates this inter-beam interference, thus enhancing overall system performance.
It is noteworthy that expressions (9)–(11) illustrate the substantial influence of power
allocation parameters {pm,n} and precoding vectors {wm} on maximizing the sum rate.
Thus, the system performance can be further enhanced through the meticulous design
of precoding and power allocation strategies. Jointly optimizing precoding and power
allocation is pivotal for maximizing overall system performance. While this may add
complexity, thoughtful design, and analysis allow for performance improvements without
imposing significantly higher computational demands. In the following section, we will
explore these ideas in greater detail.

3. Alternating Optimization of Beam-Specific Digital Precoding and Power Allocation

In this section, we begin by formulating the optimization problem. Next, we present an
alternating optimization method to obtain the solution for beam-specific digital precoding.
Finally, we maximize the achievable sum rate by solving the joint power optimization
problem using a dynamic power allocation scheme.
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3.1. Problem Formulation

Our objective is to maximize the achievable sum rate problem by jointly optimizing
the beam-specific digital precoding and power allocation, while adhering to the maxi-
mum transmit power constraint of the BS. The optimization problem can be formulated
as follows:

P1 : max
{pm,n}{wm}

Rsum

s.t.C1 : pm,n ≥ 0, ∀m, n,

C2 :
NRF

∑
m=1

|Sm |

∑
n=1

pm,n‖wm‖2 ≤ Pmax.

(13)

Obviously, three problems need to be addressed to optimize P1. As shown in (9),
the presence of both intra-beam interference and inter-beam interference in the system
results in the optimization variable {pm,n} and {wm} appears in both the nomination and
denominator of γm,n. Consequently, the problem becomes a non-convex optimization
problem that is difficult to solve directly. Furthermore, it is highly nonlinear. Additionally,
the optimization of precoding {wm} is performed at the beam level, while the optimization
of power allocation {pm,n} is carried out at the user level. This implies that both aspects
are difficult to optimize simultaneously.

To tackle the complexity of the original problem P1, we decompose it into two sub-
problems: P̃beam and Ppower for optimization. For the sub-problem P̃beam, we first convert
the constrained optimization problem into an unconstrained optimization problem. Then,
we employ the FP algorithm to handle the NP-hard problem, leading to the derivation
of a closed expression for precoding W. Additionally, we leverage the NSE to reduce the
complexity of the precoding process. As for the sub-problem of power allocation, we
utilize a dynamic power allocation scheme to obtain a closed-form expression for the power
distribution, ensuring lower complexity.

3.2. The Proposed Beam-Specific Digital Precoding Optimization

In this subsection, we focus on optimizing the beam-specific digital precoding vectors
{wm} for a given set of power allocation parameters {pm,n}. To accomplish this, we trans-
form the non-convex precoding optimization problem into an unconstrained optimization
problem. To be specific, the precoding problem can be formulated as follows:

P̃beam : max
{wm}

Rsum

s.t.C1 :
NRF

∑
m=1

|Sm |

∑
n=1

pm,n‖wm‖2 ≤ Pmax.

(14)

Specifically, inspired by [22], we establish the following definition and proposition.

Definition 1. (Trivial Stationary Point): If a point X satisfying HX = 0, which results in a zero-sum
rate, we say that it is a trivial stationary point of the original problemP1.

Proposition 1. Any nontrivial stationary point of problem P̃beam must satisfy the constraint C1
with equality.

Proof. See Appendix A. �
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According to Proposition 1, it can be inferred that:

NRF

∑
x=1

|Sx |

∑
y=1

px,y‖wx‖2

Pmax
= 1. (15)

Hence, the problem P̃beam can be transformed into the following unconstrained form:

P beam : max
{wm}

NRF

∑
m=1

|Sm |

∑
n=1

log2


1 +

∥∥hH
m,nwm

∥∥2
2 pm,n

n−1

∑
k=1

∥∥hH
m,nwm

∥∥2
2 pm,k +

NRF

∑
l 6=m

|Sl |

∑
k=1

∥∥hH
m,nwl

∥∥2
2 pl,k +

NRF

∑
x=1

|Sx |

∑
y=1

px,y‖wx‖2

Pmax
σ2


. (16)

We can express the objective function as follows:

fbeam(w) =
NRF

∑
m=1

|Sm |

∑
n=1

log2

(
1 +

∥∥hH
m,nwm

∥∥2
2 pm,n

ξ̃m,n

)
, (17)

where

ξ̃m,n =
n−1

∑
k=1

∥∥∥hH
m,nwm

∥∥∥2

2
pm,k +

NRF

∑
l 6=m

|Sl |

∑
k=1

∥∥∥hH
m,nwl

∥∥∥2

2
pl,k +

NRF

∑
x=1

|Sx |

∑
y=1

px,y‖wx‖2

Pmax
σ2. (18)

The following proposition establishes the relationship between P̃beam and P beam.

