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Abstract: Vehicle make and model recognition (VMMR) is an important aspect of intelligent trans-
portation systems (ITS). In VMMR systems, surveillance cameras capture vehicle images for real-time
vehicle detection and recognition. These captured images pose challenges, including shadows,
reflections, changes in weather and illumination, occlusions, and perspective distortion. Another
significant challenge in VMMR is the multiclass classification. This scenario has two main categories:
(a) multiplicity and (b) ambiguity. Multiplicity concerns the issue of different forms among car models
manufactured by the same company, while the ambiguity problem arises when multiple models
from the same manufacturer have visually similar appearances or when vehicle models of different
makes have visually comparable rear/front views. This paper introduces a novel and robust VMMR
model that can address the above-mentioned issues with accuracy comparable to state-of-the-art
methods. Our proposed hybrid CNN model selects the best descriptive fine-grained features with the
help of Fisher Discriminative Least Squares Regression (FDLSR). These features are extracted from
a deep CNN model fine-tuned on the fine-grained vehicle datasets Stanford-196 and BoxCars21k.
Using ResNet-152 features, our proposed model outperformed the SVM and FC layers in accuracy by
0.5% and 4% on Stanford-196 and 0.4 and 1% on BoxCars21k, respectively. Moreover, this model is
well-suited for small-scale fine-grained vehicle datasets.

Keywords: VMMR; multiclass classification; ambiguity; multiplicity; hybrid CNN model; Fisher
discriminative least squares regression; small-scale fine-grained vehicle datasets

1. Introduction

Intelligent transportation systems (ITS) are essential components of smart city initia-
tives in urban areas worldwide to achieve optimal, safe, and sustainable utilization of the
available transportation infrastructure and maximum traffic efficiency. Automatic vehicle
analysis is significant in any intelligent transportation system involving vehicle attribute
recognition, such as vehicle re-identification, vehicle type recognition, and VMMR (vehicle
make and model recognition). VMMR has many applications, such as in surveillance for
policing and law enforcement, augmenting Automatic License Plate Recognition (ALPR)
systems, advanced driver assistance systems (ADAS), electronic toll collection (ETC), self-
driving cars, intelligent parking systems, measurement of traffic parameters like vehicle
count, speed, and flow, as well as market analysis for car manufacturing companies. Traffic
monitoring via VMMR is a critical tool for gathering statistics that aid in designing and
planning sustainable and efficient transportation infrastructure.

VMMR is fraught with complications. The first is vehicle detection; the VMMR
system should accurately locate vehicles in video images to perform feature extraction
and classification. Numerous vehicle variations, such as color, size, and shape, make the
problem challenging. Furthermore, under different lighting conditions and viewpoint
variations, the visual properties of vehicles also change dramatically. The next task is to
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classify the localized image regions into make and model categories. Unfortunately, good
classification accuracy can be achieved only after addressing several issues. Firstly, the wide
range of makes and models seen in practice can render the number of classes considered
rather large, making it a challenging fine-grained classification problem. Next, different
models from the same manufacturer (make) frequently share similar shape characteristics
and are thus difficult to distinguish. Additionally, the same model can have various facelifts
released by the manufacturer over the years, introducing intra-class variation.

For a long time, the performance of computer vision techniques was the primary
bottleneck for camera-based traffic monitoring systems. However, the advent of deep
learning has fundamentally altered the situation. Researchers must meet several challenges
for a wholly integrated AI-based traffic surveillance infrastructure [1]. One of these is
accident prevention and vehicle re-identification (reID), which allows a vehicle’s route to be
calculated for different areas thanks to its unique visual characteristics [2]. VMMR systems
come into play in these scenarios, making it possible to detect a vehicle’s brand, model,
and color from the image. Our proposed approach and a real-time vehicle detection system
can address this challenge. Image classification, in particular, has advanced to an entirely
new level over the last decade, approaching human-level accuracy in several domains.
An essential factor in this transformation is the availability of large-scale datasets. This
paper treats the vehicle make and model classification as a fine-grained image classification
problem. We use preexisting convolutional neural network (CNN) models for feature
extraction and replace the fully connected (FC) layer with a customized classifier based on
Fisher discriminative least squares regression (FDLSR) [3]. Our proposed method yields
better results than standard transfer learning techniques. The main contributions of our
paper are:

• Our technique combines deep features with FDLSR and SVM [4] to yield better
classification accuracy.

• We have suggested a robust and efficient view-independent car make and model
classification technique.

• Our proposed classifier can be trained on deep fine-grained features at low computa-
tional cost and has a short runtime.

• We have applied our proposed classifier to a number of publicly available datasets.
The results obtained are comparable to state-of-the-art techniques.

The rest of the paper is arranged in the following manner. Section 2 describes the
technical details of the proposed classifier in detail. Section 3 discusses the datasets used for
training and testing our classifier, explaining the methodology of our proposed solution to
vehicle make and model recognition, and Section 4 reports experimental results on Stanford
Cars [5] and a Pakistani on-road car dataset. Finally, Section 5 contains concluding remarks
and discusses future research directions.

