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Abstract: Cloud observation serves as the fundamental bedrock for acquiring comprehensive cloud-
related information. The categorization of distinct ground-based clouds holds profound implications
within the meteorological domain, boasting significant applications. Deep learning has substantially
improved ground-based cloud classification, with automated feature extraction being simpler and
far more accurate than using traditional methods. A reengineering of the DenseNet architecture
has given rise to an innovative cloud classification method denoted as CloudDenseNet. A novel
CloudDense Block has been meticulously crafted to amplify channel attention and elevate the salient
features pertinent to cloud classification endeavors. The lightweight CloudDenseNet structure is
designed meticulously according to the distinctive characteristics of ground-based clouds and the
intricacies of large-scale diverse datasets, which amplifies the generalization ability and elevates
the recognition accuracy of the network. The optimal parameter is obtained by combining transfer
learning with designed numerous experiments, which significantly enhances the network training
efficiency and expedites the process. The methodology achieves an impressive 93.43% accuracy
on the large-scale diverse dataset, surpassing numerous published methods. This attests to the
substantial potential of the CloudDenseNet architecture for integration into ground-based cloud
classification tasks.

Keywords: ground-based cloud classification; DenseNet neural network; transfer learning; convolutional
neural networks

1. Introduction

Clouds are closely associated with the hydrological cycle [1]; different cloud types,
through the interaction and radiation with the Sun and land, have various effects on the
Earth’s atmospheric system. Cloud data are thus widely used in the weather forecasting [2],
solar [3], agriculture, and aviation fields [4]. Traditional methods of producing and catego-
rizing ground-based cloud images rely on the manual extraction of features such as color
and texture. However, these methods have significant limitations and low accuracy and
hence cannot meet the requirements of various applications [5]. Recently, machine-based
deep learning has demonstrated excellent performance in the field of image classification,
and convolutional neural networks can extract image features more effectively through the
three strategies of local receptive fields, weight sharing, and subsampling, which reduce
network complexity and improve accuracy.

Deep learning methods have achieved significant progress in ground-based cloud
classification [6] and segmentation [7]. The excellent performance of convolutional neural
networks for image classification has prompted many studies on ground-based cloud
identification, which have achieved very good results, far exceeding those of traditional
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methods [8]. However, the performance of ground-based cloud classification is still insuffi-
cient to meet the needs for practical applications. The classification of ground-based clouds
has always been challenging because of their variety, rapid changes, and ease of merging
with the sky background. In addition, cloud types can transform into other categories with
changes in their spatial and temporal distribution, leading to far greater similarity among
cloud categories than that among other objects. These categories can very easily be confused
during the recognition process, especially for stratocumulus and cumulonimbus clouds [9].
Owing to these characteristics of ground-based clouds, even professional observers may
confuse cloud types, and solely using different network structures for identification cannot
achieve good results [10].

Both traditional and deep learning methods have been used to identify cloud cate-
gories by extracting cloud features and then classifying them. The main parameters in
ground-based cloud classification include color, texture, structure, and other features that
are extracted using different algorithms [11]. Heinle et al. [12] obtained 12 features (compris-
ing 7 color, 4 texture, and 1 cloud cover) and classified clouds into seven categories. Calbo
and Sabburg [13] divided cloud images into eight sky types using 12 statistical textural
features, four mode features based on a Fourier transform, and features that distinguished
between cloudy and sky pixels. Liu et al. [14] further proposed structural features and
extracted cloud gray mean, edge sharpness, gap distribution, and other structural features
from cloud segmentation and edge images for cloud classification. In convolutional neural
networks, the ability to use dynamic feature extraction simplifies the process of cloud
recognition; they outperform most traditional methods and have achieved remarkable
results. Ye et al. [15] applied a convolutional neural network to ground-based cloud classi-
fication and proposed the DeepCloud feature extraction method. In this method, extracted
local features activated by deep convolution are coded by a Fisher vector to classify cloud
images, producing convincing results. Zhang et al. [16] constructed a new convolutional
neural network structure named CloudNet. It learned the texture, structure, and shape
characteristics of clouds and assigned cloud images to 11 categories with an accuracy of
89.48%. Since convolutional neural networks present good accuracy for ground-based
cloud classification, many studies have examined different network variants. Liu et al. [17]
proposed a task-based graph convolution network TGCN to learn image relations and
discriminant features through supervised learning and divided 8000 ground-based cloud
images into seven categories. Liu et al. [18] also proposed a multimodal generative ad-
versarial network to transfer ground-based cloud and multimodal information into the
network. The generalizability of ground-based cloud image categorization was thereby
improved. These convolutional activation images contain different information. Shal-
low convolutional activation features contain textural and structural information of the
cloud image, whereas deep convolutional activation features contain high-level semantic
information, with both feature sets being very important for identifying ground-based
cloud images. The key challenge for improving accuracy is to associate the two informa-
tion components and then weigh their relationship. Parameter selection and tuning is an
important means of solving this problem. Gan et al. [19] classified ground-based cloud
images using duplex norm-bounded sparse coding for spectral and texture characteristics.
Li et al. [20] proposed a novel loss-function suitable for ground-based cloud classification,
termed dual-guided loss, which improved the ability to express ground cloud features.
Phung et al. [21] used regularization technology to increase generalizability and avoid
overfitting and introduced model mean integration to reduce the prediction variance and
improve classification accuracy. Li et al. [22] proposed a ground-based cloud classifica-
tion method based on Transformer, which learns the global features of cloud images by
extracting long-range dependencies between sequences.

In order to improve the accuracy of cloud type identification and incorporate multiple
parameters, we selected an appropriate network and modified the network according to
experimental effects and the characteristics of the large dataset. A detailed investigation is
then conducted on the important parameters by combining transfer learning, after which
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the spatial layout information of the cloud image and the weighting of local textural
information are optimized, thereby significantly improving the recognition accuracy.

The main contributions of this study are as follows: (1) Through a comprehensive
assessment and comparison of nine networks, this study analyzed the performance of
nine networks in the field of ground-based cloud classification. (2) The DenseNet neural
network model is employed as baseline, and the structure was modified meticulously
according to the distinctive characteristics of ground-based clouds and the intricacies of
large-scale diverse datasets, which amplifies the generalization ability and elevates the
recognition accuracy of the network. (3) A novel CloudDense Block has been meticulously
crafted, incorporating the Channel-wise Squeeze and Excitation (SE) mechanism to amplify
channel attention and elevate the salient features pertinent to cloud classification endeavors.
The substitution of the sharpened cosine convolution (SCConv) heightens the capability to
extract cloud image features in a superior manner. (4) An efficient and suitable training
strategy is proposed to elevate the efficiency of network training and the accuracy of
classification tasks. (5) By modifying parameter configurations, the optimal parameter
CloudDenseNet is obtained by combining transfer learning with designed numerous
experiments, which significantly enhances the network training efficiency and expedites
the process.