Proposition 2. The following relationship exists between the optimal solution w̃o of the problem
P̃beam and the optimal solution wo of the new unconstrained optimization problem P beam.

w̃o
m =

√√√√ Pmax

∑NRF
m=1∑

|Sm |
n=1 pm,n‖wo

m‖
2

wo
m. (19)

Proof. See Appendix B.�

This implies that if we find solution wo, then solution w̃o can be obtained according to
Proposition 2.

Obviously, the objective function fbeam(w) remains non-convex, making it difficult to
solve in polynomial time. To address this, we employ the Lagrangian dual transform to
reframe the unconstrained problem P beam, as demonstrated below [23].

P beam : min
{wm}{um,n}

f LD
beam(w, u),

s.t.C1 : um,n ∈ R, ∀m,

(20)
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where u refers to a set of auxiliary variables {um,n}, and the objective function of problem
P beam is formulated as follows:

f LD
beam(w, u) =

NRF

∑
m=1

|Sm |

∑
n=1
−
(

log2(1 + um,n)− um,n +
(1 + um,n)

∥∥hH
m,nwm

∥∥2
2 pm,n∥∥hH

m,nwm
∥∥2

2 pm,n + ξ̃m,n

)
. (21)

When wm is held fixed, the optimal um,n can be obtained by solving ∂ f LD
beam(w,u)
∂um,n

= 0, i.e.,

uo
m,n =

∥∥hH
m,nwm

∥∥2
2 pm,n

ξ̃m,n
. (22)

Now, we incorporate uo
m,n into (21) and obtain

f LD
beam(w, u) =

NRF

∑
m=1

|Sm |

∑
n=1
−
[

const(u) +
(1 + um,n)

∥∥hH
m,nwm

∥∥2
2 pm,n∥∥hH

m,nwm
∥∥2

2 pm,n + ξ̃m,n

]
, (23)

where const(u) = log2(1 + um,n)− um,n is a constant term. Applying the multidimensional
quadratic transform further transforms (23) and leads to the following expression:

f MQ
beam(w, u, v) =

NRF

∑
m=1

|Sm |

∑
n=1

[
−const(u)− 2

√
(1 + um,n)pm,nRe

{
hH

m,nwmv∗m,n

}
+ |vm,n|2

(∥∥∥hH
m,nwm

∥∥∥2

2
pm,n + ξ̃m,n

)]
. (24)

where v is the collection {vm,n}. With um,n fixed, the optimal vm,n can also be determined

by setting ∂ f MQ
beam(w,u,v)

∂vm,n
= 0, and the optimal value vo

m,n can be expressed as follows:

vo
m,n =

√
(1 + um,n)pm,nhH

m,nwm∥∥hH
m,nwm

∥∥2
2 pm,n + ξ̃m,n

. (25)

Likewise, with the other variables fixed, the optimal wm satisfies the expression
∂ f MQ

beam(w,u,v)
∂wm

= 0, i.e.,

wo
m =

|Sm |

∑
n=1
|vm,n|2hm,nhH

m,n

n

∑
k=1

pm,k +
NRF

∑
l 6=m

|Sl |

∑
n=1

∥∥vl,n
∥∥2

2

|Sm |

∑
k=1

hl,nhH
l,n pm,k +

NRF

∑
x=1

|Sx |

∑
y=1

∣∣vx,y
∣∣2 ∑|Sm |

i=1 pm,i
Pmax

σ2 INRF

−1

·
|Sm |

∑
n=1

√
(1 + um,n)pm,nhm,nvm,n.

(26)

The proposed algorithm is summarized in Algorithm 1. Unfortunately, although
NRF is much smaller than K, the matrix inversion in the expression of wo

m still remains
high-dimensional, resulting in computational complexity of O

(
NRF

3) in each iteration,
which may result in significant processing delays. To address this issue, the NSE has been
explored as an alternative for approximating matrix inversion [24], we leverage the NSE to
simplify the matrix inversion of wo

m as follows.
Letting

A =
|Sm |

∑
n=1
|vm,n|2hm,nhH

m,n

n

∑
k=1

pm,k +
NRF

∑
l 6=m

|Sl |

∑
n=1

∥∥vl,n
∥∥2

2

|Sm |

∑
k=1

hl,nhH
l,n pm,k +

NRF

∑
x=1

|Sx |

∑
y=1

∣∣vx,y
∣∣2 ∑|Sm |

i=1 pm,i

Pmax
σ2 INRF , (27)
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we can observe that the matrix A exhibits diagonal dominance. In such cases, the inversion
of A can be equivalently expressed as follows [25]:

A−1 =
∞

∑
n=0

(
P−1(P− A)

)n
P−1. (28)

By decomposing the matrix A as A = D + E, where D is a diagonal matrix consisting
of the main diagonal elements of A, and E is a hollow matrix consisting of the remaining
elements. Replace P in (28) with D and rewrite it as follows

A−1 =
∞

∑
n=0

(
D−1(D− A)

)n
D−1 =

∞

∑
n=0

(
−D−1E

)n
D−1. (29)

Due to the high complexity of the full NSE algorithm, the truncated NSE, which aims
to retain only the first k orders (k + 1 terms) of the Neumann series, is a more commonly
used approach. The specific formula can be expressed as follows:

A−1 ≈ A−1
k =

k

∑
n=0

(
−D−1E

)n
D−1. (30)

It should be noted that as the unfolding order increases (denoted as ‘k > 1’), the
computational complexity of the proposed NSE-based algorithm may exceed the complexity
of O

(
NRF

3). Therefore, to strike a balance between closely approximating the original
precoding while reducing complexity, we choose k = 1, then A−1 ≈ D−1 − D−1ED−1, we
have the following expression [26]

wo
m ≈

(
D−1 − D−1ED−1

) |Sm |

∑
n=1

√
(1 + um,n)pm,nhm,nvm,n. (31)

Based on this estimation, the NSE-level approximation algorithm can reduce the
computational complexity from O

(
NRF

3) to O
(

NRF
2). By combining the aforementioned

updates, Algorithm 1 provides a detailed description of the proposed precoding optimiza-
tion algorithm.

Algorithm 1 Proposed Precoding Framework.

Input:
Beamspace channel vectors: hm,n for ∀m, n;
Power allocation parameters: pm,n for ∀m, n;
Noise variance: σ2;
Maximum iteration times: Tmax.
Output:
Optimal precoding vectors: wo

m for ∀m;
1. t = 0.
2. while t < Tmax do
3. Obtain the optimal

{
u(t)

m,n

}
according to (22);

4. Obtain the optimal
{

v(t)m,n

}
according to (25);

5. Obtain the optimal
{

w(t)
m

}
according to (31);

6. t = t + 1
7. end while
8. return wo

m =
√

αw(t)
m for ∀m.

In Algorithm 1, it can be demonstrated that the computational complexity is primarily
determined by line 5. Within each iteration, the complexity of obtaining the optimal
values

{
u(t)

m,n

}
in (22) and

{
v(t)m,n

}
in (25) is linear in the number of RF chains, i.e., O(NRF).
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Additionally, the complexity of finding the optimal value
{

w(t)
m

}
in (31) isO

(
NRF

2), due to
the utilization of NSE. Consequently, the computational complexity is significantly lower
than the complexity of O

(
NRF

3) stated in (26).

3.3. The Adopted Optimization Power Allocation

The initial optimization problem P1 can be transformed into the following problem
when {wm} is fixed.

Ppower : max
{pm,n}

Rsum

s.t.C1 : pm,n ≥ 0, ∀m, n,

C2 :
NRF

∑
m=1

|Sm |

∑
n=1

pm,n‖wm‖2 ≤ Pmax.

(32)

Note that the problem remains challenging. To address this difficulty, we introduce
Lemma 1 to simplify problem Ppower.

Lemma 1. Let f (a) = − ab
ln 2 + log2 a + 1

ln 2 and a ∈ R1×1 be a positive scalar, we have

− log2 b = max
a>0

f (a), (33)

where the optimal solution of a is ao = 1
b .

Proof. Since f (a) is a convex function, and the optimal solution of f (a) can be obtained by
setting ∂ f (a)

∂a = 0, we can derive that

− b
ln 2

+
1

a ln 2
= 0⇒ a =

1
b

, (34)

where the maximum value of f (a) is − log2 b. �

Moreover, if we use the minimum mean square error (MMSE) to estimate sm,n, then
have the following expression:

em,n = E
{
|sm,n − cm,nym,n|2

}
, (35)

where cm,n ∈ C1×1 denotes the channel equalization coefficient, ym,n is defined previously
in (8). Substituting into (35), we obtain:

em,n =
∣∣∣1− cm,n

√
pm,nhH

m,nwm

∣∣∣2 + |cm,n|2ξm,n. (36)