2. Related Work

Fine-grained image classification aims to classify subcategories of a larger category
through fine-grained images [5]. As our goal is fine-grained vehicle classification, we
must build a model to identify the most discriminating image features. Therefore, it
is vital to detect subtle differences in similar regions. Different subcategories generally
have very similar appearances, but the various subcategories are occasionally inconsistent.
Many visual disturbances, such as light intensity, occlusion, and blur, seriously reduce the
classification accuracy of vehicles.

Vehicle analysis starts with vehicle detection. Once the vehicle is detected, we can
classify it based on its class (car, bus, truck), make (Toyota, Honda, Ford), color (white,
black, red, gray), or make and model (VMMR). VMMR methods belong to three main
categories of fine-grained recognition: attention mechanism [6], high-dimensional feature
coding [7,8], and specific characteristics [9]. To detect the primary class of a vehicle, several
basic geometric parameters, such as length, width, and height, are approximated [10,11].
Kafai [12] and Grimson [13] processed spatial and edge-based vehicle features with a
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Bayesian decision rule for classification. Kumar [14] detected vehicle logos using a Haar
cascade classifier and trained an SVM classifier to classify vehicles into four categories.
To classify vehicles, some researchers used adaptive background models [15], multiclass
SVM-based models [16], and 3D vehicle features and models [17]. Zhang [18] proposed
a modified form of the classified vector quantization (CVQ) approach for vehicle type
recognition, rejecting low-confidence samples and achieving reliable classification results.

Vehicle type classification is also explored by using vehicle geographical features [19],
edge-based features [20], histogram of gradient (HoG) features [21], contour point fea-
tures [22], curvelet transform features [23], and contourlet transform features [24]. Some
studies combined two features, such as wavelet and contourlet features, to improve re-
sults [25], as well as PHOG and Gabor features [26]. Dong et al. [27] achieved 83% to 98%
accuracy. Liao et al. [9] proposed a strong-supervised DPM (SSDPM) for semantic segmen-
tation of frontal vehicle images. Liao et al. used a novel symmetrical SURF descriptor to
improve the discriminative powers of different parts, and the proposed method recognized
the brand of each vehicle based on the weights of these parts. Hu and Psyllos [28] focused
on brand recognition of a vehicle using discriminative pattern learning, car logo matching,
and classification. Loua [29] implemented Lowe’s [30] approach of keypoint localization
and SIFT features for make and model vehicle recognition. It matched features tie-breakly,
but the algorithm proved ineffective in overall vehicle make and model recognition. In
addition to SIFT, other features based on edges, gradients, or corners [31], and MPEG-7
descriptors such as edge histograms [32] were also explored for VMMR purposes. In [31],
He et al. used Sobel and Canny edge detectors to detect texture, boundaries, and line seg-
ment maps of headlamps and license plates. SURF descriptors gained the attention of many
researchers due to their fast processing. Siddiqui et al. [33] extracted SURF features from
vehicles’ front or rear images and embedded them into a bag of sped-up robust features
(BoSURF) histograms. Hsieh [34] used a grid division scheme and a combination of the his-
togram of gradient (HoG) and SURF descriptors to detect the region of interest and extract
features from the vehicle. The low accuracy in [20] indicated that locally normalized Harris
strengths (LNHS) were inefficient for the VMMR problem. However, the shape-based fea-
ture approaches, which extract features from vehicle backlights [35] and rear emblems [36],
showed encouraging recognition rates in vehicle make and model recognition.

Model-based vehicle recognition uses the adaptive model [37], the approximate
model [38], and the 3D model [39]. In [39], Prokaj and Medioni adopt the model-based
approach and project the pose of a 3D CAD vehicle model to a 2D vehicle image to calculate
the similarity score. Several classification approaches are proposed to improve VMMR
classification. Psyllos et al. [40] classify SIFT features extracted from vehicle images using a
probabilistic neural network. Pearce and Pears [20] investigate VMMR classification using
the k-nearest neighbor classifier and the naive Bayes classifier. He et al. use neural networks
and AdaBoost, SVM, and KNN for classification [31]. Random forest [41] and the nearest
neighborhood classification approach [42] are also applied to identify the make and model
of vehicles.

Fang et al. [43] proposed using CNNs to classify vehicles. SVM is also one of the
popular classifiers in VMM classification [44]. A recent literature study shows that convolu-
tional neural networks (CNNs) have set a new performance baseline in fine-grained visual
classification [45–49]. Liu et al. [50] and Yang et al. [51] reinforced the viability of CNNs in
fine-grained classification. Their work, GoogleNet, one of the first pre-trained deep learning
models for fine-grained vehicle classification, outperformed the traditional approaches. Ear-
lier research focused on auxiliary networks to learn local-level information for fine-grained
classification. Krause et al. [52] proposed a fine-grained recognition method that worked
without part annotations. They used the concept of alignment and segmentation to learn
and detect useful parts. Xiao et al. [6] used three types of attention to extract relevant details
of an image. They integrated these attentions to train deep nets. Zhang et al. [53] proposed
an automatic fine-grained recognition approach, free of any object or part annotation. It
extracted and pooled deep, distinctive filter responses and learned specific patterns signifi-
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cantly and consistently. Wang et al. [54] emphasized mid-level representations of CNNs,
which collected the class-level discriminative information end-to-end. Zhang et al. [55]
addressed the constraints in pose-normalized representations for fine-grained classifica-
tion. They introduced semantic part localization in convolutional neural networks and
achieved state-of-the-art results. Fu [56] proposed a recurrent attention model that learns
discriminative region attention and region-based feature representation at multiple scales
without using bounding boxes. A novel part-stacked CNN proposed in [57] encodes the
object-level and part-level cues simultaneously to model the subtle differences between
the object parts. Hu [58] introduced spatially weighted pooling (SWP) layers in CNN,
which pools extracted features by learning the discriminative spatial units. The proposed
method surpassed previous fine-grained vehicle classification methods. Ma [59] improved
the generalization ability of a CNN model by inserting a channel max pooling (CMP) layer
between convolutional layers and the fully connected layers. In lightweight convolutional
neural networks (LWCNNs) [60], network parameters are minimized and optimized by
pre-training, fine-tuning training, and transfer training on a VMMR dataset [51].