The rest of the paper is structured as follows. In Section 2, we briefly introduce the
materials and methods involved in this cloud classification experiment. In Section 3, we
explain the main research methods and network structure designed in the experiment. In
Section 4, we describe the experimental procedure and implementation details. In Section 5,
we discuss and analyze experiment results in detail. Finally, in Section 6, we present a
summary and an analysis of the experimental results.

2. Materials and Methods

A substantial quantity of training samples stands as a prerequisite to ensure the
efficacy of deep neural network models. Thus, the formulation and selection of a dataset
assumes a pivotal role in the landscape of deep learning. Since our deep neural networks
are prone to overfitting when using small datasets, we selected large ground-based cloud
datasets presently available, to verify the recognition performance of the algorithm in this
paper on large-scale datasets.

2.1. Dataset Description
2.1.1. Ground-Based Cloud Dataset (GCD)

The full name of the GCD dataset is TJNU-ground-based cloud-dataset of Tianjin
Normal University [23]. The dataset contains 12,000 cloud images, which are divided
into seven categories: (1) cumulus, (2) altocumulus and cirrocumulus, (3) cirrus and
cirrostratus, (4) clear sky, (5) stratocumulus, stratus, and altostratus, (6) cumulonimbus
and nimbostratus, and (7) mixed clouds, according to the criteria developed by the World
Meteorological Organization (WMO) [24]. The dataset was obtained by cameras across
nine provinces of China and has great diversity. All cloud images adhere to a color JPEG
format, featuring a resolution of 512 × 512 pixels. The cloud image sample processing is
clear and standard, being suitable for deep convolutional neural network training. The
sample image of the dataset is shown in Figure 1, and details and abbreviations used in the
cloud map are given in Table 1.
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Figure 1. Examples of cloud images from the GCD dataset: (a) cumulus (Cu); (b) altocumulus (Ac); 
(c) cirrus (Ci); (d) clear sky (Cl); (e) stratocumulus (Sc); (f) cumulonimbus (Cb); (g) mixed (Mi). 

Table 1. Categories, abbreviations, and sample sizes of GCD dataset. 

Categories Abbreviation Sample Size 
Cumulus Cu 1550 

Altocumulus Ac 1450 
Cirrus Ci 884 

Clear sky Cl 2514 
Stratocumulus Sc 1296 

Cumulonimbus Cb 3610 
Mixed Mi 696 
Total - 12,000 

2.1.2. Huayun BJUT-MIP Cloud Dataset (HBMCD) 
The HBMCD is called the Huayun BJUT-MIP cloud dataset. It was collected by the 

Beijing University of Technology using Huayun observation equipment [25]. This dataset 
divides 25,118 ground-based cloud images into 11 categories, namely 10 standard cloud 
categories and no cloud (No). The 10 cloud categories include altocumulus (Ac), altostra-
tus (As), cumulonimbus (Cb), cirrocumulus (Cc), cirrus (Ci), cirrostratus (Cs), cumulus 
(Cu), nimbostratus (Ns), stratocumulus (Sc), and stratus (St).  

All cloud images adhere to a color JPEG format, featuring a resolution of 256 × 256 
pixels. The dataset contains 25,118 cloud images, which belong to a large-scale dataset. It 
is currently the largest dataset divided into 10 types of cloud genera, and it is easy to carry 
out deep learning ground-based cloud classification research on this dataset. Table 2 
shows the sample size for each cloud class. However, the sample size of each category of 
the 11 cloud images is not uniform. Its sample cloud images are shown in Figure 2. 

Figure 1. Examples of cloud images from the GCD dataset: (a) cumulus (Cu); (b) altocumulus (Ac);
(c) cirrus (Ci); (d) clear sky (Cl); (e) stratocumulus (Sc); (f) cumulonimbus (Cb); (g) mixed (Mi).

Table 1. Categories, abbreviations, and sample sizes of GCD dataset.

Categories Abbreviation Sample Size

Cumulus Cu 1550
Altocumulus Ac 1450

Cirrus Ci 884
Clear sky Cl 2514

Stratocumulus Sc 1296
Cumulonimbus Cb 3610

Mixed Mi 696
Total - 12,000

2.1.2. Huayun BJUT-MIP Cloud Dataset (HBMCD)

The HBMCD is called the Huayun BJUT-MIP cloud dataset. It was collected by the
Beijing University of Technology using Huayun observation equipment [25]. This dataset
divides 25,118 ground-based cloud images into 11 categories, namely 10 standard cloud
categories and no cloud (No). The 10 cloud categories include altocumulus (Ac), altostratus
(As), cumulonimbus (Cb), cirrocumulus (Cc), cirrus (Ci), cirrostratus (Cs), cumulus (Cu),
nimbostratus (Ns), stratocumulus (Sc), and stratus (St).

All cloud images adhere to a color JPEG format, featuring a resolution of 256 × 256
pixels. The dataset contains 25,118 cloud images, which belong to a large-scale dataset.
It is currently the largest dataset divided into 10 types of cloud genera, and it is easy to
carry out deep learning ground-based cloud classification research on this dataset. Table 2
shows the sample size for each cloud class. However, the sample size of each category of
the 11 cloud images is not uniform. Its sample cloud images are shown in Figure 2.
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Table 2. Categories, abbreviations, and sample sizes of HBMCD Dataset.

Categories Abbreviation Sample Size

Altocumulus Ac 2256
Altostratus As 2584

Cumulonimbus Cb 1392
Cirrocumulus Cc 1302

Cirrus Ci 3075
Cirrostratus Cs 2638

Cumulus Cu 3100
No cloud No 3804

Nimbostratus Ns 1236
Stratocumulus Sc 2148

Stratus St 1583
Total - 25,118

Sensors 2023, 23, x FOR PEER REVIEW 5 of 26 
 

 

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)
 

Figure 2. Example of cloud images from the HBMCD dataset: (a) altocumulus (Ac), (b) altostratus 
(As), (c) cumulonimbus (Cb), (d) cirrocumulus (Cc), (e) cirrus (Ci), (f) cirrostratus (Cs), (g) cumulus 
(Cu), (h) no cloud (No), (i) nimbostratus (Ns), (j) stratocumulus (Sc), and (k) stratus (St). 

Table 2. Categories, abbreviations, and sample sizes of HBMCD Dataset. 