According to [11], the optimal equalization coefficient cm,n can be obtained by the
following formula:

cm,n = argmin
cm,n

em,n, (37)

and cm,n can be calculated by ∂em,n
∂cm,n

= 0, then we have

co
m,n =

(√
pm,nhH

m,nwm

)∗(∥∥∥hH
m,nwm

∥∥∥2

2
pm,n + ξm,n

)−1
. (38)

Substituting (38) into (36), we can obtain the optimal MMSE expression as follows:

eo
m,n = 1− pm,n

∥∥∥hH
m,nwm

∥∥∥2

2

(∥∥∥hH
m,nwm

∥∥∥2

2
pm,n + ξm,n

)−1
. (39)
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According to the extension of the Sherman-Morrison-Woodbury formula [27],

(A + BCD)−1 = A−1 − A−1B
(

I + CDA−1B
)−1

CDA−1. (40)

Thus, (1 + γm,n)
−1 can be reformulated as

(1 + γm,n)
−1 = 1− pm,n

∥∥∥hH
m,nwm

∥∥∥2

2

(∥∥∥hH
m,nwm

∥∥∥2

2
pm,n + ξm,n

)−1
. (41)

We observe that the expression (41) has the same form as the MMSE expression (39).
i.e., we have

(1 + γm,n)
−1 = min

cm,n
em,n = (em,n)

o (42)

Using Lemma 1, we can equivalently rewrite Ppower as

P̂power : max
{pm,n}

NRF

∑
m=1

|Sm |

∑
n=1

max
{cm,n}

max
{am,n}

(
− am,nem,n

ln 2 + log2 am,n +
1

ln 2

)
s.t.C1 : pm,n ≥ 0, ∀m, n,

C2 :
NRF

∑
m=1

|Sm |

∑
n=1

pm,n‖wm‖2 ≤ Pmax.

(43)

where am,n > 0 is an introduced slack variable. We propose to iteratively optimize {pm,n},
{cm,n} and {am,n} by using the alternating optimization algorithm. The optimal solution
can be obtained by:

ao
m,n =

1
eo

m,n
. (44)

After obtaining the optimal values co
m,n and ao

m,n in the iteration, the optimal value
po

m,n can be obtained by solving the following problem:

P̃power : max
{pm,n}

NRF

∑
m=1

|Sm |

∑
n=1

am,nem,n

s.t.C1 : pm,n ≥ 0, ∀m, n,

C2 :
NRF

∑
m=1

|Sm |

∑
n=1

pm,n‖wm‖2 ≤ Pmax.

(45)

We observe that P̃power is a convex optimization problem, which can be solved by
using the following Lagrange function:

L(p, λ) =
NRF

∑
m=1

|Sm |

∑
n=1

am,n

(∣∣∣1− cm,n
√

pm,nhH
m,nwm

∣∣∣2 + |cm,n|2ξm,n

)
+ λ

(
NRF

∑
m=1

|Sm |

∑
n=1

pm,n‖wm‖2 − Pmax

)
(46)

where λ ≥ 0. Then, the Karush–Kuhn–Tucker (KKT) condition of problem P̃power can be
obtained as follows.

∂L(p, λ)

∂pm,n
= − am,n√

pm,n
Re
{

cm,nhH
m,nwm

}
+
|Sm |

∑
y=n

am,y
∣∣cm,y

∣∣2∥∥∥hH
m,ywm

∥∥∥2

2
+

NRF

∑
x 6=m

|Sx |

∑
k=1

ax,k
∣∣cx,k

∣∣2∥∥∥hH
x,kwm

∥∥∥2

2
+ λ‖wm‖2 = 0, (47)

λ

(
NRF

∑
m=1

|Sm |

∑
n=1

pm,n‖wm‖2 − Pmax

)
= 0. (48)
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Finally, the optimal solution po
m,n from (45) can be found as follows:

po
m,n =

 am,,nRe
{

cm,nhH
m,nwm

}
∑|Sm |

y=nam,y
∣∣cm,y

∣∣2∥∥∥hH
m,ywm

∥∥∥2

2
+ ∑NRF

x 6=m∑|Sx |
k=1ax,k

∣∣cx,k
∣∣2∥∥∥hH

x,kwm

∥∥∥2

2
+ λ‖wm‖2


2

. (49)

We can see that the values of
{

co
m,n
}

,
{

ao
m,n
}

and
{

po
m,n
}

obtained in each iteration
are closed optimal solutions because (37), (33) and (45) are all convex after a sequence of
transformations. The iterative update of

{
co

m,n
}

,
{

ao
m,n
}

and
{

po
m,n
}

will only increase or
maintain the objective function in (43). A monotonically growing sequence of objective
function values in (43) can be obtained through iterative updating. However, it has an
upper bound because of the transmission power restriction. Therefore, the proposed
iterative optimization algorithm for power allocation will converge to a stationary solution
of problem P̂power. The power allocation optimization technique is described in detail in
Algorithm 2. We summarize the proposed algorithm in Algorithm 3.