Lam et al. [61] defined a heuristic function that scored the proposals of informative
image parts and unified them via a long short-term memory (LSTM) network into a new
deep recurrent architecture. Lin et al. [62] proposed a valve linkage function (VLF) for
back-propagation chaining, improving the fine-grained classification performance of deep
localization, alignment, and classification (LAC) systems. Zhang et al. [63] introduced
the semantic part detection and abstraction (SPDA) approach in mid-level layers of an
end-to-end CNN model. This approach shares the computation of convolutional filters
and achieves state-of-the-art results in fine-grained classification. Different entropy loss
functions were introduced to improve the performance of end-to-end neural networks.
Deep CNNs with large-margin softmax (L-softmax) loss [7] created desired margins among
features, made them more discriminative, and provided better classification results. The
center loss was designed by Wen et al. [8] to improve inter-class dispensation and intra-class
compactness. It learned the center of each class and restricted the distance of deep features
from their respective classes. Focal loss [64] improved the dense object detection results
by addressing the class imbalance problem and proposed training of hard-set examples
only. Lin et al. [64] proposed a new loss function, introducing a regularization term to
cross-entropy (CE) loss, which penalized the probability of a data point being assigned to
a class other than its ground-truth class. The back-propagation algorithm used in CNN
training typically optimizes the loss function. In contrast, in fine-grained classification,
general and redundant features are undesirable. Ma et al. [59] addressed this problem
by inserting a channel max pool layer between the convolutional layers and the fully
connected layers of the CNN. This layer aimed to improve the generalization ability of
the CNN by learning more discriminative features from a relatively lower number of
feature maps. Experimental results demonstrated that CNNs with a CMP layer improved
the classification accuracies on fine-grained vehicle classification with massively reduced
parameters. Chang et al. [65] proposed a single loss, mutual-channel loss (MC-loss), applied
directly to the feature channels to obtain class-aligned discriminative and diverse features.
Naseer [66] also reduced the feature space by applying the genetic algorithm to deep
features extracted from the VGG-16 CNN, fine-tuned on the frontal view of the vehicles,
followed by an SVM classifier.

Our approach in this paper is similar to previous studies on fine-grained classification.
Deep neural network (DNN) based deep learning (DL) techniques have demonstrated
state-of-the-art results in VMM classification. Their ability to select features, transform,
and classify data within a single framework, in particular, draws practitioners looking
for ready-to-use solutions from raw data [67]. However, in severe data limitations or the
absence of relevant transfer learning problems, DNN-based DL’s advantages are drastically
reduced [68]. We have proposed a hybrid CNN model fine-tuned on view-independent
vehicle make and model datasets [5,69]. These datasets have a limited number of samples
per class. The proposed model extracts deep features through the FC layer of a fine-tuned
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CNN and produces the features that best describe a vehicle for fine-grained vehicle clas-
sification using the Fisher discriminative least squares regression (FDLSR) module [3].
It then trains a linear classifier on these discriminative features and makes predictions.
Compared to a fine-tuned CNN, the proposed hybrid model improves recognition accuracy
by 2.1%. The improved accuracy shows that the hybrid CNN model is more tolerant to
view-independent, small-scale vehicle datasets than pure DNN-based DL models. CNNs
undoubtedly demonstrate superior classification performance in VMMR systems. Previous
approaches used auxiliary networks in CNNs, altered CNN architectures, and introduced
different loss functions to CNNs for fine-grained vehicle classification. Specific method-
ologies that worked directly on CNN feature maps to improve their generalization ability
also improved classification results. However, we observe that the advantages of DNN-
based DL are drastically reduced in cases of severe data limitations or the absence of a
relevant problem for transfer learning [68]. To address this problem and utilize CNN’s
ability to learn fine-grained features, we have proposed a hybrid CNN model fine-tuned on
view-independent vehicle make and model datasets [5,69]. These datasets have a limited
number of samples per class. The proposed model extracts deep features through an FC
layer of a fine-tuned CNN and selects the most descriptive features using FDLSR. These
transformed features exhibit improved inter-class disparity and intra-class similarity and
are robust enough to be classified with a linear classifier. Table 1 lists some notable works
in fine-grained image classification, especially VMMR.

Table 1. Summary of some Notable Works.