Categories Abbreviation Sample Size 
Altocumulus Ac 2256 
Altostratus As 2584 

Cumulonimbus Cb 1392 
Cirrocumulus Cc 1302 

Cirrus Ci 3075 
Cirrostratus Cs 2638 

Cumulus Cu 3100 
No cloud No 3804 

Nimbostratus Ns 1236 
Stratocumulus Sc 2148 

Stratus St 1583 
Total - 25,118 

2.1.3. Cirrus Cumulus Stratus Nimbus (CCSN) 
The Cirrus Cumulus Stratus Nimbus dataset was released by Zhang’s team [16] at 

Nanjing University of Information Science and Technology, which divides cloud catego-
ries into 11 according to the international cloud category standard, including altocumulus 
(Ac), altostratus (As), cumulonimbus (Cb), cirrocumulus (Cc), cirrus (Ci), cirrostratus (Cs), 
contrail (Ct), cumulus (Cu), nimbostratus (Ns), stratocumulus (Sc), and stratus (St).  

Owing to the extensive array of cloud classifications, the cloud imagery within this 
dataset exhibits notable luminance fluctuations and interclass divergences. All images ad-
here to a color JPEG format, featuring a resolution of 400 × 400 pixels. The dataset contains 

Figure 2. Example of cloud images from the HBMCD dataset: (a) altocumulus (Ac), (b) altostratus
(As), (c) cumulonimbus (Cb), (d) cirrocumulus (Cc), (e) cirrus (Ci), (f) cirrostratus (Cs), (g) cumulus
(Cu), (h) no cloud (No), (i) nimbostratus (Ns), (j) stratocumulus (Sc), and (k) stratus (St).

2.1.3. Cirrus Cumulus Stratus Nimbus (CCSN)

The Cirrus Cumulus Stratus Nimbus dataset was released by Zhang’s team [16] at
Nanjing University of Information Science and Technology, which divides cloud categories
into 11 according to the international cloud category standard, including altocumulus
(Ac), altostratus (As), cumulonimbus (Cb), cirrocumulus (Cc), cirrus (Ci), cirrostratus (Cs),
contrail (Ct), cumulus (Cu), nimbostratus (Ns), stratocumulus (Sc), and stratus (St).

Owing to the extensive array of cloud classifications, the cloud imagery within this
dataset exhibits notable luminance fluctuations and interclass divergences. All images
adhere to a color JPEG format, featuring a resolution of 400 × 400 pixels. The dataset
contains 2543 cloud images, which belong to a light-scale dataset. To preempt overfitting,
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data augmentation is also implemented to amplify the dataset’s scope. Figure 3 illustrates
images from the dataset, while Table 3 delineates the count of samples of dataset.
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CloudDenseNet. The sample imbalance problem is quite prevalent in ground-based cloud 
classification tasks. The distribution proportions of clouds and sky in many cloud images 

Figure 3. Example of cloud images from the CCSN dataset: (a) altocumulus (Ac), (b) altostratus (As),
(c) cumulonimbus (Cb), (d) cirrocumulus (Cc), (e) cirrus (Ci), (f) cirrostratus (Cs), (g) contrail (Ct),
(h) cumulus (Cu), (i) nimbostratus (Ns), (j) stratocumulus (Sc), and (k) stratus (St).

Table 3. Categories, abbreviations, and sample sizes of CCSN Dataset.

Categories Abbreviation Sample Size

Altocumulus Ac 221
Altostratus As 188

Cumulonimbus Cb 242
Cirrocumulus Cc 268

Cirrus Ci 139
Cirrostratus Cs 287

Contrail Ct 200
Cumulus Cu 182

Nimbostratus Ns 274
Stratocumulus Sc 340

Stratus St 202
Total - 2543

2.2. Data Pre-Processing

Since this research is a cloud classification algorithm on a large-scale ground-based
cloud image dataset, sufficient data volume is the basis for studying the performance of
CloudDenseNet. The sample imbalance problem is quite prevalent in ground-based cloud
classification tasks. The distribution proportions of clouds and sky in many cloud images
vary greatly, that is, a cloud image usually contains a large number of clouds or sky. The
pixel count for one category is typically several times or even ten times that of another
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category. In addition, cloud categories are similar and convertible, so some cloud categories
are prone to confusion.

For instance, from Table 1, it is evident that the sample distribution in the GCD
dataset is highly imbalanced. Samples for Mixed and Ci are notably scarce, with only
696 and 884 samples, respectively, whereas Cumulonimbus has the highest sample count,
reaching 3610 images. This not only increases training complexity but also diminishes the
model’s credibility.

To address the impact of sample imbalance in ground-based cloud classification tasks,
we preprocessed the cloud dataset. Given the dissimilarity in the sample quantities for
each cloud category within the GCD and CCSN datasets, a standardization of samples was
necessitated. We employed data augmentation techniques based on spatial geometric trans-
formation and color transformation to augment the dataset’s sample size and complexity.
That is, using translation, flipping, rotation, color enhancement, contrast enhancement, and
brightness enhancement to generate cloud images. It can solve the problem of category
imbalance and better verify the classification accuracy, generalization ability, and robust-
ness of this cloud classification method on large-scale datasets. Figure 4 shows the sample
images added using the data augmentation method on the GCD dataset.
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Figure 4. Example of cloud images added by data augmentation: (a) original image, (b) translation,
(c) flipping, (d) rotation, (e) color enhancement, (f) contrast enhancement, (g) brightness enhancement.

This method entailed maintaining the sample count for each cloud category at a
uniform 3000 images. Categories with more than 3000 samples were deleted until they
contained only 3000, and categories with less than 3000 samples were enhanced.
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Since the image dimensions of the GCD dataset are 512 × 512, we utilized it as the
input image scale of the model. The image scale of the CCSN dataset is 400 × 400. In order
to meet the model input requirements, we employed bilinear interpolation to resize to
512 × 512 pixels.

2.3. Transfer Learning Approach

Transfer learning [26] is also known as cross-domain learning and domain adaptation.
The basic idea of transfer learning is to extract knowledge from the source domain and
transfer it to the target domain. For deep learning, transfer learning can prevent the
need for retraining a large deep network model and enables the fine-tuning of a trained
model for adjacent tasks, thus reusing the model. Obviously, the migrated initialization
parameters are closer to the final training value than the random initialization parameters,
which are used to avoid overfitting and decrease the loss to a local minimum value, greatly
accelerating the training speed and accuracy. Transfer learning has been successfully
applied for the classification of images, emotions, and text.

