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Abstract: Insulators are an important part of transmission lines in active distribution networks, and
their performance has an impact on the power system’s normal operation, security, and dependability.
Traditional insulator detection methods, on the other hand, necessitate a significant amount of labor
and material resources, necessitating the development of a new detection method to substitute
manpower. This paper investigates the abnormal condition detection of insulators based on UAV
vision sensors using artificial intelligence algorithms from small samples. Firstly, artificial intelligence
for the image data volume requirements was large, i.e., the insulator image samples taken by the
UAV vision sensor inspection were not enough, or there was a missing image problem, so the data
enhancement method was used to expand the small sample data. Then, the YOLOV5 algorithm was
used to compare detection results before and after the extended dataset’s optimization to demonstrate
the expanded dataset’s dependability and universality, and the results revealed that the expanded
dataset improved detection accuracy and precision. The insulator abnormal condition detection
method based on small sample image data acquired by the visual sensors studied in this paper has
certain theoretical guiding significance and engineering application prospects for the safe operation
of active distribution networks.

Keywords: insulator detection; electric power inspection; small sample data expansion; vision
sensors; YOLOV5

1. Introduction

An active distribution network is an important means to improve the ability of new
energy consumption, improve the quality of electricity consumption and reliability of
power supply, and realize the goal of double carbon, which is the development direction
of future distribution networks. Multisource data sensing technology is one of the key
technologies of an active distribution network, and it is also an important support for the
safe operation of an active distribution network. In an active distribution network, the
failure of transmission lines significantly affects the reliability and safety of the power
supply. The insulator plays a crucial role in controlling insulation—it prevents the current
from returning to the ground and supports the wire in the transmission line. Failure of
the insulator can have severe consequences that directly impact the safe operation of the
transmission line. Insulators are vulnerable to natural factors such as lightning strikes,
snow, ice, high and low temperatures, as well as fouling and bird damage due to their
long-term exposure to atmospheric conditions. All these factors can cause various types of
insulator failure.

Several typical types of malfunctions exist that can result in insulator failure. Pollution
flashover: When the surface of an insulator is contaminated by polluting substances, its
insulating property decreases, making it more vulnerable to corona discharge and flashover.
Mechanical damage: External forces such as impact, shock, vibration, or others may cause
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insulators to break, crack, or be damaged. String flashover, also known as insulator string
jump flashover, can occur when there is an insulator chain between multiple insulators and
the insulation performance of the insulator is not uniform. In such instances, a high-voltage
string jump flashover phenomenon can lead to arc discharge. Corona discharge: When
subjected to high voltage, air near the insulator may experience corona discharge that
leads to corona sound and erosion of the insulator surface. Insulator breakdown: When
voltage exceeds the insulating capacity of insulators, they may break down and result in
short circuits or equipment damage. Crack propagation: Cracks may exist on the surface
or inside the insulator, which, when gradually expanding under the influence of electric
loads and the external environment, could lead to insulator failure. Aging and degradation:
Over time, the insulating material ages and deteriorates because of various factors. Foreign
object intrusion: External objects, such as birds, leaves, debris, and so on, could affect the
performance of the insulator by entering the gap of the insulator. Insulator failure types are
presented in Figure 1.
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Insulators can be seriously damaged due to prolonged exposure to light and wind,
leading to power system failures that affect the entire grid and cause financial losses.
Therefore, insulators must be monitored. The online mode is also used to improve the
efficiency of fault detection. Vision sensors and image sensors, along with their processing
technology, can detect insulator faults using images captured by UAV inspections and
network training. This reduces manual work pressure, improves efficiency, and enhances
the safety of the inspection process.

The current insulator fault detection technology mainly has two difficulties: (1) the
traditional insulator detection method requires a lot of human and material resources and is
less safe, and (2) when using image recognition technology for detection, there is insufficient
sample data, and technical algorithms are not comprehensive. Therefore, it is necessary to
study the insulator abnormal state detection algorithm from small data samples.

During insulator detection, a limited number of images are captured using drones
and other methods. Small datasets may not provide sufficient support for system analysis
and identification, affecting identification accuracy. This is a common practical engineering
problem. This paper proposes a solution to address actual problems in the power system
based on this assumption and starting point. This study focuses on using images obtained
from UAV vision sensors for inspection purposes. The insulators captured in these images
are then used as detection targets.