Year & Author Objective Dataset Methodology Result Remarks

Biglari, M., 2018 [49]
To design a novel

cascaded part-based
system for VMMR

CompCars BVMMR

Novel greedy parts
localization, and a

practical multi-class
data mining algorithm
to detect discriminative
vehicle region. Use of
cascaded scheme to

speed up the
mechanism

up to 80% speed
optimization. 97.01%

accuracy on CompCars

Cascaded system
performs with higher
speed and accuracy

than the baseline
system.

Manzoor, M. A.,
2019 [44]

To present a unique and
robust real-time VMMR

system which can
handle unique set of

challenges

NTOU-MMR

Used Histogram of
Oriented Gradient
(HOG) and GIST to

represent the images
and SVM and RF to
classify the vehicles

97.20% with GIST
features and SVM

System is well-suited
for situations where
vehicles are partially

occluded, partially out
of the image frame or
poorly visible due to

low lighting.

Benavides, N., 2019 [70]
Fine-tuning of a

pre-trained CNN on a
VMMR dataset

Stanford Cars

Transfer learning and
fine-tuning of VGG16
Use of dropout, data
augmentation and

downsizing of dense
layer

96.3% Top-5 Test
Accuracy

Techniques used for
dimensionality

reduction are found
crucial in fine-grained
vehicle classification

Ma, Z., 2019 [59]

Improve generalization
ability of CNNs for

fine-grained
classification

Stanford Cars,
CompCars

Inserting Channel Max
Pooling Layer (CMP)

between the fully
connected layers and

the convolutional layer

97.89% by DenseNet161
on CompCar

CMP improves the
performance of a

network. It reduces the
number of parameters

in a neural network

Anwar, S., 2020 [71]
Comparison of general

CNN classifiers and
fine-grained classifiers

Stanford Cars, FGVC
Aircrafts, Flowers, NA

Birds

Transfer learning and
fine-tuning of CNNs on

FGVC datasets

94.5% by DenseNet161
on Stanford Cars

Traditional CNNs
outperformed

fine-grained classifiers
in FGVC mainly

because traditional
CNNs are pre-trained

CNNs.

Chang, D., 2020 [65]
Obtain fine-grained

features using
single-loss function

Birds, FGVC Aircraft,
Flowers102, Stanford

Car

Applied
mutual-channel loss

(MC-loss) directly to the
feature channels

94.1% with ResNet-50
features on Stanford

Cars

MC-Loss does not need
fine-grained

bounding-box. It can be
applied to any network
architecture. Does not

need any extra
parameter for tuning
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Table 1. Cont.

Year & Author Objective Dataset Methodology Result Remarks

Naseer, S., 2020 [66] Proposal of a VMMR
framework NTOU MMR

Fine-tuning of VGG-16.
Deep features extraction

dimensionality
reduction by GA.

Classification using
SVM.

98.20%

SVM performs better
than any other classifier
on fine-grained features

and results are
comparable to the

state-of-the-art methods

Boukerche, A., 2021 [72]

LRAU to enhance the
feature extraction ability

of CNN architectures
for VMMR.

Stanford Cars,
CompCars,

NTOU-MMR

Proposed LRAU
extracts the

discriminative part
features by generating

attention masks to
locate the key points of

a vehicle

93.94% on Stanford Cars

Model achieves
excellent fine-grained

recognition
performance and can be

used in a real-time
environment

3. Proposed Methodology

In this section, we describe our proposed methodology in detail. Figure 1 provides an
overview of our technique, and the subsequent sections describe each step in detail.

Figure 1. Proposed vehicle make and model recognition system.
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3.1. Transfer Learning on Fine-Grained Vehicle Datasets

Deep neural networks trained on large-scale datasets like ImageNet [73] and COCO [74]
have shown remarkable transfer learning capabilities. We fine-tune pre-trained CNNs
(VGG-16, ResNet-50, and ResNet-152) to extract class-specific, fine-grained features. On
our training data, we applied data augmentation. Data augmentation is essential and
always recommended for small datasets. Random rotations, zooms, and horizontal flips
are among the parameters of a data augmentation object. To perform transfer learning with
VGG-16, we load its architecture (with pre-trained ImageNet weights) from the disc and
remove the fully connected layers. Figure 2a shows the original CNN. Figure 2b depicts our
network without the FC layer. We then define a new fully connected layer head and freeze
all VGG-16 CONV layers. At this point, training our model will only tune our network
head and not update the base weights (Figure 2c). We reset our training and validation
generators before unfreezing the final set of CONV layers, then unfreeze the final set of
CONV layers. Figure 2d shows the final stage, which is to train our model to fine-tune the
FC layer head and the final CONV block.

Figure 2. CNN architecture for transfer learning. (a) original CNN. (b) Our network without the FC
layer. (c) Tuned network head without updating the base weights. (d) Fine-tuning of the FC layer
head and the final CONV block.
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3.2. Feature Extraction with Deep Learning

The architecture of a pre-trained neural network allows us to use it as an arbitrary
feature extractor. The input image propagates forward and stops at the pre-defined layer,
allowing us to retrieve features from that layer. We can use powerful CNN features this
way. We take our fine-tuned VGG-16 network and, similarly, allow an image to propagate
forward to the dense layer (the first hidden layer of our fully connected layer) and extract
features from it. This dense layer produces a 2048-dimensional feature vector. We can
repeat the feature extraction process for each image in the dataset, yielding a total of N ×
2048-dimensional feature vectors.