Transfer learning approaches can be categorized according to four types of technolo-
gies used: instance-, map-, network-, and adversity-based. Instance-based transfer learning
refers to the selection of some instances from the source domain as a supplement to the
training set of the target domain and is applicable to cases in which the weights of some
instances in the source domain can be assigned to the target domain for use despite the
differences between the two domains. Map-based transfer learning refers to mapping the
instances of the source and target domains to a new data space, which is applicable to the
case in which the instances of both domains are similar. Network-based transfer learning
refers to neural network-based training in which part of the network in the source domain
is trained in advance and migrates it to the target domain. It is suitable for large-scale
datasets in the source domain, and the features extracted from the network are universal.
Adversity-based transfer learning introduces adversative layers to find common transfer-
able representations of source and target domains and does not emphasize the training of
network features and accuracy improvement [27]. However, in the field of ground-based
cloud classification, we used network-based transfer learning to pre-train the network on
the large-scale dataset ImageNet and migrate it to the target dataset. Figure 5 shows a
network-based transfer learning architecture, taking the DenseNet [28] model as an ex-
ample. The upper part of Figure 4 represents the pre-training part of the network in the
ImageNet dataset. The parameters for pre-training are transferred to the ground-based
cloud classification model below for training. The lock icons shown in the lower network
indicate that the parameters of the network layer in front are frozen at the beginning
of training.
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Network-based transfer learning refers to transforming part of a pre-trained network
in the source domain, including its network structure and connection parameters, into a
part of the deep neural network for a target domain, which can also be said to be parameter-
based transfer learning. In general, four types of network-based transfer learning methods
are employed in deep learning.

(1) Freeze the weight parameters of the source network, delete the full connection layer,
and add the classifier again.

(2) Freeze the parameters at the bottom of the source network and train the parameters
at the top with a low learning rate.

(3) Fine-tune the entire source network with a low learning rate, remove the full connected
layer, and add the connection layer adapted to the target domain.

(4) The original model of the source network is used, but its parameters are not consid-
ered, and instead, random initialization is used during training.

Clouds have high similarity among samples and can be easily confused with the
sky background. Moreover, ground-based cloud image samples have a single color and
obvious textural and structural characteristics. Ground-based cloud transfer learning can
be divided into the following steps according to the characteristics of ground-based clouds:

(1) Select an appropriate convolutional neural network model and obtain its weight using
ImageNet database and training.

(2) Import the pre-training weight parameters, reconstruct the model, and recreate the
feature map depending on the category of the ground-based cloud for better classifi-
cation.

(3) Freeze the original network layer except the Top Block, train the top layers of the
network, gradually unfreeze the original network, design parameters according to
the experimental results, and fine-tune. The step flowchart is shown in Figure 6.
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3. Methodology
3.1. Backbone Structure

With the rapid development of convolutional neural networks in various fields, many
excellent networks, such as VGG [29], ResNet [30], DenseNet, MobileNet [31], and Effi-
cientNet [32], have been proposed. These have delivered remarkable results. Selecting
an appropriate convolutional neural network model before improving and fine-tuning
the top layer of the network is crucial. The present study evaluated the VGG16, VGG19,
ResNet50, ResNet101, DenseNet121, MobileNet, EfficientNetB7 [32], InceptionV3 [33], and
SEResNet18 [34] models, which contain the Squeeze and Excitation modules. The net-
works are trained on the SWIMCAT [35] dataset, which is a light-scale dataset containing
784 ground-based cloud samples. The training and testing sets were divided 1:1, and trans-
fer learning with the same parameters was used for training. The results shown in Figure 7
indicate that DenseNet121 [36] has the highest accuracy, up to 95.51%. The other networks
exhibited various shortcomings. For example, MobileNet and EfficientNet had slow rates
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of accuracy improvement, VGGNet was poorly fit on the training set, and ResNet and
SEResNet had lower accuracies than DenseNet when using the test set. VGG16 and VGG19
are relatively shallow network structures with only 16 and 19 layers, respectively. This
may be why they cannot fit well on the training set, and thus, there is a loss of high-level
features during training. In contrast, other networks, such as DenseNet and ResNet, have
over 100 layers. The training results indicate that the accuracy rates on the training set are
rising rapidly, and the final accuracy of the training set is over 98%. Since the accuracy of
the test set does not increase in the first few epochs of training for EfficientNet and Mo-
bileNet, this suggests that overfitting occurs during training because the structures of these
two networks do not handle overfitting well, while DenseNet does (see below). ResNet,
Inception, and SEResNet perform well, but a gap between the accuracy of the test set and
that of DenseNet still remains. In addition, DenseNet121, as a lightweight network model,
has around 8 million network parameters. Among the remaining networks, SEResNet
has the least parameters, which includes three million more than those of DenseNet121,
while ResNet101 has five times more parameters than DenseNet121. A small number
of parameters significantly reduces the computational burden of the network, making it
possible to train and apply neural networks on the device. The number of parameters
plays an important role in the practical application of the model to ground-based cloud
recognition systems.
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set and the orange value represents the accuracy of the test set.

DenseNet employs numerous Dense Blocks, where all layers within a Dense Block
are intricately connected in a full feedback manner. Another major characteristic is that it
adopts a short-circuit dense connection. It allows part of the output of the front layer to
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directly reach the back layer, which is helpful for training deeper layers of the network.
The output of the traditional network at layer L is expressed by the formula:

XL = HL(XL−1) (1)

where H is a nonlinear function, and X is the output of a certain layer.
The short-circuit connection contains the output of the previous layer. For example,

the output of the ResNet network at layer L is expressed by the formula:

XL = HL(XL−1) + XL−1 (2)

The short-circuit connection of ResNet is traditional, and only contains the output of
the current layer and the previous layer, while DenseNet adopts a dense connection, where
each layer is short-circuited together with all the previous layers in the channel dimension.
The output of the DenseNet network at layer L is expressed by the formula:

XL = HL(X0, X1, . . . , XL−1) (3)

Dense connection allows the reusing of features. Its short-circuit connection mech-
anism is reflected in the Dense Block module in Figure 6. These two structures have
regularization benefits and reduce issues from overfitting. Thus, the analysis of various
networks shows that although there are many variants of DenseNet, considering that there
are large-scale datasets used in the experiment, the DenseNet121 model with its fewer
layers is an optimal basic model for the ground-based cloud classification task in this
experiment to avoid overfitting problems.

3.2. Network Design
3.2.1. CloudDense Block

The DenseNet network leverages a dense connectivity scheme to achieve feature reuse,
fortify feature propagation, alleviate the issue of gradient vanishing, and reduce parameter
count. However, DenseNet overlooks the inter-channel correlations.

The Squeeze and Excitation Networks (SENet) have an attention mechanism that fine-
tunes the weight relationships between different channels, enhancing the focus on crucial
channels [34]. It compresses the feature map through global average pooling to achieve the
fusion of global context information. Subsequently, it employs a sequence of operations:
fully connected layers, rectified linear unit (ReLU), another fully connected layer, and a
Sigmoid activation function to generate channel weights for each feature channel. Finally,
it performs element-wise multiplication between the original input feature map and the
acquired channel weights, achieving feature calibration along the channel’s dimension.
Therefore, drawing inspiration from the SENet concept, this paper introduces the SE Block
into Dense Block, imbuing it with a channel attention mechanism. This establishes the
SE-DenseNet, which orchestrates feature channel recalibration to enhance salient features
conducive to cloud classification tasks while dampening the impact of less influential traits.

