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Abstract: Access Control Policies (ACPs) are essential for ensuring secure and authorized access to
resources in IoT networks. Recognizing these policies involves identifying relevant statements within
project documents expressed in natural language. While current research focuses on improving
recognition accuracy through algorithm enhancements, the challenge of limited labeled data from
individual clients is often overlooked, which impedes the training of highly accurate models. To
address this issue and harness the potential of IoT networks, this paper presents FL-Bert-BiLSTM,
a novel model that combines federated learning and pre-trained word embedding techniques for
access control policy recognition. By leveraging the capabilities of IoT networks, the proposed model
enables real-time and distributed training on IoT devices, effectively mitigating the scarcity of labeled
data and enhancing accessibility for IoT applications. Additionally, the model incorporates pre-
trained word embeddings to leverage the semantic information embedded in textual data, resulting
in improved accuracy for access control policy recognition. Experimental results substantiate that the
proposed model not only enhances accuracy and generalization capability but also preserves data
privacy, making it well-suited for secure and efficient access control in IoT networks.

Keywords: access control policies; IoT networks; federated learning; pre-trained word embeddings;
access control policy recognition; data privacy; IoT applications

1. Introduction

Ensuring secure and authorized access to resources is paramount in IoT networks. IoT
networks are increasingly susceptible to a variety of attacks [1,2], making data and privacy
protection of utmost importance. Among various security services, access control [3] plays
a pivotal role in managing and restricting resource access, ensuring that only authorized
users or entities can access specific resources or perform specific operations, thus preventing
unauthorized access, data leakage, and information tampering. Therefore, access control is
crucial for safeguarding the security of IoT applications [4].

In IoT access control [5–7], Access Control Policies (ACPs) [3,8] are pivotal in determin-
ing the authorization or non-authorization of resource access. These policies are typically
described in natural language within project specification documents of organizational
entities [9]. The task of recognizing access control policies involves identifying statements
related to access control from project documents. Traditional ACP recognition relies on
manual filtering [10]. In recent years, machine learning and deep learning techniques have
been applied to enhance ACP recognition; however, current solutions [11] often suffer from
low accuracy and data privacy concerns. This challenge is particularly pronounced in IoT
access control [12], where improving the accuracy of ACP recognition while ensuring the
security and privacy of user data is a significant challenge.

Upon analysis, the shortage of publicly available labeled data is a critical factor
affecting the accuracy of training ACP recognition models. The key lies in how to effectively
utilize access control policies from different data sources for collaborative model training
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while preserving the privacy of ACP data. Federated Learning (FL) [13–16] provides
an effective approach to collaboratively train models while protecting data privacy. By
adopting FL, a collaborative training model can be built using ACPs from various sources
without the need for centralized data computation, addressing the issues of low accuracy
and a lack of labeled data in ACP recognition models.

This paper proposes a framework named FL-Bert-BiLSTM for ACP recognition. Ex-
perimental results demonstrate that the proposed framework achieves high-precision ACP
recognition while preserving the privacy of ACP data. The main contributions of this paper
are as follows:

• Introduction of federated learning into ACP recognition technology, constructing a
privacy-preserving authorized ACP recognition framework.

• Enhancement of ACP recognition capability in a distributed environment by incorpo-
rating pre-trained word embeddings from Natural Language Processing (NLP) [17]
into federated learning.

• Experimental results validate the effectiveness of the proposed model in significantly
improving the accuracy of authorized ACP recognition while ensuring data privacy
and security.

The findings of this research provide a novel perspective and approach to ACP recog-
nition, offering an effective solution for practical applications. The subsequent sections
are organized as follows: Section 2 introduces related work on ACP recognition imple-
mentation. Section 3 presents the methodology of the current research, including model
architecture and algorithm analysis. Section 4 presents the results and analysis. Section 5
discusses the proposed research in the context of IoT networks. Finally, Section 6 concludes
the paper.

2. Related Work

In earlier studies [18], access control policies were extracted from documents through
manual analysis conducted by security experts or under Controlled Natural Language
(CNL) conditions [11,19]. Although manual analysis tends to yield accurate results, it
requires proficient security experts and a longer evaluation time. CNL, which aims to
minimize ambiguity and complexity in natural language [19], can generate comprehensive
results. However, CNL-based methods often rely on specialized generation tools to trans-
form relevant vocabulary in the documents, resulting in lower flexibility and limitations in
their application scenarios.