This paper emphasizes the detection of abnormal status for insulators and uses a
data enhancement method to simulate shooting situations under various scenarios. The
simulation includes rotation, mirroring, cropping, changing brightness, adding noise, and
more. Through the insulator images taken by UAV patrol, the database is expanded for
its characteristics of complex shooting situations and the small number of photos taken.
The insulators, including the normal insulator, defective insulator, bird’s nest, and grass,
among other objects, are labeled with image features using LabelImg. Then, the YOLOV5
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algorithm is used to train the model, enabling easy detection and classification of the
insulator in the image.

The main contributions of this paper are in the following three areas: Firstly, this paper
proposes an effective data preprocessing method for the specific task of insulator anomaly
detection with a small sample dataset to improve the performance and generalization of
the model through data augmentation. Secondly, we constructed a dataset for insulator
defect detection, comprising defective and normal insulators. The photographs of varied
insulator types under different angles and light conditions were simulated through data en-
hancement. It has a significant practical value. Thirdly, a fault detection model was trained
using the YOLOV5 algorithm on a self-constructed dataset to solve real power system
problems with limited sample data. Fourthly, this work aims to address the requirements
of insulator testing and solve the problems associated with power system insulator testing.
It is more user-friendly for application in the power system and addresses the actual needs.

The experimental results can prove that in the insulator anomaly detection method,
based on the currently popular YOLOV5 algorithm, the detection of an insulator anomaly
can be basically achieved. Moreover, for the case of a small dataset, the data enhancement
for small sample data can improve the accuracy of the trained model to a certain extent,
improve the robustness of the model, and improve model performance.

The remainder of the paper is divided into five parts: Section 2 gives related work.
Section 3 introduces the method for insulator detection from small data samples. Section 4
shows the experimental results and analysis. Section 5 concludes the paper.

2. Related Work

In recent years, few sample image classification algorithms have developed rapidly.
In terms of traditional image processing methods, Muhammad Tariq et al. [1] used mor-
phological techniques to detect and identify insulators in power distribution systems.
By performing morphological filtering, edge detection, and connectivity analysis on the
images, insulators can be accurately detected and identified; Xiaobo Wang et al. [2] pro-
posed a method for insulator detection in power transmission lines using computer vision
techniques in 2017. Automatic detection and localization of insulators were achieved by
image processing techniques, including image preprocessing, binarization, morphological
operations, and connected region analysis; Alaa H. Hussein et al. [3] used digital image
processing techniques for insulator detection in high-voltage transmission lines. Using
image preprocessing, edge detection, and morphological processing, the insulators were
successfully detected, and their location and shape information was extracted.

Vision sensors have developed rapidly in recent years and are widely used in dig-
ital cameras, smartphones, surveillance cameras, robotic vision systems, etc. With the
development of technology, they have gone through several stages of development and
improvement, such as CCD, CMOS, BSI, etc. Dlugosz et al. [4] proposed a CMOS image
sensor with stacked pixels and pipelined Analog-to-digital conversion (ADC) sensors pro-
vide higher image quality and faster data conversion. For example, Akkermans et al. [5]
introduced a backside-illuminated CMOS sensor that provides better image quality in
low-light conditions by using backside illumination. Girshick et al. [6] proposed a real-time
target detection method called the faster R-CNN detection method and introduced a region
suggestion network to generate candidate target frames through end-to-end training and
feature sharing. The faster R-CNN was able to achieve faster target detection while main-
taining high accuracy. In 2012, Khoshelham et al. [7] explored the accuracy and resolution
of Kinect depth data for indoor mapping applications through experimental evaluation
and analysis, providing an in-depth understanding of the performance of Kinect depth
data and discussing its potential for indoor mapping applications. In 2006, C. C. Ko [8]
proposed an insulator fault detection and diagnosis method based on a computer vision
system to detect abnormal insulator conditions through image processing and analysis.