Algorithm 2 Proposed Power Allocation Framework.

Input:
Beamspace channel vectors: hm,n for ∀m, n;
Precoding vectors: wm for ∀m;
Noise variance: σ2;
Maximum iteration times: Tmax.
Output:
Optimal power allocation vectors: po

m,n for ∀m, n;
1. t = 0.
2. while t < Tmax do
3. Obtain the optimal

{
c(t)m,n

}
according to (38);

4. Obtain the optimal
{

a(t)m,n

}
according to (44);

5. Obtain the optimal
{

p(t)m,n

}
according to (49);

6. t = t + 1
7. end while
8. return po

m,n = p(t)m,n for ∀m, n.

Algorithm 3 Proposed Joint Precoding and Power Allocation Framework.

Input:
Maximum iteration times: Tmax.
Initialize: Power allocation p0

m,n for ∀m, n
Output:
Optimal power allocation vectors and precoding vectors: wo

m, po
m,n for ∀m, n;

1. t = 0.
2. while t < Tmax do
3. Find the optimal beamfoming vectors w(t)

m
given p(t−1)

m,n by Algorithm 1;

4. Find the optimal allocation vectors p(t)m,n given w(t)
m

by Algorithm 2;
5. t = t + 1
6. end while
7. return wo

m =
√

αw(t)
m , po

m,n = p(t)m,n for ∀m, n.

The computational complexity of the proposed algorithm mainly arises from the
iteration part. We observe that in each iteration, the complexity of obtaining the op-
timal values

{
co

m,n
}

in (38) and
{

ao
m,n
}

in (44) is linear with the number of users, i.e.,
O(K). λ in (48) can be obtained by using the Newton or bisection methods, both of
which have a complexity of O

(
K2 log2 δ

)
, where δ represents the desired accuracy. The

overall complexity of the suggested power allocation algorithm can be calculated to be
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O
(
TmaxK2 log2 δ

)
, where Tmax is the maximum number of repetitions. Therefore, the com-

plexity of the proposed joint precoding design and power allocation optimization algorithm
is O

(
TmaxK2 log2 δ + Tmax NRF

3). While the computational complexity of the algorithm
without NSE processing is O

(
TmaxK2 log2 δ + Tmax NRF

4).
4. Simulation Result

The performance of the proposed joint optimization algorithm for the mmWave beamspace
MIMO-NOMA scheme is evaluated by using numerical simulations in this section.

4.1. Simulation Setup

In this paper, we consider a typical single-cell downlink mmWave massive MIMO
system. The BS is equipped with a ULA of N = 256 transmit antennas that communicate
with K users simultaneously. The system bandwidth is assumed to be 1 Hz, and the total
transmit power is set to P = 32mW (15 dBm) [11]. For all users’ channels, we assume L = 1
LoS component and L = 2 NLoS components, where β

(0)
k ∼ CN (0, 1), β

(l)
k ∼ CN

(
0, 10−1)

for 1 ≤ l ≤ L, θ
(0)
k and θ

(l)
k follows a uniform distribution within

[
− 1

2 , 1
2

]
for 1 ≤ l ≤ L.

The SNR is set as P
σ2 , the maximum number of iterations Tmax = 50.

We consider the following four typical mmWave massive MIMO solutions for com-
parison, and we aim to use the same system configuration in these systems to conduct a
fair comparison: “traditional fully digital MIMO” (FDM), “traditional beamspace MIMO”
(BM), “traditional MIMO-OMA”(MO), in particular, we compared our approach with
the reference [11], which is a particularly classic and highly effective method based on a
“beamspace MIMO-NOMA” (BMN) system, as a benchmark.

We evaluated the performance in terms of energy efficiency and spectral efficiency of
each of the four baseline systems mentioned above. According to [20], energy efficiency
can be expressed as:

εEE =
Rsum

Pt + NRFPRF + NRFPSW + PBB
(50)

where Pt represents the total transmit power, PRF represents the power consumed by each
RF, PSW represents the power consumed by each switch, and PBB represents the power
consumed at the baseband. For the parameters, we have adopted the following common
values: RRF= 300mW, PSW= 5mW and PBB= 200mW.

4.2. Simulation Results

The performance evaluation of the proposed MIMO-NOMA system was carried out
in three different cases: performance comparison at different SNRs, performance compari-
son at different numbers of users, and performance comparison at different numbers of
antennas.