Modern studies have utilized natural language processing techniques to identify
access control policies from documents. Table 1 presents a summary of the findings. Xiao
et al. proposed a method called Text2Policy [20], which utilizes shallow parsing techniques
and finite-state transducers to match sentences with one of four predefined access control
patterns. Their approach achieved a recognition accuracy of 88.7%. However, it fails to
capture access control policies that do not adhere to the pre-defined semantic patterns, with
only 34.4% of such policies being captured [21].

Slankas introduced Access Control Rule Extraction (ACRE) [22], a machine learning-
based method for identifying access control policies from natural language documents.
The author investigated whether words, synonyms of words, part-of-speech tags, and
named entities can serve as indicators for recognizing access control policy sentences. The
proposed method achieved an accuracy of 87.3% when validated on the iTrust dataset
consisting of 1159 sentences. Slankas et al. [21] extended the ACRE framework with minor
modifications to its components and techniques. Unlike previous literature, they used a
larger dataset of five policy documents to validate their proposed method. This supervised
learning approach utilizes an ensemble classifier consisting of a k-nearest neighbors (k-NN)
classifier, a naive Bayes classifier, and a support vector machine classifier. The method
distinguishes access control policy sentences from other types of sentences by computing a
threshold based on the ratio of the distance from the nearest neighbors to the number of
words in the sentence. The average classification accuracy achieved was 81%. However, the
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k-NN classifier’s processing time is relatively slow due to the need for sentence comparison
before making a decision.

Refs. [23,24] employ Semantic Role Labeling (SRL) to automatically identify the
Predicate-Argument Structure (PAS) and extract access control policies from natural lan-
guage requirement documents. A set of predefined rules is applied to the extracted argu-
ments to define roles and construct a Role-Based Access Control (RBAC) system. Ref. [25]
designs four types of features, namely, security features, PMI features, syntactic complexity
features, and dependency features, to describe statements in the documents. Access control
statement recognition is performed using a naive Bayes classifier and a Support Vector Ma-
chine (SVM). Ref. [26] utilizes a Recursive Neural Network (RNN) model to identify policy
statements from natural language documents, but the overall performance is considered
mediocre. Alohaly et al. [27,28] utilize a Convolutional Neural Network (CNN) to identify
subject and object attributes related to system access control from natural language policy
statements. However, this method is only for extracting attribute information related to
access control. The related work on statement recognition of ACPs is given in Table 1.

Table 1. Statement recognition of ACPs in the related work.

Study Underlying Tech. Dataset Performance

[20] Semantic patterns matching iTrust, IBM APP Prec: 88.7%

[21] K-NN iTrust, IBM App, Cyberchair,
collected ACP Prec: 81%

[22] K-NN, Naive Bayes, and SVM
classifiers iTrust Prec: 87.3%

[25] Naive Bayes and SVM
classifiers

iTrust, IBM App, Cyberchair,
collected ACP Prec: 90%

[26] Deep recurrent neural network ACPData, iTrust, IBM App,
Cyberchair, collected ACP Prec: 81.28%

While the aforementioned studies primarily focus on improving the recognition of
access control statements to enhance the recognition rate, they tend to overlook the sensi-
tivity of data and the issues of data privacy and security, which are crucial in the era of big
data. In contrast, federated learning relies on distributed training of models and gradient
sharing across devices, serving as a privacy-enhancing approach [29,30]. This approach
facilitates model training through collaborative sharing among multiple endpoints while
preserving privacy.

However, many existing methods neglect the specific characteristics of IoT networks,
which may lead to limited applicability in real-world IoT scenarios. In this research,
we address these challenges and propose an FL-based framework, FL-Bert-BiLSTM, for
privacy-preserving access control policy recognition in IoT networks. By leveraging fed-
erated learning and incorporating pre-trained word embeddings from Natural Language
Processing (NLP), our approach achieves a balance between accuracy and privacy protec-
tion, making it well-suited for real-time and distributed training on edge devices in IoT
networks.

3. The Proposed Method

To improve the accuracy of Access Control Policy (ACP) recognition while ensuring
data privacy, this paper proposes an ACP recognition technique called FL-Bert-BiLSTM.
The deployment of the proposed FL-Bert-BiLSTM model is illustrated in Figure 1, and
the following sections provide a detailed description of each component in these steps.
Specifically, Bert encodes the ACP in NLACP along with their corresponding features. FL
guarantees data privacy across client devices while expanding the data volume. Finally,
through progressive data distillation, the features of the final sentence representation are
transformed into predictive results.
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3.1. Dataset Pre-Processing

The conversion of ACP statements into machine-readable vectors plays a crucial
role in the recognition of access control policy statements. Traditional word embedding
methods [31] can partially address the issue of contextual relationships between words, but
they can only provide a fixed vector representation for each word and cannot resolve the
problem of word ambiguity. By using dynamic word vector representation methods such
as BERT to pre-process the data in this paper, the problem of word ambiguity can be better
addressed, thereby enhancing the representational capacity and semantic understanding
of access control policy statements. Additionally, dynamic word vectors can consider
contextual information to better capture the meaning and purpose of access control policy
statements, thereby improving the system’s security and stability. The obtained ACP
statements in NLACP, denoted as W1, W2, . . . , Wn, are represented as the sum of word
vectors, segment vectors, and position vectors, which serve as the input to the model.
Multiple layers of bidirectional Transformer encoders, T1, T2, . . . , Tn are obtained as the
output feature vectors.