According to different modeling approaches, existing algorithms can be divided into
two main categories: convolutional neural network models and graph neural network
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models. Among these, migration learning is a learning method that takes what has been
learned once and simply applies it to a new task. Matthew Zeiler and Rob Fergus et al. [9]
first explored the problem of migration learning in deep neural networks in 2014; Christian
Szegedy et al. [10] used integrated learning to combine multiple classifiers for classification
in 2015 and proposed the inception network structure; Ian Goodfellow et al. [11] first
introduced the concept of GAN, which can be used to increase the amount of training data
in the field of image recognition, in 2016; and Chelsea Finn et al. [12] first introduced the
concept of metalearning, which can be used to train a classifier that quickly adapts to new
categories, in 2017. Based on these two findings, Egor Zakharov et al. [13] proposed a
method that combines metalearning and GAN, which can be used to generate high-quality
synthetic images.

With the development of intelligent technology and the popularization of civil aviation
equipment, mechanical inspection of power cables has become possible. In the mid-20th
century, several countries, led by the United States, experimented with the use of helicopters
to inspect power networks. In 2008, the Universidad Politécnica de Madrid developed
a vision system based on this, using an unmanned aircraft as a platform for collecting
information [14]. The European airline Laserpas entered a partnership with Neurala
Artificial Intelligence in 2018 to improve unmanned power monitoring operations based
on the latest developments in artificial intelligence [15]. French electricity company Delair
used LIDAR technology on an unmanned aircraft to create a 3D map of the electricity
network from aerial imagery [16].

Fault detection techniques for insulators have also developed rapidly in recent years
and can be broadly divided into four directions: In 2019, Xinjie Wang et al. [17] proposed a
migration-learning-based fault detection method for insulators, which can use an existing
large sample dataset for training and then apply the trained model to a new small sample
dataset for fault detection. Zhiyu Cui et al. [18] proposed a deep-learning-based insulator
fault detection method in 2010, which uses convolutional neural network (CNN) for
insulator image feature extraction and classification for fault detection. Jin Zhang et al. [19]
proposed a metalearning-based insulator fault detection method in 2021, which can learn
on small sample datasets and quickly adapt to new small sample datasets for fault detection.
Liu et al. [20] proposed the MTI-YOLO network, which used a multiscale feature detection
head, a multiscale feature fusion structure, and a spatial pyramid pool model, which in
turn improved the accuracy of the model, but its speed was slightly reduced, and it only
detected normal insulators and did not develop detection for insulator defects. Singh
L et al. [21] used thermal imaging to obtain porcelain insulator temperature distribution
images. These images provide detailed information about the insulator surface temperature.
These images are then analyzed and processed by machine learning algorithms to identify
potential health problems or signs of defects.

This study proposes to use a data augmentation approach to expand the constructed
small sample dataset and train an optimized model based on the YOLOV5 algorithm to
effectively improve the accuracy and robustness of the model for identifying and detecting
insulator states in the study images.

3. Proposed Insulator Defect Detection Method Based on Small Sample Data

This work is based on the YOLOV5 algorithm and uses a cloud-based hard drive to
train and test the dataset.

3.1. LabelImg-Based Data Preprocessing

In this paper, LabelImg is used to annotate feature regions in images.

(1) By organizing the original dataset, it was divided into 120 normal insulators and
120 defective insulators, and the labeled contents were divided into five categories by
the software: Defective Insulator, Nest, Grass, Bird, and Normal Insulator.

(2) The different types and colors of the boxes were used to distinguish them and to
obtain the label file needed to use the YOLO algorithm. For YOLOV5, the more
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practical label file was the txt file. Therefore, after labeling, we obtained a txt file with
the same name as the image name. A picture was taken from the defective insulator
dataset as an example; its content contained two parts, respectively. The first number
was the category to which the labeled box belonged, and it was the defective insulator.
Thus, it belonged to the first category, and since the number started from 0, the first
number was also. The next four numbers were the pixel coordinates of the labeled
box; for example, the first group of data showed the information of the first labeled
box, [0.150625 0.553158 0.249250 0.457740]. These numbers represented the center
point (x, y) of the target labeled real box and the width and height information of the
labeled real box, which intuitively showed the location information of the labeled box.
The position information of the marked box could be visualized.