Firstly, the SE Block is embedded into each Dense Block, that is, the SE Block is added
before each nonlinear combination function HL(·) in the Dense Block. The input and output
of each layer of the network in the Dense Block pass through the extrusion and excitation
modules in the SE Block to generate channel weights and enhance the beneficial features
according to the feature weights to achieve weight recalibration. Secondly, the ordinary
convolution in the original Dense Block is replaced by sharpened cosine convolution (SC-
Conv) to improve the feature extraction ability of the cloud image. This paper named this
network structure CloudDenseNet, and the enhanced Dense Block was named CloudDense
Block. The structural diagram is shown in Figure 8. In the original DenseNet, if a Dense
Block consists of L layers, where each layer takes the union of outputs from all preceding
layers, as defined by Equation (3), the enhanced CloudDenseNet introduces SE Blocks
before each nonlinear function within the original DenseNet network. This means that
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each feature map processed by a nonlinear function in CloudDenseNet is the result of the
feature map X weighted by the SE Block. Consequently, in CloudDenseNet, the output of
each CloudDense Block complies with Equation (4):

X̃L = HL(X̃0, X̃1, . . . , X̃L−1) (4)

where X̃L represents the feature map output by the L layer after recalibration by the
SE Block.
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3.2.2. Sharpened Cosine Convolution

Traditional multi-layer neural networks utilize the dot product of the output vector
from the previous layer and the input weight vector as the input to the activation func-
tion. The substantial neuron variance renders the model sensitive to input distribution
variations, leading to suboptimal generalization and exacerbating internal covariate shifts,
consequently impairing training speed.

By amalgamating cosine similarity with convolutional networks and harnessing cosine
normalization [37] (as depicted in Equation (5)) to confine the activation function within the
range of −1 to 1, the risk of gradient explosion is circumvented, thereby attenuating vari-
ance. It is noteworthy that completely disparate input vectors could manifest a semblance
of cosine similarity. Furthermore, as inputs approach zero, numerical instability in the
cosine similarity may arise. Consequently, this study advocates the utilization of sharpened
cosine convolution (SCConv) as an alternative paradigm to conventional convolutions.

Equation (6) presents the sharpened cosine similarity computation, where two hyper-
parameters τ and q, augment the cosine similarity. The sharpened cosine similarity and
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convolution are combined to form a new sharpened cosine convolution with better feature
extraction ability:

cosθ =

→
ω ·→x
‖→ω‖‖→x ‖

(5)

SharpCosSim(
→
x ,
→
ω) = sign(

→
x ,
→
ω)

( →
x ·→ω

(‖→x ‖+ q)‖→ω‖

)τ

(6)

where
→
ω and

→
x represent the weight vector and input vector; ‖→ω‖ and ‖→x ‖ represent the

Euclidean distance of them. θ represents the angle between
→
x and

→
ω. sign(

→
x ,
→
ω) represents

a sign function, containing the side-similarity of the input vector and the weight vector,
which can determine the relative direction between vectors.

3.2.3. CloudDenseNet

In order to improve the accuracy of ground-based cloud classification, we still need to
design the top module of the DenseNet network and modify the convolutional and the top
layers of the network, in addition to redesigning the Dense Block. We first analyzed the
possibility of modifying the DenseNet top-level network structure. Figure 9 is a feature
image extracted from a cloud image by convolutional blocks of different layers. It can
be seen that texture features are extracted from shallow convolutional networks, while
semantic features are extracted from deep convolutional networks. This allowed us to add
the output of the front convolutional layer of the network to the back. Specifically, the
output after the Block 1 module is pooled and weighted with the final output through two
layers of neurons containing the dropout function.
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The top layer of the original network is the output layer using SoftMax as the activation
function. That is, the top layer of DenseNet trained on ImageNet has 1000 neurons, and
ImageNet is divided into 1000 classes. The ground-based cloud classification on GCD
dataset has 7 classes. To map the features from the 1000 neurons, excess classes cannot
simply be deleted and then replaced with 7 neurons. This will map a large amount of
information directly to a small output, resulting in unstable training results. Therefore,
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using the proposed method, we redesigned the Top Block of DenseNet, which we call
CloudDenseNet.

The specific structure of the Top Block will be described in detail. First, a flatten
layer was used to flatten the last convolutional layer of the DenseNet network, making the
multidimensional output one-dimensional. It facilitates a subsequent connection to the fully
connected layer (FC). Since the previous convolutional layer had 7 × 7 × 1024 dimensions,
the flatten layer will have 50,176 neurons. Then, full connection (FC) layers with 1 × 1024,
1 × 512, and 1 × 32 neurons were added after the flatten layer, so that features slowly
transition to the top layer instead of being directly mapped. A batch normal (BN) layer
was added after each FC layer, as this greatly improves the network generalizability. This
layer also enables a high learning rate, which is important for subsequent training. The
last addition to the activation function was a SoftMax 7 classification layer. In addition,
parameter initialization of the one-dimensional neuron layer used LeCun [38] uniformly
distributed initialization, which avoids faults in the previous layer and in the training
process caused by random initialization. The parameters were uniformly sampled from an
interval of [−limit, limit] using Equation (7), where the input is the number of input units
for the weight vector, and Sqrt is the square root operation:

limit = Sqrt(
6

input
) (7)

Furthermore, in ground-based cloud classification, cloud images exhibit characteristics
such as uniform color, similar shapes, and potential confusion. Thus, it remains essential
to thoroughly consider the impact of color and texture on cloud classification tasks. After
analyzing the feature map in Figure 9, we have made further adjustments to the branch
of the Top Block. To enhance the importance of shallow-level features of ground-based
clouds within CloudDenseNet, we have directed the initial CloudDense Block through
two connecting layers. Additionally, we have introduced the dropout function for random
deactivation and weighted merging of the input with the first fully connected layer after
the flatten layer. The CloudDenseNet network structure is shown in Figure 10.
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4. Experiment
4.1. Evaluation Metric

To holistically assess the classification efficacy of the proposed approach across diverse
image categories, this paper employs accuracy, precision, recall, and F1-score as the evaluation
metrics. The calculation formulas of accuracy are as follows:

Accuracy(ACC) =
TP + TN

TP + TN + FP + FN
(8)

where TP (true positive) denotes the count of accurately classified instances within a specific
class, TN (true negative) represents the tally of correctly classified instances among the
remaining categories, FP (false positive) signifies the instances erroneously categorized
within the remaining categories, and FN (false negative) signifies the instances inaccu-
rately assigned within a specific class. Precision, recall, and F1-score can be mathematically
articulated as follows:

Precision(PR) =
TP

TP + FP
(9)

Recall(RE) =
TP

TP + FN
(10)

F1− score =
2× PR× RE

PR + RE
(11)

4.2. Loss Function

To mitigate the impact of the dataset’s sample imbalance issue, in addition to pre-
processing the dataset, we have introduced loss functions to CloudDenseNet. We have
adjusted the weightage of these losses and automatically fine-tuned the weights based on
the varying difficulty levels of learning from samples in different cloud image categories.