Incorporating multiple bidirectional Transformer models, Bert [32] constitutes the core
framework of the encoder section, enabling a more comprehensive capture of bidirectional
relationships within NLACP, as illustrated in Figure 2, which displays the Transformer-
encoder model structure. The encoder, denoted as Nx, is composed of N identical network
layers, transforming access control policies into vectors by adding positional encodings
to the input X. Subsequently, this output is multiplied by pre-trained weights to derive
the QACP, KACP, and VACP matrices. The multiplication of the QACP and KT

ACP matrices
computes the relevancy between individual words within the access control policy while
preventing results from becoming overly large. This is achieved by dividing the product
by the square root of dk, where dk represents the vector dimensionality of QACP and VACP.
The normalized relevancy scores between words in the access control policy are obtained
using the Softmax function and are ultimately multiplied by VACP. This process yields
new vector encodings for each word, facilitating the computation of inter-word weights
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within access control policy statements. Consequently, this series of calculations enables
the determination of attention values [33] as depicted in Equation (1).

Attention(QACP, KACP, VACP) = So f tmax(
QACPKT

ACP√
dk

)VACP (1)Sensors 2023, 23, x FOR PEER REVIEW 6 of 18 
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In the multi-head attention mechanism, to eliminate the influence of the initial values
of QACP, KACP, and VACP, h different weight matrices, QACP, KACP, and VACP are used for
parallel computation. Finally, the different attention results are concatenated to obtain the
multi-head attention values as shown in Equations (2) and (3).

MultiHead(QACP, KACP, VACP) = Concat(h1, h2, . . . , hn)Wo (2)

hi = Attention(QACPWQACP
i , KACPWKACP

i , VACPWVACP
i ) (3)

In the equations, WQACP
i , WKACP

i , and WVACP
i represent the weight matrices of QACP,

KACP, and VACP for the i-th head, respectively. Wo represents an additional weight matrix,
and Concat(.) represents the concatenation function.

The obtained output vectors are then passed through residual connections and layer
normalization layers, which are used to add the input and output of the current layer and
perform normalization. Layer normalization transforms the inputs into mean and variance
to increase non-linearity. Residual connections linearly combine the input X and the result
F(X) obtained by applying a non-linear transformation to X and use the combined result
as the output.

After obtaining the output from the residual and layer normalization, it is processed
through a feed-forward neural network to generate the corresponding matrix We. This
network layer consists of two fully connected layers, where one of the layers utilizes the
ReLU activation function to enable more efficient computations and improve convergence
speed.

We = max(0, XW1 + b1)W2 + b2 (4)

In Equation (4), W1 and W2 represent the weight matrices of the two fully connected
layers, while b1 and b2 represent the bias terms of the two fully connected layers.

Finally, the output results processed by the residual connections and layer normaliza-
tion are obtained as the output of the encoder.
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3.2. Bi-LSTM for ACP Identification

In access control text, there exists a correlation between words, including their context
and sequential relationships. The traditional approach is to use LSTM to address the issue
of long-term dependencies. LSTM is a variant of recurrent neural networks (RNNs) [34],
which effectively tackles the problems of gradient explosion and poor ability to capture
long-distance dependencies in traditional RNNs. It is more suitable for modeling time
series data, such as text data. However, due to the limitation of utilizing only historical data,
LSTM cannot leverage future data information. In other words, LSTM can only consider
the previously encountered text content and cannot predict the influence of subsequent
text content.

In this study, the optimized model BiLSTM, which is based on LSTM, is employed
to capture the preceding and succeeding relationships in ACP. BiLSTM is a deep learning
model that can be used for processing sequential data. It leverages forward LSTM and
backward LSTM to process the forward and backward information of the input sequence,
respectively, and then combines their outputs to obtain a sentence representation with
global information. By using BiLSTM, it is possible to better capture the semantic relation-
ships between words in a sentence, thereby achieving improved performance in access
control text recognition tasks.