¬ Comparison of performance with different SNRs

Figure 3 depicts the comparison of spectral efficiency versus SNRs with K = 32
and K = 128. As the SNR increases, both sets of curves demonstrate an increase in
spectral efficiency. The proposed optimization structures namely proposed ‘BMN’ and
proposed ‘beamspace MIMO-NOMA with NSE’ (BMNN), exhibited very similar results
in terms of spectral efficiency growth. This indicates that our precoding scheme, approx-
imated by the NSE, not only reduced the complexity of the original algorithm but also
achieved comparable performance. These findings highlight the effectiveness of the NSE
approximation algorithm.
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Figure 4 presents a comparison of spectral efficiency versus SNRs for the proposed
system and the baseline systems. In particular, we compared the spectral efficiency of the
proposed algorithm in the beamspace MIMO-NOMA system with the classical BMN [11] al-
gorithm, both for 128 users and 32 users. The results indicate that in both scenarios, BMNN
outperformed BMN [11], with the advantage becoming more pronounced as the number of
users increased. When there were 32 users, the proposed BMNN scheme outperformed the
BMN [11], BM, and MO schemes in terms of spectral efficiency. Particularly, compared to
BMN [11], the performance gain of BMNN came mainly from the optimization of precoding
for different beams in the first stage. Moreover, the proposed BMNN exhibited significantly
better performance than BM, benefiting from the integration of beamspace MIMO and
NOMA technologies, which enabled simultaneous service to multiple users within each
beam and effectively improved spectral efficiency. Since NOMA can achieve higher spectral
efficiency than OMA, it is evident that the proposed BMNN also outperforms MO in terms
of spectral efficiency.
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Figure 5 illustrates the comparison of energy efficiency versus SNRs with K = 32 and
K = 128 users for the proposed system and the baseline systems. It can be clearly seen
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that increasing SNR can lead to a substantial growth in energy efficiency, and within the
same system, for both 32 users and 128 users, our algorithm outperformed BMN [11].
Furthermore, in different systems with 32 users, the energy efficiency of the proposed
BMNN was higher than that of the other four baseline systems. Specifically, compared to
BM, our proposed BMNN achieved higher energy efficiency, by integrating NOMA and
beamformed MIMO, allowing each beam to serve multiple users.
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 Comparison of performance with different users

The aforementioned results were obtained while considering varying SNR, however, in
real communication systems, especially in massive MIMO systems, the number of accessed
users plays a significant role. Therefore, we further investigated the spectrum efficiency
performance of the two proposed solutions under different user scenarios.

Figure 6 depicts how spectrum efficiency varies with the number of users. Both curves
exhibit an upward trend with increasing user count, and the spectrum efficiency growth
curves of the two proposed optimization structures yield similar results.
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Figure 7 illustrates a comparison of the spectrum efficiency of the four schemes under
different user scenarios at 0 dB. The BMNN scheme outperformed the BMN [11], BM, and
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MO schemes. Moreover, compared to the traditional BM schemes, the BMNN optimization
scheme proposed in this study further improved spectrum efficiency.
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Figure 8 displays the energy efficiency performance for all considered schemes as the
number of users increases. It is obvious that the proposed algorithm remained superior
among the five schemes, which proves the effectiveness of the proposed scheme. Another
noteworthy observation is that the performance of our proposed BMNN algorithm sur-
passed that of BMN [11] in terms of energy efficiency. This is mainly attributed to the fact
that BMN [11] utilizes the ZF algorithm commonly employed in many studies in the pre-
coding part, whereas our proposed algorithm optimizes the precoding parameters, thereby
validating the necessity of optimizing precoding design parameters in our algorithm.
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Figure 9 shows how spectral efficiency varies with an increasing number of users
at SNR levels of −5 dB, 0 dB, and 5 dB. It is important to note that, across all these SNR
conditions, the BMNN algorithm we propose consistently outperformed the other schemes,
and its superiority becomes even more pronounced as the SNR increases.
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® Comparison of performance with different antennas

From Figure 10, it can be observed that, BMNN exhibited a clear advantage over other
algorithms until the number of antennas increases to 200. Beyond this point, the spectrum
efficiency of the FDM algorithm surpassed that of the others. This is primarily attributed
to the increase in the number of antennas in the FDM algorithm. With more antennas,
precise beamforming becomes possible, allowing for more accurate signal focusing. This
allows signals to be aimed more accurately at the receivers, reducing signal scattering and
interference, ultimately leading to improved spectral efficiency.
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However, it is worth noting that the FDM algorithm typically requires more hard-
ware and signal processing resources, which can lead to higher power consumption. As
Figure 11 corroborates, the energy efficiency of the FDM tends to be lower. Nevertheless,
as seen in the graph, our proposed BMNN algorithm achieved the highest energy efficiency
among all algorithms, highlighting its potential to enhance system performance with a
clear advantage.
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5. Conclusions