The Focal Loss is an improvement upon the cross-entropy loss function. It adjusts the
weighting of the loss values based on the difficulty of the samples, giving more attention
to challenging samples while reducing the weight of easily classified ones. Formula (12)
represents the calculation of the Cross-Entropy Loss, while Formula (13) illustrates the
computation of the Focal Loss:

CE− Loss = − log Pt (12)

F− Loss = −(1− Pt)
γ log Pt (13)

where Pt denotes the probability values predicted by the model, and γ is the weight
adjustment factor for sample down-weighting. When γ is set to 0, the Focal Loss reduces to
the Cross-Entropy Loss. As γ increases, the adjustment factor also increases.

Therefore, by adjusting γ, the weight values of samples with different difficulty levels
can be adjusted smoothly. Focal Loss can solve the errors caused by the uneven distribution
of different sample categories and the imbalance of difficult and easy samples.

4.3. Implementation Details

The experiment was run on the Anaconda platform using Python 3.8 on an Ubuntu
20.0 operating system. A GTX-2080ti graphics processing unit was used for training.
TensorFlow was chosen as the deep learning framework. The GCD datasets were selected
to train the model. The dataset was split into the training, validation, and test sets in a
ratio of 3:1:1; that is, the training, validation, and test sets contained 12,600, 4200, and
4200 samples, respectively.

First, the cloud samples in the augmented dataset were normalized; that is, the input
RGB value of the images was divided by 255, with a resulting value being between 0 and 1.
The DenseNet121 network was reconstructed according to the above method; the weight
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of the network pre-trained using the ImageNet dataset was imported into the network;
the relevant parameters were frozen, and the Top Block was modified using the method
described above. The parameters of the newly added layer were initialized using LeCun
uniform distribution.

The network model comprises numerous parameters. In this study, model training
is an iterative process involving the adjustment of model parameters to minimize the
disparity between actual labels and predicted outcomes. We employed Focal Loss as the
loss function and utilized Adaptive Momentum Estimation and Weight Decay (AdamW)
for optimization. L2 regularization was incorporated into the Adam optimizer to address
potential overfitting concerns while maintaining the benefits of rapid gradient descent;
batch size was set to 32.

After setting up the CloudDenseNet network, the parameter training network was
adjusted. First, only the parameters of the top layer were trained, freezing all layers except
the newly added Top Block (see steps 1–3, below). The main purpose of this step is to first
adapt the top-level parameters to the model data, that is, to obtain a gentle experimental
curve before thawing. If randomly initialized parameters or parameters generated by the
initialization function are directly applied, the convergence speed will be slowed down
and the final accuracy will be affected. Then, we unfroze part of the bottom layer of
CloudDenseNet. CloudDenseNet can be divided into five large convolution blocks in
general. We started fine-tuning from the third block (specifically, at the 141st layer) and
proceeded with steps 4–5 (see below) after unfreezing.

(1) Train the top 10 epochs of the network with a learning rate of 0.0001.
(2) Train the top 10 epochs of the network with a learning rate of 0.00001.
(3) Start fine-tuning from the third convolution block, that is, the parameters after the

third convolution block are unfrozen. First, train 20 epochs with a learning rate
of 0.00005.

(4) Train 20 epochs with a learning rate of 0.00001.
(5) Finally, defrost all layers and train 20 epochs with a learning rate of 0.000001.

The above steps encompass the training stage.

5. Results and Analysis
5.1. Analysis of Results

Verification of the experimental results diagram are shown in Figure 11, correspond-
ingly, including training and validation accuracy and loss. The confusion matrix is shown
in Figure 12.
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The final classification accuracy rate exceeded 93.43%. The outcomes unequivocally
demonstrate the success of our experiments, with the reengineered CloudDenseNet exhibit-
ing exceptional prowess in diverse cloud classification performance.

It can be seen from Figure 11 of the experimental results curve that in the first
20 epochs, the accuracy increased rapidly and gradually stabilized, mainly because only
the top layer was trained at the beginning while the other parameters were frozen. In
the 20th epoch, the parameters of the newly added top layer were trained to the greatest
possible extent and the accuracy tended to stabilize, which could prevent the phenomenon
of gradient faults when the lower layer was unfrozen.

It is common practice to use a very low learning rate after unfreezing a layer to
avoid breaking the training gradient. In this experiment, the BN layer was used at the
top to enhance the network generalizability, and training could occur at higher learning
rates. When 20 epochs were detected, the curve exhibited a small oscillation range, but
we observed that the loss of the training set decreased at a faster rate; consequently, the
accuracy of the training set approached 100%. When a lower learning rate was used, the
curve quickly smoothened and the accuracy reached its peak.

Table 4 shows the GCD dataset’s precision, recall, F1-score, and accuracy of each
category. The accuracy reached 93.43%, and the metric data of cumulus, altocumulus, cirrus,
clear sky, and mixed all exceeded 90%. Regarding the confusion matrix, the precision,
recall, and F1-score of the test showed that the error of each category was low, with
only a few categorization errors. Altocumulus cloud, cirrus cloud, and clear sky have
good representation, one category contains 300 test samples, and only a few samples are
misjudged. In addition, the precision, recall, and F1-scores of these categories are good,
and approach 98%. It can be observed from Figure 1 that the features of these categories
are significantly different from those of other categories. However, compared to other
categories, the precision, recall, and F1-score of stratocumulus and cumulonimbus is less
than 90%, only 88% and 84%, respectively.The identification error was comparatively high
between stratocumulus and cumulonimbus, owing to the high similarity between these
two categories. These two clouds both cover the sky with closely resembling colors and
textures. This underscores the significant influence of both color and texture information on
the recognition performance of the CloudDenseNet model. With the passage of time, these
two cloud categories might potentially undergo transformation under certain conditions.
Color and texture information should be studied in future experiments to achieve higher
accuracy and distinguish between the two categories.
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Table 4. Precision, recall, F1-score, and accuracy of CloudDenseNet on the GCD dataset.