Unlike the traditional RNN sequential structure, LSTM focuses on the cell state, which
interacts with the information carried by the cell state through “three gates”. In BiLSTM,
there are four components: the input gate (i), the forget gate (f), the output gate (o), and the
cell state (c). The specific structure of LSTM is illustrated in Figure 3.
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By updating the LSTM network, the previous hidden state ht−1 and the current
input Xt are obtained. The forget gate, controlled by a sigmoid layer, determines which
information to forget from the cell state. The value of the forget gate ft is calculated as
shown in Equation (5).

ft = σ(W f χt + ω f ht−1 + b f ) (5)

Next, we need to determine which information to store in the cell state. This is carried
out by using the input gate it, controlled by a sigmoid layer, to decide the information
that will be updated. Additionally, a new candidate value is created using a tanh layer.
The values of the input gate and the temporary cell state St are calculated as shown in
Equations (6) and (7).

it = σ(Wiχt + ωiht−1 + bi) (6)
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St = tanh(Wsχt + ωsht−1 + bs) (7)

The current cell state ct is calculated by combining the input gate value it, the forget
gate value ft, and the temporary cell state St, as shown in Equation (8).

ct = ft × ct−1 + it × St (8)

A sigmoid output gate is established to determine which parts of the cell state will
be outputted. The current hidden state ht at the current time step is determined by the
combination of the output gate ot and the cell state ct, as shown in Equations (9) and (10).

ot = σ(Woχt + ωoht−1 + bo) (9)

ht = ot × tanh(ct) (10)

In the equation, W and ω represent the weight matrices, and b represents the bias
vector.

The context information in the opposite direction of the access control statement is
captured by the hidden layer vectors outputted by the forward LSTM and backward LSTM
units of the BiLSTM. The BiLSTM effectively utilizes the forward and backward feature
information of the input. Figure 4 presents the BiLSTM algorithm framework designed for
ACP recognition. The dropout layer is used to mitigate overfitting when there is a limited
number of training samples. During training, some neurons are randomly deactivated,
reducing the model’s complexity and preventing overfitting.
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3.3. FL for ACP Identification

With the rise of issues such as spam emails and advertising harassment, people have
become increasingly sensitive to privacy concerns. This is evident in laws like the General
Data Protection Regulation (GDPR) implemented in Europe [35]. To a large extent, this
will impact the maximization of data utilization. Therefore, for highly private ACP data
that are predominantly stored on local clients, there is a need to utilize federated learning
techniques [36,37] to obtain more ACP datasets for model training while ensuring the
privacy and security of user data.

To address the issue of privacy in ACP recognition, the FL-Bert-BiLSTM architecture
is constructed. In this architecture, assuming we have N clients, each client Ci having its
dataset Di, the training process in FL is as follows: at the beginning of each communication
round t, the central server distributes the global model Mt to each client. Each client
then loads the global model provided by the server and trains it using its dataset. The
clients save the trained weights and upload them to the central server. Once all clients
have completed training, the central server obtains the model weights from all clients and
updates the global model weights using one of the popular algorithms, such as FedAvg
(McMahan et al., 2017) [29], as shown in Formula (11):

Wt+1 ←
K

∑
k=1

nk
n

Wk
t (11)

where nk is the size of the dataset for each client, n is the total number of clients N, Wt is the
weight parameter of the client at time t, and Wt+1 is the aggregation of weight parameters
received by the global server from all clients. After the computation, the weighted average
of the new weight parameters is obtained. Then, the new weight parameters Wt+1 are
loaded to obtain the new global model. Finally, the new global model Mt+1 is distributed
to each client for further model training. Algorithm 1 provides the complete pseudocode.

Algorithm 1. The FedAvg for ACP Identification

Require: The clients set C; The number of local epoch E; The local minibatch size set B and the
learning rate η;
Server:
initialize ω0
for each communication round t = 1, 2, 3 . . . do

distributes ωt to all clients
for each client i ∈ C do in parallel

Wi
t+1 ← ClientUpdate(ωt)

end for
average the model parameters

compute global model ωt+1 =
C
∑

i=1

ni
n Wi

t+1

Load the new model ωt+1 and get the new global model Mt
end for
ClientUpdate(ωt):
for each local epoch e from 1 to E do

for batch b ∈ B do
calculate loss and gradients ∇Wk

t,b
Wi

t+1 ←Wi
t − η∇Wk

t,b
end for

end for
return ω to server

Figure 1 illustrates the process of FL, which consists of several steps achieved by setting
the corresponding communication rounds: global model distribution, client-server model
training, client model parameter upload, and model parameter aggregation to obtain a new
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global model. The number of training epochs for each client model is set to 1. Experimental
results demonstrate that using a smaller number of training rounds for this model can
reduce overfitting and improve the model’s generalization capability.