3.3. Feature Engineering with Fisher Discriminative Least Squares Regression (FDLSR)

To understand FDLSR [3], suppose we have a system QX = Y composed of a training
dataset X with m features and n training examples. Let Q be the best-fit solution for the
system such that QX ≈ Y. We use the optimization function of a least squares regression
(LSR) model to find Q. The least squares regression (LSR) model finds the best possible
solution by minimizing the residual sum of the squared (RSS) error [75]. The optimization
function is written as:

RSS = ∑(yt − ŷt)
2. (1)

However, solving a singular matrix for some RSS problems is difficult. Non-negative
dragging values {ε11, ε12, . . . , ε34} are added in the regularized RSS function under a
technique called ε-dragging. The ε-dragging technique improves the inter-class margins,
but it is observed that the class margins do not change significantly with each iteration,
and DLSR does not consider the intra-class compactness of the relaxed labels. The Fisher
criterion is applied to the ε-draggings to address this issue, increase inter-class separability,
and improve intra-class compactness during each iteration. Thus, the Fisher discriminative
least squares regression (FDLSR) [3] model can be formulated as a discriminative least
squares regression (DLSR) model inspired by the Fisher criterion and ε-dragging method:

min|QX− (Y + G.T)|2 + τ|Q|2 + λFisher(Y + G.T), (2)

where
T >= 0,

where Q is the projection matrix and S is the non-negative relaxation matrix. The matrix
Y + G × T denotes the relaxed labels learned by the ε-dragging method. The first term
is used to learn discriminative projection Q with relaxed regression labels, as shown in
Equation (2). The third term aims to regularize the learned labels using the Fisher criterion.
We introduce a transition variable H and rewrite our FDLSR model to understand better
and optimize the Fisher function:

min|QX− H|2 + β|H − (Y + G.T)|2 + τ|Q|2 + λFisher(H) (3)

Fisher(H) = ∑(|H − P|2 + |Pm − P|2 + |H|2), (4)

where
β, λ, τ > 0

are scalars that weigh the corresponding terms in Equation (3), where P represents the
relaxed labels of the mth class. P consists of N identical columns equal to the mean vector
of all columns in H. P includes n identical columns equal to the mean vector of all columns
in H.

To enhance intra-class compactness and inter-class separability of extracted features,
we engineer the extracted features with the help of a Fisher discriminative least squares
function in Equation (4). The extracted deep features X and their corresponding labels
Y are loaded. These features are normalized, and their labels are converted into a one-
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hot encoded matrix. The FDLSR function uses a feature matrix (X), a label matrix (Y),
and parameters β, τ, and λ as input to formulate the projection matrix Q. The FDLSR
function undergoes 30 iterations to find a convergent solution. The function updates the
transition H, projection Q, and relaxation T matrix during each iteration. The FDLSR
algorithm projects the training data into a lower-dimensional subspace of Q by taking its
dot product with the projection matrix. The transformed training set is now of the size R
(c× n), where c represents the number of classes in a dataset. The pseudocode of FDLSR is
showcased in Algorithm 1.

Algorithm 1 Fisher Discriminative Least Squares Regression (FDLSR).

Initialization:

Q = YXT(XXT + τ I)−
1
; T = 0c×n; H = Y;

G = 2Y− 1c×n; P̂ = [P1, P2, P3, ..., Pc]

Let i = 1; Qxy = Q

while i < iterationsmax do

H =
QX + β(Y + G · T)− λP− 2λP̂

1 + β + 2λ

Q = HXT(XXT + τ I)−1

T = max(G · (H −Y), 0)

if
∥∥Q−Qxy

∥∥2
F < 10−4 then

Stop

end if

i = i + 1, Qxy = Q

end while

Output: Q

3.4. Feature Classification Using Linear Classifier

We assume that features extracted by a fine-tuned CNN model are already robust
and discriminative, as CNN can learn non-linear features. Therefore, once we have these
transformed features, we can train off-the-shelf machine learning models such as Linear
SVM and KNN on these features to recognize a new set of images. Support vector machines
(SVMs) [4] are the supervised machine learning algorithms for classification and regression
problems. For linearly separable cases, the optimization function is:

yi(mxi + c)− 1 >= 0 (5)

s.t.min{1/2|w|2}.

For multiclass classification, n(n− 1)/2 classifiers are trained in one-vs-one approach
to classify samples from every pair of classes. The k-nearest neighbor algorithm considers
the dimensions of the data points in a given space. It randomly selects data points from
each class as class centers and calculates the distance between other samples and these
center points. The commonly used metric to find the distance in a KNN algorithm is the
Euclidean distance, which is given by:

d(x1, x2) =
√

∑(x1 − x2). (6)

3.5. Overview of Proposed Algorithm

To conclude this section, we list the steps to implement our proposed algorithm.
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Step 1: Load the dataset.

Step 2: Image preprocessing (annotations, augmentation).

Step 3: Fine-tune the most suitable CNN model pre-trained on the ImageNet dataset.