3.2. Construction of a Small Sample Insulator Dataset

Since there is less insulator photo data available on the web for study, and the open-
source dataset provided does not have universality, this design preprocesses the images
searched on the web to construct a dataset with a larger amount of data based on inspection
images. The original dataset obtained from the internet was 120 images of defective insula-
tors and 120 images of normal insulators. Greater volumes of data lead to higher accuracy
in model detection results. Thus, cropping images and performing other preprocessing
operations are necessary to obtain a larger and more generalized dataset.

To expand the dataset, we used several image processing methods. We cropped the
original image to randomly remove some pixels; we also performed pixel panning, which
slightly shifts pixels in the image horizontally or vertically to increase the diversity of the
dataset; and to change the brightness of the image, we adjusted the background by scaling
the RGB value of each pixel using a linear transform to adjust the brightness of the image
to make it brighter or darker. This simulates different lighting conditions and makes the
model robust to images with different brightness conditions. To increase the diversity of
the dataset, we also add noise processing. By adding random noise, such as Gaussian or
pretzel noise, to the images, we can simulate real-world image noise and make the model
better able to cope with these disturbances. In addition, we also performed rotation and
reflection processing. By setting different rotation angles, we could change the orientation
of the images and increase the diversity of the dataset. At the same time, we also performed
mirroring processing on some of the images, which made the images flip in horizontal or
vertical directions, further increasing the richness of the dataset. By applying the above
image processing methods, we obtained a new set of images to expand the dataset. Based
on the original 1025 images, we extended the original 240 images into a completely new
insulator dataset. This made the dataset richer and more diverse, providing a wider range
of samples for training the model. Figure 2 shows the results of the partial image processing,
showing the effects of the different transformations we performed on the images.
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Taking one of the images as an example, the image after various transformations is
shown in Figure 3 below.
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3.3. Introduction to YOLOV5 and Parameter Optimization
3.3.1. YOLOV5 Introduction

The YOLOV5 algorithm consists of four parts—input, backbone, neck, and prediction—and
it has four types of network structures: YOLOV5s, YOLOV5m, YOLOV5l, and YOLOV5x. In
this paper, we mainly use YOLOV5s as the training model for the experiments. Compared
with the previous versions of the algorithm, it has better applicability and generalizability
to the dataset; YOLOV5s has a great advantage in running speed compared with the
other models, and the trained model and test data are more substantial than the previous
algorithms. The network diagram of YOLOV5 is depicted in Figure 4.
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There are three key improvements over YOLOV4:

(1) The focus structure is first referenced, and its key feature is the slicing operation. For
instance, in YOLOV5s, with 304 × 304 × 3 image pixels, the focus structure performs
the slicing operation, resulting in 152 × 152 × 12 feature maps, which undergo a
single convolution operation using 32 kernels, leading to 152 × 152 × 32 feature maps.
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(2) The neck structure in the YOLOV5 algorithm uses CSPnet and CSP2 structure instead
of all ordinary convolution operations used in the original algorithm. This improves
the neural network’s performance for feature vector fusion, as depicted in Figure 5.
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(3) Improving the bounding box loss function: In YOLOV5, CIOU_Loss is adopted as
the loss function for the bounding box. The details of YOLOV5’s loss function will
be explained in the following section. The loss function L for YOLOV5 is primarily
comprised of three components: the location loss function LLocation, the confidence
loss function LObjects, and the type of loss function LClasses. The loss function L is
shown in Equation (1):

L = LLocation + LObjects + LClasses (1)

The position loss function is evaluated using the CIOU_Loss, as presented in Equation (2):

CIOU_Loss = 1 − CIOU = 1 − (IOU − Distance_22

Distance_C2 − v2

(1 − IOU) + v
) (2)

In the formula:
C—The smallest outer rectangle of the prediction frame from the actual frame is identified;
Distance_C—The given measure refers to the diagonal distance of the smallest

outer rectangle;
Distance_2—The Euclidean distance between two center points can be calculated.
For the YOLOV5 algorithm, many parameters affect the behavior and performance of

the algorithm. This work addresses the learning rate, cosine annealing hyperparameters,
step size, number of training rounds, and other parameters to ensure that the performance
of the algorithm can better meet the experimental requirements.