3.4. Network Output Structure

After the training of the pre-trained model, sentence-level feature vectors are obtained.
The first fully connected layer is utilized to capture the relationship between the input and
the classes. In the last fully connected layer, the input text sentence’s probability of being an
access control policy statement is computed based on the output feature y, using Softmax
or Logsoftmax to calculate the data’s probability distribution. The calculations are shown
in Equations (12) and (13).

So f tmaxp(y) =
exp(y)

∑
p

exp(y)
(12)

Logso f tmaxp(y) = log[
exp(y)

∑
p

exp(y)
] (13)

where P represents the statement class (1 for ACP statement, 0 for non-ACP statement), and
So f tmaxp(y) and Logso f tmaxp(y) denote the corresponding probabilities of the statement
classes.

3.5. Analysis of the Model

The proposed model in this paper first utilizes a pre-trained language model to trans-
form access control policies into word vector representations, capturing rich contextual
information. Subsequently, the application of BiLSTM enhances the model’s understanding
of long-term dependencies within sequential data, and the combination of both components
allows for the fusion of multi-level information, thus improving the model’s comprehension
of access control policies. The introduction of federated learning adds an additional layer
of privacy protection, making the proposed approach suitable for applications requiring
cross-organizational collaboration while safeguarding sensitive information. In conclu-
sion, a flexible, interpretable, and privacy-conscious model is constructed, enhancing its
effectiveness in addressing challenges related to access control policy recognition.

4. Experimental Results

In the experiments, we trained access control statement recognition models based
on Bert-BiLSTM and Bert-CNN using centralized learning. Additionally, we trained the
FL-Bert-BiLSTM model using distributed learning. Finally, we analyzed and compared the
performance of these models using metrics, such as prediction accuracy, recall rate, and
F1-score.

4.1. Data Source

ACP is widely used in various domains, including electronic healthcare, education,
and conference management, among others. In this study, we evaluate the proposed method
using publicly available multi-domain datasets as displayed in Table 2, namely, iTrust, IBM
APP, Cyberchair, and Collected ACP datasets. These datasets were manually annotated by
Slankas et al. [21]. The iTrust dataset is an open-source healthcare application; the IBM APP
dataset is a course management system used in IBM universities; the Cyberchair dataset is
related to conference management systems; and the Collected ACP dataset is a combination
of ACP collected by Xiao et al. [20]. To overcome the limitation of having a small amount
of data in a single dataset for centralized learning, we combine these four datasets for
experimentation. The combined dataset contains 2477 instances, with 80% used for training
and 20% used for testing.
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Table 2. Dataset information.

Dataset Domains ACP Statements Non-ACP Statements Total

iTrust Healthcare 967 664 1631
IBM App Education 169 232 401

Cyberchair Conference 140 163 303
Collected ACP Multiple 125 17 142

Total — 1401 1076 2477

4.2. Evaluation Metrics

As evaluation metrics, this study uses accuracy, precision, recall, and F1-score to
assess the experimental performance. The parameters and calculation methods used in
the evaluation are as follows: Tp (True Positive) represents the number of ACP statements
correctly identified, TN (True Negative) represents the number of non-ACP statements
correctly identified, FP (False Positive) represents the number of ACP statements incorrectly
identified, and FN (False Negative) represents the number of non-ACP statements incor-
rectly identified. Accuracy is the most commonly used and intuitive performance metric,
representing the proportion of correctly identified ACP statements to the total number of
statements. The calculation formula is given by Equation (14).

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

Precision is defined as the ratio of the number of correctly identified ACP statements
to the total number of statements identified as ACP. The calculation formula is shown as
Equation (15):

Precision =
TP

TP + FP
(15)

Recall is defined as the ratio of the number of correctly identified ACP statements to the
total number of actual ACP statements. The calculation formula is given as Equation (16):

Recall =
TP

TP + FN
(16)

To provide a concise representation of model performance, F1-score is used, which is
the weighted harmonic mean of Precision and Recall. A higher F1-score indicates higher
values for both Precision and Recall, indicating a larger number of correctly identified ACP
statements. The calculation formula is given as Equation (17):

F1− score =
2Precision · Recall
(Precision + Recall)

(17)

The software and hardware environment for the experiments in this study is as follows:
the operating system is Ubuntu 18.04, the CPU is Intel Core i9-10900K@ 3.70 GHz, the
GPU is GeForce RTX 3090, the memory is 32 GB, the PyTorch version is 1.10.2, the Numpy
version is 1.23.3, the Transformers version is 3.02, and the Python version is 3.8.