Step 4: Extract features from the fine-tuned CNN model’s fully connected (FC) layer. (The
FC layer first flattens the feature map and gives it a vector form. The fully connected
layer receives input from the last pooling or convolutional layer. The number of
channels in the output feature maps extracted from a pre-trained VGG-16 is fixed at
512 and that of ResNet50 or ResNet152 at 2048).

Step 5: Feature normalization.(Given the fixed size of the feature vector, this would pro-
duce 37,689 2048-dimension feature vectors and 8144 2048-dimension vectors for Box-
Car21k and Stanford Cars, respectively.)

Step 6: Begin with an 80/20 training validation split for both datasets. (Both are small and
increasing the validation set might overfit the CNN model.)

Step 7: Transform the features with FDLSR as described in detail in Section 3.3.

Step 8: Feature normalization. (After applying the Fisher discriminative least squares func-
tion, the feature vectors are dimensionally reduced, yielding 2048 × 87-dimensional
vectors and 2048 × 196-dimensional vectors for BoxCar21k and Stanford Cars, respec-
tively.)

Step 9: Train an off-the-shelf classifier. (e.g., SVM or KNN.)

Step 10: Predictions.

4. Experimental Results and Discussions
4.1. Datasets

We have chosen the Stanford Cars dataset [5] and BoxCars21k [47] for our research.
We chose the Stanford Cars dataset for its many classes and a few instances in each class. It
is one of the earliest benchmark datasets. The dataset contains 16,185 view-independent
images belonging to 196 classes of cars. The data are split nearly 50/50, with 8144 training
images and 8041 testing images. Classes are at the level of make, model, and year.

Figure 3 shows some images from the dataset. The sample images show the dataset’s
view-independent nature and different illumination conditions. The BoxCars21k dataset
contains 63,750 vehicle images of 148 fine-grained classes (make, model, and model year).
Based on the fine categorization of the make-model hierarchy, the dataset is divided into
easy, hard, and medium subsets. There is a considerable variation in viewpoints in the
dataset. The dataset provides a 3D bounding box for each image. We have worked on
the hard split, containing 37,689 images for training and 18,939 for testing, belonging to
87 fine-grained classes. Figure 4 shows sample images from the dataset.

While carrying out experimentation for the choice of the best CNN model for feature
extraction, another dataset was also used. Despite the ongoing research involving car make
and model analysis, there is an absence of diverse datasets involving traffic dynamics
in developing countries. Thus, we collected a comprehensive dataset that shall serve as
a benchmark to further the research on traffic analytics to propose guidelines for ITS in
developing countries like Pakistan. There are 129,000 images belonging to 94 different
classes of vehicles on Pakistani roads to date. The dataset contains occluded images and
partial and overhead camera views under low illumination. Images are labeled according to
make, model, and generation; for example, HondaCity5 means Honda City 5th generation.
Some examples are shown in Figure 5. Table 2 lists the main attributes of the datasets used
for our experiments.
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Figure 3. Images from the Stanford Cars dataset.

Figure 4. Images from the BoxCars21k dataset.

Figure 5. Images from the Pakistani cars dataset.
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Table 2. Main attributes of datasets used in experiments.

Dataset Year Samples Diversity Annotations Image
Resolution

No. of
Classes

Train/Test
Split

BoxCars21k [47] 2016 63,750 View-Independent Make, model year Low 148 70/30
Stanford Cars [5] 2013 16,185 View-Independent Make, model year Mixed 196 50/50

Pakistani Cars 2022 129,000 View-Independent Make, model generation Low 94 60/40

4.2. Choice of CNN

Considering the relatively small size of our datasets, training a deep neural network
(DNN) can easily lead to overfitting. In such a situation, transfer learning is the natural
solution. Transfer learning can achieve better performance with a relatively small dataset.
In our proposed system, we trained the following popular CNN models to choose the
best-performing model for our proposed approach.

• ResNet50 [69]
• ResNet152 [69]
• VGG-16 [76]
• InceptionV3 [77]
• MobileNet [78]

The dataset contains images taken by different users, imaging devices, and multiple
view angles, ensuring numerous variations. As a result, the cars are not well-aligned,
and some images have irrelevant backgrounds. The data were gathered by collecting and
cleaning images from the internet and then cropping and cleaning images from Pakistani
overhead traffic videos taken at different locations. Pictures taken from the internet are
automatically annotated using the title and description the sellers had provided for each
post. Figure 4 shows some images of the Honda Civic 10th generation from the dataset.

Most of these models are trained on the ImageNet dataset [73], which makes these
CNN models ideal candidates for transfer learning. Each chosen model has its advantages.
ResNet models, being most famous for transfer learning, help tackle the vanishing gradient
problem and increase the training speed. They provide higher accuracy, especially for
classification problems. These models learn the difference among the already learned
features. If the learned feature is not helpful, then the final decision weights are set to zero
for that particular feature. The main strength of the VGG models is that they are easy to
understand and explain. They are suitable for typical two-class problems like cats vs. dogs
classification. InceptionV3 has many advantages, as it reduces computational cost. It trains
faster than the VGG family. The size of the model is smaller than VGG. MobileNet offers
several advantages over other state-of-the-art convolutional neural networks, including
reduced network size, reduced number of parameters, and faster performance, and it is
helpful for mobile applications. Even though MobileNet has the advantage of smaller
size, fewer parameters, and fast performance, it is less accurate than other state-of-the-art
networks. Table 3 lists the test accuracies achieved by our chosen models for Stanford Cars
and the local Pakistani on-road cars dataset.