3.3.2. Learning Rate

Learning rate is an important hyperparameter in deep learning models, as it deter-
mines the step size of the model to update the weights in each round of training. Setting a
reasonable learning rate can improve the training speed and performance of the model and
can better prove the generalization performance of the model. In the YOLOV5 algorithm,
the learning rate is the learning rate of the model in the training process; it determines the
update of the model weights in each iteration. The gradient update formula is shown in
Equation (3):

θ = θ − η
∂

∂θ
·J(θ) (3)

From Equation (3), it is known that if the learning rate is too high, the model will not
converge during the training process and will even cause the phenomenon of gradient
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explosion; on the other hand, if the learning rate is too low, the model training speed
will be slow and convergence will be difficult. After two training sessions with a total of
300 epochs, the learning rate is changed to 0.0032 in combination with the model, which
improves the model training speed while avoiding an overfitting situation.

3.3.3. Step Size

The step size is the number of pixels the convolution kernel moves each time the
convolution operation is performed. Specifically, the step size is defined as the distance
that the convolution kernel moves over the input image each time.

The larger the step size, the smaller the size of the output feature map, which will
reduce the network’s ability to detect small targets. The larger the step size, the smaller the
computational effort, which can speed up the training and inference of the model but also
reduce the accuracy of the model; the smaller the step size, the more detailed information
contained in the feature map extracted by the model, which can improve the expressiveness
and detection accuracy of the model, but the computational effort will increase accordingly.

Therefore, the step size is generally set based on the target size, computational re-
sources, dataset characteristics, model structure, etc. In general, it means that the step
size is changed according to the target size and model structure to balance the detection
accuracy and training speed of the model to achieve the optimal effect while ensuring
computational capacity. This experiment was tested three times by setting the step size to
12, 8, and 7, respectively, and finally, the appropriate step size was determined to be 8.

In summary, the initial model used in this experiment is the YOLOV5s model, the
depth of the model is 0.33, the width of the model is 0.50, the preset is the anchor size
corresponding to 640 × 640 resolution, 200 epochs are trained, the learning rate is 0.0032,
the cosine annealing hyperparameter is 0.12, the learning rate momentum is 0.843, and the
step size is changed to 8 according to the experimental requirements.

3.4. Evaluation Indicators

In the target detection process, the main average precision (mAP) in the final model
results is the main evaluation index, and the results of target detection can be divided into
the following four categories according to differences, which are:

(1) True positive (TP), i.e., correct checkout results, are examples of detection results that
match the true labeled results of the provided training set in the output of the network
after training;

(2) True negative (TN), i.e., regions that are correct but not detected by the system, refer
to the parts of the image provided for testing where the labeled insulators, bird nests,
weeds, etc. are not present, and the trained network does not produce the desired
detection results;

(3) False positive example (FP), i.e., false detection result, means that the test result output
by the trained network does not match the true annotation of the manual annotation
of the given image, which can also be called false detection;

(4) False negative (FN), or the area where the desired target is mistakenly not detected,
refers to the area where targets such as insulators, bird nests, weeds, and small birds
are present in the test image but are not detected by the network.

The YOLOV5 target detection algorithm often uses the IOU function to discriminate the
detection results of the trained model. Each true annotation corresponds to a corresponding
true positive example, which is the detection result with the highest score greater than
the threshold set in the IOU, while the other corresponding detection results are false
positive examples. False positives are also found when the detection results of the trained
model do not match any of the provided true annotations. False positives generally include
detection of other objects or image backgrounds, failure to meet the set threshold, and
duplicate, useless detection results. False negatives are examples that do not match the real
annotations provided by the real positive examples, generally due to insufficient accuracy
or precision of detection or missed detection.
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Based on the above definition, two corresponding detection metrics can be proposed:
precision and recall.

The accuracy rate, which indicates the percentage of predicted results that are true
among all results with positive samples, is the main indicator to evaluate the accuracy of
the test results of the trained system and is defined by the formula shown in Equation (4):

P =
TP

TP + FP
(4)

Recall indicates the percentage of all positive samples that are correctly predicted,
i.e., the proportion of true positive cases among the true annotations labeled by the samples
of the preselected tests to the number of all preselected test samples. This metric is the
main indicator to assess the completeness of the test results of the trained system, and its
defining formula is shown in Equation (5):

R =
TP

TP + FN
(5)

Average precision (AP) is the result of integrating precision over different recall rates.
Geometrically, AP is also the size of the area under the curve in the P-R curve for each
category. The average precision value is generally used to measure how good or bad the
trained model is for each category. The main average precision is the average of the average
precision values of the different categories.