4.3. Hyperparameter Settings

The hyperparameter settings for this experiment are as follows: The input layer
utilizes the BERT pre-trained language model to convert access control policies into word
vectors. Following the input layer, a BiLSTM layer is employed with hidden units set to
256, effectively leveraging both forward and backward feature information. A dropout
layer with a rate of 0.1 is applied to enhance the model’s generalization ability. Finally, the
model passes through two fully connected layers, utilizing the ReLU activation function
and the LogSoftmax function, respectively. Model weights are saved and uploaded, and a
federated aggregation algorithm is employed to obtain the new weight model. During the
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training process, the learning rate is set to 1 × 10−5, and the Adam optimizer is used for
model training.

4.4. CL-Bert-BiLSTM vs. CL-Bert-CNN vs. CL-Bert-FC

Before training, the ACP statements are mapped to word vectors using the Bert model
as input. Then, in the downstream models of BiLSTM, CNN, and fully connected (FC)
networks, Adam optimizer and Cross-Entropy loss function are used. This results in the
CL-Bert-BiLSTM, CL-Bert-CNN, and CL-Bert-FC approaches. The hyperparameters of the
algorithm framework are adjusted to obtain better network performance.

During the training phase, the datasets from all clients are integrated into a centralized
dataset for centralized training. Figure 5 illustrates the accuracy and loss rate results after
12 epochs of training in the centralized model. From Figure 5, it can be observed that
after pre-training word embeddings using Bert, using CNN and BiLSTM as downstream
models performs better in terms of accuracy, precision, F1-score, and other metrics in ACP
statement recognition. The overall performance of the FC model, on the other hand, is not
as good as that of the CNN and BiLSTM models.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 18 
 

 

vectors. Following the input layer, a BiLSTM layer is employed with hidden units set to 
256, effectively leveraging both forward and backward feature information. A dropout 
layer with a rate of 0.1 is applied to enhance the model’s generalization ability. Finally, 
the model passes through two fully connected layers, utilizing the ReLU activation func-
tion and the LogSoftmax function, respectively. Model weights are saved and uploaded, 
and a federated aggregation algorithm is employed to obtain the new weight model. Dur-
ing the training process, the learning rate is set to 1e-05, and the Adam optimizer is used 
for model training. 

4.4. CL-Bert-BiLSTM vs. CL-Bert-CNN vs. CL-Bert-FC 
Before training, the ACP statements are mapped to word vectors using the Bert 

model as input. Then, in the downstream models of BiLSTM, CNN, and fully connected 
(FC) networks, Adam optimizer and Cross-Entropy loss function are used. This results in 
the CL-Bert-BiLSTM, CL-Bert-CNN, and CL-Bert-FC approaches. The hyperparameters of 
the algorithm framework are adjusted to obtain better network performance. 

During the training phase, the datasets from all clients are integrated into a central-
ized dataset for centralized training. Figure 5 illustrates the accuracy and loss rate results 
after 12 epochs of training in the centralized model. From Figure 5, it can be observed that 
after pre-training word embeddings using Bert, using CNN and BiLSTM as downstream 
models performs better in terms of accuracy, precision, F1-score, and other metrics in ACP 
statement recognition. The overall performance of the FC model, on the other hand, is not 
as good as that of the CNN and BiLSTM models. 

  
(a) (b) 

Figure 5. Performance comparison between the Bert-BiLSTM model, Bert-CNN model, and Bert-FC 
model: (a) accuracy comparison and (b) loss performance comparison. 

4.5. FL-Bert-BiLSTM vs. FL-Bert-CNN vs. FL-Bert-FC 
In this section, the performance of the proposed FL-Bert-BiLSTM model is evaluated. 

Federated learning is employed, and a comparison is made among FL-Bert-BiLSTM, FL-
Bert-CNN, and FL-Bert-FC. In this experiment, multiple users participate in the model 
training simulation. After four communication rounds, three clients are selected as partic-
ipants, and the dataset is randomly divided into three parts and sent to each client for 
local model training. Figure 6 illustrates the accuracy and loss rate variations of FL-Bert-
BiLSTM, FL-Bert-CNN, and FL-Bert-FC models over 12 epochs of training. From Figure 
6, it can be observed that during the training process, updating the global model through 
the central server’s aggregation in each round allows the retention of the client’s training 
features. The accuracy shows an increasing trend, while the loss rate continuously de-
creases. Among them, FL-Bert-BiLSTM outperforms the other models in terms of perfor-
mance. 