In this research, we addressed the joint optimization problem of precoding and power
allocation in massive MIMO-NOMA networks, aiming to maximize the sum rate for all
devices. To tackle this challenge, we transformed the original optimization problem into
an unconstrained problem for the precoding subproblem. We employed the FP approach
to handle the non-convex problem, resulting in three equivalent problems and a closed
expression for precoding. For the power allocation subproblem, which remains nonconvex,
we utilized the MMSE-based dynamic power allocation scheme to solve it. Simulation
results demonstrated that the proposed beamspace MIMO-NOMA system outperforms
the baseline in terms of both spectrum and energy efficiency. In future work, we intend to
extend the proposed optimization framework for precoding from beam-based optimization
to user-based optimization, aiming to further improve system performance.
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Appendix A

When {pm,n} is held constant, the optimization problem P1 can be transformed into
the following form:

Pbeam : max
{wm}

NRF

∑
m=1

|Sm |

∑
n=1

log2

1 + ‖hH
m,nwm‖2

2 pm,n

∑n−1
k=1‖hH

m,nwm‖2
2 pm,k+∑NRF

l 6=m∑|Sl |
k=1‖hH

m,nwl‖2
2 pl,k+σ2



s.t. : C1 :
NRF

∑
m=1

|Sm |

∑
n=1

pm,n‖wm‖2 ≤ Pmax.

(A1)
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Let wm = aw′m, ∀m ∈ {1, 2, · · · , NRF}, α ∈ R+. Then,
∥∥hH

m,nwm
∥∥2

2 = a2
∥∥hH

m,nw′m
∥∥2

2, and
the objective function of Pbeam can be expressed as the following expression:

Rsum =
NRF

∑
m=1

|Sm |

∑
n=1

log2

1 +

∥∥hH
m,nw′m

∥∥2
2 pm,n

∑n−1
k=1

∥∥hH
m,nw′m

∥∥2
2 pm,k + ∑NRF

l 6=m∑|Sl |
k=1

∥∥hH
m,nw′l

∥∥2
2 pl,k +

σ2

a2

 (A2)

From (A2), it is evident that when {pm,n} and {wm} are held constant, Rsum exhibits
a monotonically increasing behavior in relation to the variable α. In other words, as Rsum

increases, resulting in an increase in ‖wm‖2. In the case where {pm,n} is constant, as ‖wm‖2

increases, it will eventually reach the upper bound Pmax set by constraint C1. Therefore, to
attain the maximum value of Rsum under the constraint C1, the equation holds, denoted as
NRF

∑
m=1

|Sm |

∑
n=1

pm,n‖wm‖2 = Pmax.

Appendix B

Sufficiency:
Suppose wo

m is an arbitrary stationary point of unconstrained problem P beam, and
let w̃o

m be defined as w̃o
m =

√
awo

m, ∀m, where a = Pmax

∑
NRF
m=1∑|Sm |

n=1 pm,n‖wo
m‖2

. The sufficiency

condition aims to demonstrate that w̃o
m is a nontrivial stationary point of the original

problem P̃beam.
Let Rm,n represent the achievable rate of the unconstrained optimization, which can

be expressed as follows:

Rm,n = log2

(∥∥∥hH
m,nwm

∥∥∥2

2
pm,n + ξ̃m,n

)
− log2 ξ̃m,n. (A3)

Since wo
m is a stationary point of the unconstrained optimization problem P beam, we

can obtain the following result:

∇wm

(|Sm |

∑
n=1

Rm,n(wo
m)

)
+∇wm

(
NRF

∑
x 6=m

|Sx |

∑
y=1

Rx,y(wo
x)

)
= 0. (A4)

Observing that∇wm Rsum(tw) = 1
t∇wm Rsum(w) for any value t > 0, Equation (A4) can

be transformed into the following expression:

∇wm

(|Sm |

∑
n=1

Rm,n(w̃o
m)

)
+∇wm

(
NRF

∑
x 6=m

|Sx |

∑
y=1

Rx,y(w̃o
x)

)
= 0. (A5)

Furthermore, we have:

NRF

∑
m=1

|Sm |

∑
n=1

pm,n
∥∥√awo

m
∥∥2

=
Pmax

NRF

∑
m=1

|Sm |

∑
n=1

pm,n‖wo
m‖

2

NRF

∑
m=1

|Sm |

∑
n=1

pm,n‖wo
m‖

2 = Pmax. (A6)

That is:
NRF

∑
m=1

|Sm |

∑
n=1

pm,n‖w̃o
m‖

2 = Pmax. (A7)
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Specifically, the gradient of the rate of the nth user in the mth beam with respect to the
variable wm can be expressed as:

∇wm Rm,n =

(
hH

m,nwm
)∗h∗m,n∑n

k=1 pm,k +

σ2
|Sm |

∑
n=1

pm,n(wm)∗

Pmax∥∥hH
m,nwm

∥∥2
2 pm,n + ξ̃m,n

−
(
hH

m,nwm
)∗h∗m,n∑n−1

k=1 pm,k +

σ2
|Sm |

∑
n=1

pm,n(wm)∗

Pmax

ξ̃m,n
. (A8)

Similarly, the gradient of the rate of the nth user in the xth(x 6= m) beam with respect
to variable wm can be expressed as:

∇wm Rx,y =

(
hH

x,ywm

)∗
h∗x,y∑|Sm |

k=1 pm,k +

σ2
|Sm |

∑
n=1

pm,n(wm)∗

Pmax∥∥∥hH
x,ywx

∥∥∥2

2
px,y + ξ̃x,y

−

(
hH

x,ywm

)∗
h∗x,y

|Sm |

∑
k=1

pm,k +

σ2
|Sm |

∑
n=1

pm,n(wm)∗

Pmax

ξ̃x,y
. (A9)

Since w̃o
m =

√
Pmax

∑
NRF
m=1∑|Sm |

n=1 pm,n‖wo
m‖2

wo
m, ∀m, (A8) and (A9) can be simplified, the expres-

sion after bringing them into (A4) can be specifically expressed as:

NRF
∑

x=1

|Sx |
∑

y=1

(hH
x,yw̃o

m)
∗

h∗x,y ∑
|Sm |
k=1 pm,k

‖hH
x,yw̃o

x‖2
2 ∑

y
k=1 px,k+∑

NRF
l 6=x ∑

|Sl |
k=1‖hH

x,yw̃o
l ‖

2
2 pl,k+σ2

−
NRF
∑

x=1

|Sx |
∑

y=1

(hH
x,yw̃o

m)
∗

h∗x,y ∑
|Sm |
k=1 pm,k

‖hH
x,yw̃o

x‖2
2 ∑

y−1
k=1 px,k+∑

NRF
l 6=x ∑

|Sl |
k=1‖hH

x,yw̃o
l ‖

2
2 pl,k+σ2

−(w̃o
m)
∗ NRF

∑
x=1

|Sx |
∑

y=1


σ2
|Sm |

∑
n=1

pm,n

Pmax

‖hH
x,yw̃o

x‖2
2 ∑

y−1
k=1 px,k+∑

NRF
l 6=x ∑

|Sl |
k=1‖hH

x,yw̃o
l ‖

2
2 pl,k+σ2

−
σ2
|Sm |

∑
n=1

pm,n
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‖hH
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x‖2
2 ∑

y
k=1 px,k+∑

NRF
l 6=x ∑
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2
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 = 0, ∀m

⇔ ∇wm Rsum(w̃o
m)− λ̃(w̃o

m)
∗ = 0

(A10)

where

NRF
∑

x=1

|Sx |
∑

y=1

σ2
|Sm |
∑

n=1
pm,n

Pmax

‖hH
x,yw̃o

x‖2
2 ∑

y−1
k=1 px,k+∑

NRF
l 6=x ∑

|Sl |
k=1‖hH

x,yw̃o
l ‖

2
2 pl,k+σ2

−
NRF
∑

x=1

|Sx |
∑

y=1

σ2
|Sm |
∑

n=1
pm,n

Pmax

‖hH
x,yw̃o

x‖2
2 ∑

y
k=1 px,k+∑

NRF
l 6=x ∑

|Sl |
k=1‖hH

x,yw̃o
l ‖

2
2 pl,k+σ2

= λ̃ > 0. (A11)

This equation implies that w̃o
m satisfies the first-order optimality condition with respect

to precoding, where λ̃ is the Lagrange multiplier. Moreover, since w̃o
m satisfies the power

constraint and also satisfies the complementary slackness condition, it further satisfies the
KKT condition of the original problem P̃beam. Thus, w̃o

m is a nontrivial stationary point of
P̃beam. The sufficiency proof is finally complete.

The sufficiency of the proposition can be demonstrated by reversing the steps of
sufficiency proof.
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