4. Experimental Results and Analysis

In this paper, we design a program to preprocess and annotate the existing inspection
images found on the internet to form an initial, small insulator image dataset, and then
use Python programming to preprocess the original images by cropping, pixel panning,
changing the background brightness, adding noise, setting the rotation angle, mirroring,
etc., to change the images to simulate different lighting conditions and different image
quality. The insulator images under different lighting conditions and different image
quality so as to realize the data expansion of the original dataset. The original small dataset
consists of 240 images, the test set images are extracted from the database at a ratio of
0.025, and the remaining images are the training set, and the size of the expanded dataset is
1025. In this subsection, the insulator database is trained before and after the expanded
dataset to compare and verify whether the expanded dataset is effective and the effect of
the expanded dataset on the accuracy of the model trained by YOLOV5. The algorithmic
network model for this experiment is YOLOV5, and the step size is set to 8. The use of
hyperparameters is shown in Table 1.

Table 1. Hyperparameter usage statistics.

Serial Number Hyperparameter Name Date

entry 1 epoch 200
entry 2 Learning rate 0.0032
entry 3 Batch size 8
entry 4 Cosine annealing hyperparameters 0.12
entry 5 Learning rate momentum 0.843

First, a comparison of the model data after training, as shown in Table 2 and Figure 6,
is the model data before the dataset expansion, and Table 3 and Figure 7 are the model data
after the dataset expansion. It is obvious that the accuracy and recall of the trained model
have improved significantly after the expansion of the dataset, the oscillation has improved
very well, and the mAP value is 0.632 before the expansion and 0.793 after the expansion,
which is a significant improvement, indicating that the trained model has been improved
and optimized.
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Table 2. Model training results before dataset expansion.

Class Images Labels P R mAP@0.5 mAP@0.5:0.95

All 6 12 0.624 0.602 0.632 0.458
Defective insulator 6 3 0.882 1 0.995 0.798
Normal insulator 6 9 0.365 0.204 0.27 0.118

Sensors 2023, 23, x FOR PEER REVIEW 11 of 14 
 

 

 
Figure 6. Model training process before dataset expansion. 

Table 3. Model training results after dataset expansion. 

Class Image Label P R mAP@0.5 mAP@0.5:0.95 
All 51 105 0.915 0.667 0.793 0.471 

Defective insulator 51 26 0.831 1 0.995 0.73 
Normal insulator 51 79 1 0.333 0.59 0.212 

 
Figure 7. Model training process after dataset expansion. 

The graph above displays the meaning of each indicator as follows. box_loss: The 
error (CIOU) between the prediction frame and the calibration frame determines the ac-
curacy of the positioning. A smaller error indicates better accuracy. obj_loss: The confi-
dence level of the computational network determines the accuracy of its ability to classify 
a target, with lower levels indicating higher accuracy. cls_loss: This calculation determines 
whether the anchor frame is correctly classified in relation to the corresponding calibra-
tion. A smaller classification value indicates greater accuracy. mAP@0.5:0.95 
(mAP@[0.5:0.95]): The value indicates the average mean average precision at varying in-
tersection over union (IOU) thresholds ranging from 0.5 to 0.95 at intervals of 0.05. 
mAP@0.5: The statement represents the average mAP for thresholds greater than 0.5. The 
y-axis represents the number of epochs. 

Figure 6. Model training process before dataset expansion.

Table 3. Model training results after dataset expansion.

Class Image Label P R mAP@0.5 mAP@0.5:0.95

All 51 105 0.915 0.667 0.793 0.471
Defective insulator 51 26 0.831 1 0.995 0.73
Normal insulator 51 79 1 0.333 0.59 0.212

Sensors 2023, 23, x FOR PEER REVIEW 11 of 14 
 

 

 
Figure 6. Model training process before dataset expansion. 

Table 3. Model training results after dataset expansion. 

Class Image Label P R mAP@0.5 mAP@0.5:0.95 
All 51 105 0.915 0.667 0.793 0.471 

Defective insulator 51 26 0.831 1 0.995 0.73 
Normal insulator 51 79 1 0.333 0.59 0.212 

 
Figure 7. Model training process after dataset expansion. 