Figure 5. Performance comparison between the Bert-BiLSTM model, Bert-CNN model, and Bert-FC
model: (a) accuracy comparison and (b) loss performance comparison.

4.5. FL-Bert-BiLSTM vs. FL-Bert-CNN vs. FL-Bert-FC

In this section, the performance of the proposed FL-Bert-BiLSTM model is evaluated.
Federated learning is employed, and a comparison is made among FL-Bert-BiLSTM, FL-
Bert-CNN, and FL-Bert-FC. In this experiment, multiple users participate in the model
training simulation. After four communication rounds, three clients are selected as partici-
pants, and the dataset is randomly divided into three parts and sent to each client for local
model training. Figure 6 illustrates the accuracy and loss rate variations of FL-Bert-BiLSTM,
FL-Bert-CNN, and FL-Bert-FC models over 12 epochs of training. From Figure 6, it can be
observed that during the training process, updating the global model through the central
server’s aggregation in each round allows the retention of the client’s training features. The
accuracy shows an increasing trend, while the loss rate continuously decreases. Among
them, FL-Bert-BiLSTM outperforms the other models in terms of performance.
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4.6. Federated Learning (FL) vs. Central Learning (CL)

Figure 7 demonstrates the performance comparison between FL and CL across dif-
ferent models. It is evident that under the federated learning approach, the accuracy
of each model surpasses that of centralized learning. Additionally, the model loss rate
is lower, accelerating the convergence speed and improving the model’s generalization
ability. The training results for Figures 5–7 are given in Table 3, and the test results are
given in Table 4, where FL-Bert-BiLSTM achieves an accuracy of 94.12% and an F1-score
of 93.07%. In comparison with other models, significant improvements are observed in
terms of accuracy and F1-score. Therefore, the proposed FL-Bert-BiLSTM model exhibits
significant performance enhancement compared to CL-Bert-BiLSTM, enabling accurate
identification of access control policy statements.
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Table 3. Training result performance of all methods.

Epoch

Algorithm CL-Bert-FC CL-Bert-CNN CL-Bert-BiLSTM FL-Bert-FC FL-Bert-CNN FL-Bert-BiLSTM

Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss

Ep.1 71.19% 1.231 82.24% 0.680 81.79% 0.418 74.43% 0.525 70.32% 0.609 68.64% 0.632
Ep.2 82.04% 0.460 89.51% 0.337 86.93% 0.310 91.78% 0.229 89.80% 0.353 89.80% 0.441
Ep.3 81.69% 0.429 93.09% 0.202 88.35% 0.274 96.34% 0.114 96.35% 0.162 94.21% 0.216
Ep.4 84.76% 0.352 96.32% 0.107 91.42% 0.219 97.56% 0.103 97.56% 0.156 95.13% 0.256
Ep.5 86.58% 0.308 96.42% 0.102 91.22% 0.214 97.26% 0.079 98.33% 0.077 98.02% 0.137
Ep.6 86.38% 0.337 95.91% 0.119 92.73% 0.191 99.08% 0.035 99.23% 0.049 98.02% 0.103
Ep.7 86.48% 0.312 96.62% 0.112 93.34% 0.166 99.39% 0.020 99.69% 0.038 98.63% 0.089
Ep.8 85.77% 0.336 97.78% 0.069 93.64% 0.154 99.39% 0.019 99.54% 0.028 98.33% 0.076
Ep.9 86.18% 0.325 98.84% 0.036 94.75% 0.147 99.69% 0.012 99.69% 0.022 98.17% 0.068

Ep.10 86.98% 0.315 97.02% 0.096 95.16% 0.126 99.54% 0.012 99.84% 0.018 99.54% 0.035
Ep.11 87.69% 0.300 97.23% 0.075 95.96% 0.107 99.69% 0.008 99.08% 0.040 99.39% 0.031
Ep.12 85.82% 0.317 98.69% 0.041 95.56% 0.120 99.70% 0.009 99.54% 0.026 99.39% 0.029

Table 4. The performance of all methods.

Algorithm Accuracy Recall Precision F1-Score

CL-Bert-FC 89.72% 90.50% 88.23% 89.01%
CL-Bert-CNN 92.34% 93.19% 91.20% 91.99%

CL-Bert-BiLSTM 92.74% 91.62% 92.44% 92%
FL-Bert-FC 93.51% 89.25% 95.50% 92.27%

FL-Bert-CNN 93.71% 89.25% 95.98% 92.49%
FL-Bert-BiLSTM 94.12% 91.12% 95.12% 93.07%

5. Discussion

The primary objective of this research is to achieve privacy-preserving access control
policy recognition for sensitive data in the context of IoT networks. In pursuit of this
objective, we propose an IID (Independently Identically Distributed) method based on
FL-Bert-BiLSTM, which combines federated learning with pre-trained language models
and deep learning techniques. Our method aims to strike a balance between protecting
user data privacy and ensuring the accuracy of policy recognition, aligning with the core
principles of IoT networks’ edge computing and AI applications.