Table 3. Accuracies achieved.

No. Model Name Test Accuracies (Pakistani Cars) Test Accuracies (Stanford Cars)

1 ResNet50 90% 92%
2 ResNet152 90% 82%
3 VGG-16 70.80% 71%
4 Inception V3 70% 58%
5 MobileNet

4.3. Experimental Environment

All the experiments were performed on a GPU virtual machine with 16 GB RAM and
a dual core CPU. Python 3.7 was used as the programming language.
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4.4. Implementation Details

The most important thing to note is that the number of channels in the output feature
maps extracted from a pre-trained VGG-16 (ResNet50, ResNet152) is fixed at 512 (2048).
We fine-tune the pre-trained models with our proposed loss function to explore the pre-
trained rich discriminative features of the VGG-16 (ResNet50, ResNet152) learned on a
large ImageNet dataset. With the fixed size of the feature vector, this would produce 37,689
feature vectors of 2048 dimensions and 8144 vectors of 2048 dimensions for BoxCar21k
(with 87 classes) and Stanford Cars (with 196 classes), respectively. After applying the
Fisher discriminative least squares regression (FDLSR) function, the feature vectors are di-
mensionally reduced, yielding 2048 × 87-dimensional vectors and 2048 × 196-dimensional
vectors for BoxCar21k and Stanford Cars, respectively.

To compare our approach with other state-of-the-art methods, we annotate and resize
every image in the dataset to 224 × 224, then extract features using VGG-16 (ResNet50,
ResNet152) pre-trained on ImageNet classification datasets. We began with an 80/20
training validation split for both datasets because both are small, and increasing the
validation set might overfit the CNN model. We used stochastic gradient descent and
batch normalization as regularizers. The learning rate of fully connected layers is kept at
0.0001, and we have trained no model for more than 100 epochs. Table 4 summarizes the
hyperparameter values.

Table 4. Summary of hyperparameters.

Hyperparameters Value Rationale

Optimizer SGD Recommended for ResNet models [79]

Learning Rate 0.0001 Recommended for ResNet models [80] because we do not
want to change too much what is previously learned

Batch Size 64 Best accuracy
Epoch <100 Avoid overfitting

4.5. Evaluation Protocol and Measures

We conducted several experiments and analyzed our results to determine the best
practices for vehicle make and model recognition using the chosen CNN architectures
(VGG-16, ResNet50, and ResNet152). According to Table 3, these are the top three perform-
ing models. We have used top-1 and top-5 accuracy metrics to evaluate the performance
of different fine-grained classification models. In fine-grained classification, differences
between classes are pretty subtle, and the correct class is often in the top-k prediction,
making top-k (k = 2, 3, 4, . . . ) accuracy significantly higher than top-1 accuracy. We have
exploited this accuracy gap to understand the performance of different classification mod-
els. We compared different classification models in this section in terms of accuracies,
computational complexity, and other factors such as runtime.

4.5.1. Test Accuracy Comparison

The different classification models trained on the same database with varying CNN
model features have shown drastic variances in performance. Table 5 compares the accuracy
of the FC layer, SVM, and our proposed classification model tested on the deep features of
Stanford Cars. The highest top-1 test accuracy observed for the Stanford Cars database is
94.62% for our proposed model trained on fine-tuned ResNet152 features. The SVM model
has performed better on ResNet50 features than other CNN features, with 94.44% accuracy,
whereas the FC layer classification performance with ResNet152 features is comparably
more convincing than others, with 90.37% top-1 accuracy. We observe that the accuracy gap
between our proposed classifier’s top-1 and top-5 accuracy is minimal and ranges between
4–11%. This range stretches to 5–15% with SVM and 8–18% in the case of the FC layer.
Additionally, this accuracy gap is associated with the final loss of the classifier, and with
a higher gap, the losses are also higher. Since our proposed classifier has decreased this
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gap, minimal loss, i.e., 0.052, is observed by our classifier on ResNet152 features. The same
trend is marked with the BoxCar21k database, as shown in Table 6.

Table 5. Stanford Cars test accuracies.

Classification Models Feature Extracting Models Top-1 Accuracy Top-5 Accuracy Final Loss

FC Layer
ResNet50 90.37 98.40 0.096

ResNet152 90.52 98.15 0.094
VGG-16 76.32 94.47 0.236

SVM
ResNet50 94.44 99.02 0.056

ResNet152 94.17 99.03 0.053
VGG-16 81.76 96.40 0.183

Ours
ResNet50 94.16 98.98 0.053

ResNet152 94.62 99.09 0.052
VGG-16 86.17 97.51 0.166

Table 6. BoxCars21k test accuracies.