The graph above displays the meaning of each indicator as follows. box_loss: The 
error (CIOU) between the prediction frame and the calibration frame determines the ac-
curacy of the positioning. A smaller error indicates better accuracy. obj_loss: The confi-
dence level of the computational network determines the accuracy of its ability to classify 
a target, with lower levels indicating higher accuracy. cls_loss: This calculation determines 
whether the anchor frame is correctly classified in relation to the corresponding calibra-
tion. A smaller classification value indicates greater accuracy. mAP@0.5:0.95 
(mAP@[0.5:0.95]): The value indicates the average mean average precision at varying in-
tersection over union (IOU) thresholds ranging from 0.5 to 0.95 at intervals of 0.05. 
mAP@0.5: The statement represents the average mAP for thresholds greater than 0.5. The 
y-axis represents the number of epochs. 

Figure 7. Model training process after dataset expansion.



Sensors 2023, 23, 7967 11 of 13

The graph above displays the meaning of each indicator as follows. box_loss: The error
(CIOU) between the prediction frame and the calibration frame determines the accuracy
of the positioning. A smaller error indicates better accuracy. obj_loss: The confidence
level of the computational network determines the accuracy of its ability to classify a
target, with lower levels indicating higher accuracy. cls_loss: This calculation determines
whether the anchor frame is correctly classified in relation to the corresponding calibration.
A smaller classification value indicates greater accuracy. mAP@0.5:0.95 (mAP@[0.5:0.95]):
The value indicates the average mean average precision at varying intersection over union
(IOU) thresholds ranging from 0.5 to 0.95 at intervals of 0.05. mAP@0.5: The statement
represents the average mAP for thresholds greater than 0.5. The y-axis represents the
number of epochs.

Two images of insulators were selected in the network to better visualize the variations
between the two models; one image has defective insulators, while the other one shows
normal insulators. The training model’s results for the defective insulator were captured
in Figure 8 before and after the dataset expansion, and for the normal insulator, they are
presented in Figure 9 before and after dataset augmentation.
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Table 4. Comparison of detection data before and after expanding the dataset.

Class Label 1 Label 2 Label 3 Label 4 Label 5

Before expanding the dataset Defective insulator 0.85 nest 0.87 normal insulator 0.67 normal insulator 0.83 normal insulator 0.77
After expanding the dataset Defective insulator 0.90 nest 0.96 normal insulator 0.87 normal insulator 0.90 normal insulator 0.82

It can be clearly seen that whether for the detection of defective insulators, bird nests,
or normal insulators, the accuracy and precision of the expanded dataset are slightly higher,
which proves that the expanded dataset is effective, and the expanded dataset has improved
the accuracy and precision of the training model.

5. Conclusions

Multisource data sensing technology is a crucial aspect of the active distribution
network and essential for ensuring its safe operation. Insulators are significant equipment
in transmission lines of the active distribution network and have a direct impact on the
safety and reliability of the power grid’s operation. This paper proposed a detection
algorithm with a higher utility rate to meet the speed and accuracy requirements of line
inspection work.

(1) This paper presented an algorithm that uses YOLOV5 and a more powerful dataset
for detection. The algorithm collects images associated with insulators and builds a
database of insulators based on the images taken during the inspection of transmission
lines provided by the network.

(2) To expand the provided small database, preprocessing operations such as image pixel
cropping, rotation angle adjustment, background brightness alteration, and adding
noise were performed. Through precomparison experiments and validation, it was
found that the expanded dataset significantly improved the accuracy and recall rate
of the training model, as well as leading to good changes in the value of the mAP. The
mAP value increased from 0.632 to 0.793 after the expansion, which demonstrates
a significant improvement in the trained model’s optimization. This increase in
accuracy by 0.05 confirms the feasibility and applicability of the expanded dataset.
It also validates that an expanded dataset can lead to better training of models and
improve detection precision and accuracy.

While this paper expanded the dataset, it remains small and generally incomplete, the
types of insulators in transmission lines are continuously evolving, and the types of faults
are numerous. Enriching and updating the dataset will be a focus of future studies.
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