Categories Precision (%) Recall (%) F1-Score (%) Accuracy (%)

Cu 97.62 98.71 97.84

93.43

Ac 96.77 98.74 97.62
Ci 99.66 96.97 97.72
Cl 98.99 100 99.91
Sc 87.97 84.92 85.88
Cb 83.96 86.78 84.69

Mixed 93.49 91.65 92.32

5.2. Ablation Experiment

In order to verify the effectiveness of CloudDense Block and CloudDenseNet, ablation
experiments were conducted on the GCD dataset to compare the cloud classification
performance of various optimization strategies.

The ablation experiment results are depicted in Table 5. When only the SE Block
was added to the original Dense Block, there was a slight improvement in evaluation
metrics, with accuracy rising by 1.36%, indicating that the SE Block has increased its focus
on important channels. Incorporating SCConv into the original Dense Block resulted in
approximately a 1.9% improvement in metrics, confirming the sharpened cosine convo-
lution’s capability in feature extraction. The introduction of the CloudDense Block led
to a substantial enhancement in overall performance, with accuracy increasing by 3.63%,
indicating that the combination of the SE Block and SCConv has positive significance for
improving model performance. Further inclusion of the Top Block boosted accuracy by
1.85%, with precision, recall, F1-score, and accuracy reaching 94.06%, 93.96%, 93.88%, and
93.43%, respectively. These results underscore the efficacy of redesigning the top-level
module, significantly improving feature extraction capabilities and classification accuracy.
Ablation experiments demonstrate that each improvement module in CloudDenseNet
contributes positively to enhanced classification performance, validating the excellence
and effectiveness of the proposed method.

Table 5. Ablation experiment results.

Schemes Precision (%) Recall (%) F1-Score (%) Accuracy (%)

DenseNet (Original) 88.42 88.13 88.04 87.95
DenseNet (CloudDense
Block without SCConv) 89.77 89.64 89.52 89.31

DenseNet (CloudDense
Block without SE Block) 89.96 89.87 89.82 89.86

CloudDenseNet
(without Top Block) 91.69 91.64 91.61 91.58

CloudDenseNet 94.06 93.96 93.88 93.43

5.3. Feature Visualization

To further substantiate the cloud classification proficiency of CloudDenseNet, we
devised a feature visualization experiment. Employing the Gradient-weighted Class Acti-
vation Mapping (GRAD-CAM) to generate a heat map, we facilitated the visualization of
feature extraction capabilities of CloudDenseNet in an intuitively accessible manner. This
methodology unveils the pivotal regions within an image by forecasting them through the
generation of rudimentary attention maps from the final layer of the model. The luminosity
of the attention map’s hues correlates with the significance of the corresponding regions in
the image.

As shown in Figure 13, the models can easily learn the characteristics of the clouds,
extract images with the same color features, and understand important color information
features, such as recognizing distinct features of the sky versus the clouds. The edges
and textures of clouds are clearly distinguished by color on the heat map. It shows that
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texture features are also well learned, highlighting the efficacy of the model. Therefore,
the proposed method of CloudDenseNet can highlight the real class of the object and has
strong localization and recognition abilities.
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5.4. Parameter Analysis

The innovations of the CloudDenseNet network are mainly divided into the Cloud-
Dense Block and branch structure of the Block 1, as well as the newly added Top Block.
The parameters of the weighted operation of the feature output in the branch structure
need to be studied. Usually, researchers use common weighted operations to fuse different
subnetworks. These fusion methods cannot improve the accuracy of the model significantly.
The feature information can be simply added after dropout regularization to obtain good
results. This is because other fusion methods may amplify unimportant feature information,
but dropout has better effects, and allows increased model generalizability.

To study the influence of modifying the Top Block and whether this experiment
is the best modification scheme, the five fully connected top structures of layers 2–6
were compared. Two experiments were designed using these five structures. In the first
experiment, only the parameters of the top-level network were trained before the network
was unfrozen, to locate the top-level structure with improved accuracy and smoothen
the curves of the test set. As this experiment only trained the top-level parameters, it
was impossible to screen the required structures according to accuracy, hence, the second
experiment was designed. In the second experiment, the experimental steps are the same
as those described in the fourth part of this paper. Five different top-level structures were
used for the experiment and the experimental results were observed. The convergence and
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accuracy of the training curves of each scheme were compared. Both experiments used the
GCD dataset.

In the first experiment, 20 epochs were trained with a learning rate of 0.0001, and the
experimental results are shown in Figure 14. The 2-layer and 3-layer test sets constantly
exhibited low accuracy due to poorer layer fitting, while the three other kinds of structure
curves of the training and testing sets rose steadily. The reason may be that the two schemes
have fewer layers and are prone to overfitting during training, resulting in the accuracy rate
fluctuating all the time. The results of the second experiment are shown in Figure 15. After
40 epochs, the experimental curves of the 2-layer and 3-layer structures showed increases
in loss without changes in accuracy, which is a common indication of overfitting. The
final test set accuracies of the 4-layer, 5-layer, and 6-layer structures were compared. The
experimental curve of the 4-layer structure is shown in Figure 10. The 4-layer top structure
network had the highest accuracy. Compared with the 5-layer and 6-layer solutions, the
4-layer solution has fewer network layers and fewer parameters for training, which is
conducive to lightweighting the model. This proves the feasibility and superiority of the
4-layer top-level network scheme.
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The purpose of weighting the output of the Block 1 to the Top Block is to increase the
proportion of the texture features extracted by the shallow network. In this scheme, the
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way of feature fusion, the number of output layers, and the parameter settings of dropout
are all issues that need to be studied. In order to verify that the experimental fusion method
is the best feature fusion method, 5 fusion methods were used to conduct comparative
experiments under the same parameters. Assume that the features that need to be fused
are f1 and f2. The experimental results of the five fusion methods are shown in Table 6.

Table 6. Experimental results of 5 feature fusion methods.

Methods Accuracy

f1 + f2 94.43%
f1 + f 2

2 88.81%
( f1 + f2)

2 84.67%
f 2
1 + f2 87.62%

[ f T
1 , f T

2 ]
T 78.14%

The results from Table 6 indicate that the first approach yields the best performance.
Therefore, this fusion method is adopted in this study. Furthermore, in the newly intro-
duced weighted branch, dropout is employed. In this experimental feature fusion, only
the shallow output branch needs to be set at a lower weight. To investigate the impact of
dropout’s random deactivation rate on the experimental results, we designed experiments
with different deactivation rates. Table 7 shows the recognition accuracy under different
dropout parameters. It can be observed that a dropout rate of 0.8 achieves the highest accu-
racy, indicating that judicious use of dropout can enhance the precision of ground-based
cloud classification.