The experimental results validate the effectiveness of our proposed method. By incor-
porating contextual features through the Bert-BiLSTM model, we observed a substantial
improvement in the accuracy of access control policy recognition. The Bert-BiLSTM model
provides richer semantic information, enhancing the understanding and classification of
policies, which is of utmost importance in accurately recognizing access control policies,
especially in complex and dynamic IoT scenarios with diverse devices at the edge.

To address privacy concerns in the context of IoT networks, our FL-Bert-BiLSTM
model leverages federated learning techniques. By performing weighted averaging of
models trained by individual clients, we ensure that user privacy requirements are met
while achieving good recognition performance. The use of federated learning allows us to
collaboratively train the model without compromising the privacy of individual client data,
making it well-suited for edge computing environments, where data security and privacy
are critical considerations.

However, federated learning may potentially introduce some additional energy con-
sumption concerns for IoT devices with limited power resources. This depends on specific
scenarios and implementations. A key factor is the selection and size of the model. Larger
models require more storage and computational resources, potentially exerting pressure on
devices with limited power budgets. To address this situation, considerations may include
the adoption of lightweight models such as MobileBert, Bort, or model pruning techniques
to reduce model parameters and associated computational requirements. Alternatively,
model quantization techniques can represent model parameters as low-precision values,
thereby reducing storage and computational demands.

In federated learning, devices need to participate in model updates and parameter
transmission, which may lead to additional energy consumption. For IoT devices with
limited power resources, this could shorten device battery life. To mitigate energy consump-
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tion, optimizing communication protocols, reducing communication frequency, adopting
more efficient federated learning algorithms, or designing low-power hardware at the hard-
ware level and adjusting algorithms and models accordingly could be considered. These
measures can assist IoT devices in participating more effectively in federated learning.

In the future, our research aims to further enhance the accuracy of policy recogni-
tion in a federated learning environment tailored for IoT networks. We plan to explore
the integration of additional features into the access control policy recognition system,
such as temporal information or user behavior patterns, to capture the dynamics of IoT
networks accurately. By incorporating these features, we expect to improve the overall
performance and robustness of the system, enabling effective policy recognition in real-time
IoT applications.

This research makes a significant contribution to the field of access control in the
context of IoT networks. The IID approach based on FL-Bert-BiLSTM addresses the inherent
challenges of preserving user data privacy and ensuring accurate policy recognition within
dynamic IoT environments. The experimental results and insights obtained from this study
provide valuable directions for the further development of policy recognition technology
in real-world IoT scenarios. Future research efforts will focus on refining the system and
exploring additional features to enhance the accuracy and applicability of access control
policy recognition in real-world IoT environments.

6. Conclusions

In this study, we present an innovative approach for access control policy recognition
that leverages a combination of pre-trained language models, deep learning models, and
federated learning algorithms. The primary focus of our research is to achieve privacy-
preserving policy recognition in the context of IoT networks, by effectively addressing the
challenges of limited labeled data and data privacy concerns.

Our proposed FL-Bert-BiLSTM framework demonstrates promising results in accu-
rately recognizing access control policies while ensuring data privacy and security. By
incorporating pre-trained word embeddings and leveraging federated learning, our ap-
proach achieves a balance between accuracy and privacy protection. The Bert-BiLSTM
model captures rich semantic information from policy documents, enhancing the under-
standing and classification of policies, which is crucial in complex IoT environments with
diverse edge devices.

The integration of federated learning in our approach enables collaborative training
using data from multiple clients, avoiding the need for centralized data collection. This
decentralized model training process aligns well with the principles of IoT networks, where
data are processed closer to the source, reducing communication overhead and enhancing
real-time decision-making in IoT networks.

Our research contributes to the intersection of IoT networks and artificial intelligence in
the context of access control policy recognition. The proposed FL-Bert-BiLSTM framework
offers an effective and privacy-aware solution for securing IoT networks and edge devices,
where data privacy and accuracy are of paramount importance.

Looking ahead, we envision further exploring the potential of integrating additional
AI techniques and edge computing paradigms to improve the scalability and adaptability
of our approach in diverse IoT network scenarios. The evolution of edge computing and
AI will undoubtedly present new challenges and opportunities for enhancing security and
intelligence in IoT systems.
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