Classification Models Feature Extracting Models Top-1 Accuracy Top-5 Accuracy Final Loss

FC Layer
ResNet50 96.15 99.56 0.038

ResNet152 97.91 99.92 0.020
VGG-16 93.91 99.25 0.060

SVM
ResNet50 98.40 99.99 0.016

ResNet152 98.41 99.99 0.019
VGG-16 93.21 99.44 0.082

Ours
ResNet50 98.74 100 0.013

ResNet152 98.88 100 0.012
VGG-16 96.84 100 0.031

4.5.2. Computational Complexity Comparison

The complexity analysis of the FDLSR algorithm in Figure 2 is as follows [3]. When
we update T, computation complexity is O(ndc). When updating Q, the complexity is

O(nd2 + d3).

Therefore, the final computational complexity of updating S is

O(ndc + nd2 + d3)

Since the number of training samples and classes is much smaller than the dimension-
ality of the feature vector, the main time-consuming step is computing

XT · (1/(XXT + βI))

This term can be pre-computed because its value does not change during iteration.
As a result, the final computational complexity of FDLSR [3] is

O((nd2 + d3) + 2tndc),

where t is the number of iterations, n is the number of samples, d is the dimensionality of
the data, and c is the number of classes in the dataset. The computational complexity of
SVM is

O(nd2)

per iteration [4]. The proposed algorithm has the lowest computational complexity Since
FDLSR converges in 30 iterations, while SVM takes 500 iterations to converge.
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4.6. Runtime Comparison

The extracted feature vector has the dimension 2048×N, where N is the number of
sample images. Our proposed classifier has shown the lowest and almost equal runtime on
both datasets (Figures 6 and 7). Even with different CNN models, the runtime is constant,
which shows that the number of sample images and the nature of extracted features have
no impact on the runtime of our classification model. We can observe that the nature and
the order of hidden layers in the FC layer affect its runtime. Similarly, SVM depends on the
nature of the training set, as it has a varying runtime with different CNN model features.

Figure 6. Runtime on the Stanford Cars dataset.

Figure 7. Runtime on the BoxCars21k dataset.

4.7. Comparisons with State-of-the-Art Methods

Our proposed approach for VMMR presented in this paper outperforms several re-
lated VMMR works regarding classification accuracy. A comparison of our work with the
results of other associated works on the Stanford Cars dataset is presented in Table 7. We
have used three main categories of fine-grained recognition methods to draw comparisons.
The first category is based on the attention mechanism, which includes a fully convolutional
attention network (FCAN) [81], recurrent attention CNN (RA-CNN) [56], multi-attention
convolutional neural network (MA-CNN) [82], dynamic time recurrent attention model
(DT-RAM) [83], and trilinear attention sampling network (TA-SN) [84]. The second cate-
gory, which is high-dimensional feature coding, includes a bilinear convolutional neural
network (BCNN) [85], kernel pooling (KP) [86], higher-order integration of hierarchical
convolutional activations (HIHCA) [87], boosted convolutional neural network (Boost-
CNN) [88], HBP, and HBP with aggregated slack mask (HBPASM) [89]. Moreover, the third
category is based on vehicle-specific characteristics, which include dual cross-entropy loss
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(DCEL) [90] and the global topology constraint network (GTCN) [91]. Using the ResNet152
model as the 379 feature extractor, the proposed fine-grained classification model achieves
the best accuracy of 94.61% on the Stanford Cars dataset.

Table 7. Comparison of the Proposed Method with State-of-the-art Methods.

Method Accuracy %

Channel Max Pooling (CMP) [59] 93.71
Spatially weighted pooling (SWP) [58] 93.1

Mutual-channel loss (MC) [65] 90.85
Recurrent-attention CNN (RA-CNN) [56] 92.5

Multi attention CNN (MA-CNN) [82] 92.8
Fully convolutional attention network (FCAN) [81] 89.1

Dynamic time recurrent attention model (DT-RAM) [83] 93.1
Trilinear attention sampling network (TA-SN) [84] 93.8

Kernel pooling (KP) [86] 92.4
Higher-order integration of hierarchical convolutional activations

(HIHCA) [87] 91.7

Bilinear convolutional neural network (BCNN) [85] 92.1
Dual cross-entropy loss (DCEL) [90] 93.3

Global topology constraint network (GTCN) [91] 94.3
Our proposed method 94.61

5. Conclusions

This paper proposed a novel classifier based on FDLSR to solve the problem of view-
independent car make and model classification. For our research, we have chosen the
Stanford Cars dataset and BoxCars21k. The former was selected for its large number of
classes and a small number of instances in each class, while the latter was selected for the
considerable variation in viewpoints in the dataset. We also introduced a Pakistani cars
dataset and conducted experiments for CNN selection on it. Preexisting CNN models were
considered for feature extraction and after extensive experimentation, ResNet-50, ResNet-
152, and VGG-16 were selected. Selected features were fed to our proposed classifier.
Experimental results show that our proposed classifier achieves substantially better results
than the existing state-of-the-art approaches. Our method deals with the main problem
deep neural networks face, i.e., poor performance on a small training set. Due to FDLSR’s
ability to increase inter-class distance and decrease intra-class distances, class boundaries
become more defined. We see superior performance on datasets with a large number of
classes and with a small number of samples per class. Our proposed classifier has the
shortest run time independent of the type of features fed to the classifier. For future work,
we plan to conduct experiments on the Pakistani cars dataset and implement incremental
learning for feature extraction.
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