Table 7. Accuracy with different dropout parameters.

Dropout Accuracy

0.1 60.33%
0.2 59.54%
0.3 67.36%
0.4 63.24%
0.5 75.88%
0.6 88.65%
0.7 90.21%
0.8 93.43%
0.9 90.02%

Finally, to substantiate that the fusion of shallow-level texture features is more efficient
than deep-level feature fusion, fusion branches were established in the second and third
CloudDense Blocks, in comparison to the branch established after the first CloudDense
Block in this study. Experimental results are presented in Table 8. The results demonstrate
that the shallow-level texture feature fusion designed in this study is superior and enhances
the accuracy of ground-based cloud classification.

Table 8. Experimental results of different location of shallow fusion branch.

Location of Fusion Branch Accuracy

CloudDense Block 1 94.43%
CloudDense Block 2 91.19%
CloudDense Block 3 90.76%

After many parameter experiments, it can be seen that the design of the Top Block
in this method is effective. It fully optimizes the weight of spatial layout information and
local texture information of cloud images. In summary, the novel CloudDenseNet network
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structure proposed achieves the highest recognition accuracy with low computational
complexity.

5.5. Comparsion with Other Methodologies

To substantiate the accuracy of experimental results and to underscore the superiority
of the CloudDenseNet model, we conducted comparative analyses against other prominent
methodologies, including deep learning methods proposed for ground-based cloud classifi-
cation, such as DeepCloud [15], CloudNet [16], TGCN [17], and classical CNN models such
as VGG16, ResNet50, InceptionV3, Xception [39], original DenseNet121, EfficientNet B7,
and SEResNet18. The various network models were applied to the optimized GCD dataset,
with consistent training and testing samples held throughout the comparative experiments.

The different methods and their experimental results are shown in Table 9. The
classification results reveal that among the methods tailored for cloud classification, TGCN
achieved the highest classification accuracy at 90.97%. Within the classic CNN models,
DenseNet121 and SEResNet18 exhibited similar classification accuracies, reaching 88.35%
and 88.39%. Notably, the proposed CloudDenseNet outperformed the original DenseNet
by a margin of 5.08%. It can be seen that CloudDenseNet is far superior to other methods,
and it is capable of more effectively extracting and distinguishing the characteristics of
ground-based clouds.

Table 9. Comparison of experiment results of different methods on large-scale datasets.

Method and Network Parameters (M)
Accuracy (%)

GCD HBMCD CCSN

DeepCloud [15] 40.5 88.56 86.28 85.67
CloudNet [16] 34.1 89.17 87.03 86.43

TGCN [17] 7.12 90.97 88.14 87.71
VGG19 144.1 83.27 81.06 80.13

ResNet50 25.6 84.28 82.18 81.09
InceptionV3 23.9 86.33 84.10 83.69

Xception 22.8 86.36 83.52 81.56
DenseNet121 7.98 88.35 86.06 85.87

EfficientNet B7 66 83.12 81.95 80.46
SEResNet18 11.5 88.39 86.91 84.68

CloudDenseNet 8.73 93.43 92.35 90.70

Furthermore, we conducted a comparative analysis of the parameter magnitudes among
various models to elucidate the lightweight nature of our proposed model. TGCN achieves
superior segmentation performance with the minimal parameter count. Conversely, with
a slight augmentation in parameter count, CloudDenseNet attains the highest level of clas-
sification efficacy, surpassing TGCN in accuracy by 2.46%. These findings substantiate the
lightweight attributes of our introduced CloudDenseNet architecture, enabling the attainment
of exceptional classification outcomes with reduced computational complexity.

Generalization ability and strong robustness are an important basis for evaluating the
model. We compared the generalization ability of each model on other large-scale datasets,
HBMCD and CCSN. Our model CloudDenseNet achieves an accuracy of 92.35% and
90.70% on the NBMCD and CCSN, which is still better than other models, indicating that
CloudDenseNet has strong robustness. However, the accuracy is 1.08% and 2.73% lower
than the experimental results in the GCD dataset. The reason may be that the disparity in
cloud images in the HBMCD dataset is not very obvious, and the cloud categories are too
detailed. An analysis reveals that interference factors, such as trees, peaks, and meadows
present in the cloud images within the CCSN dataset, exert an unfavorable influence on
the experimental results.

In summary, the CloudDenseNet method presented in this paper represents a lightweight
yet highly accurate approach, accompanied by robust generalization capabilities.
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6. Conclusions

Ground-based cloud observation constitutes the foundational cornerstone for acquir-
ing holistic cloud-related information. The classification of diverse ground-based clouds
holds profound implications within the meteorological domain. Convolutional neural net-
works have high applicability to ground-based cloud classification tasks, offering greatly
improved accuracy that far surpasses that of traditional methods. For ground-based cloud
identification using large-scale diverse datasets, extremely deep neural networks are needed
to accurately fit the data. The performance of these networks in classifying ground-based
clouds was studied, and the DenseNet model was selected to reconstruct, according to the
characteristics of ground-based clouds and the characteristics of large datasets. A novel
lightweight CloudDenseNet was proposed to improve the recognition accuracy and elevate
generalization ability.

Network-based transfer learning was applied to our ground-based cloud classification
research, which greatly accelerated the training process and improved the generalizability
of the network for new tasks by transferring pre-trained parameters on large datasets.

CloudDense Block has been meticulously crafted to amplify channel attention and
elevate the salient features pertinent to cloud classification endeavors, incorporating the
Channel-wise Squeeze and Excitation (SE) mechanism. The substitution of the sharpened
cosine convolution (SCConv) heightens the capability to extract cloud image features in a
superior manner. An efficient and suitable training strategy has been proposed to elevate
the efficiency of network training and the accuracy of classification tasks. The novel Top
Block architecture, which utilized novel top layers and branch structures, was found to
be effective.

The novel training method proposed in the present study greatly improved the ac-
curacy of network training. During the fine-tuning process, the initial parameters are
initialized through transfer learning, necessitating the use of a low learning rate. However,
as the lower layers of the network are unfrozen, increasing the learning rate can enhance ac-
curacy. The incorporation of Batch Normalization layers boosts generalization, permitting
training with higher learning rates.

This study presents a lightweight cloud classification method with high accuracy on
large-scale datasets, addressing the issue of low recognition accuracy of ground-based
clouds in large-scale datasets and mitigating to some extent the impact of color and texture
factors on recognition accuracy. The excellence and robustness of this method are verified
through parameter analysis experiments and comparative results. It illustrates that our
study serves to advance the development of cloud classification tasks. In future work, we
will further explore ground-based cloud classification algorithms, starting with hyperpa-
rameter tuning, such as optimizing parameters using dynamic differential evolution.
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