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Abstract: Defect segmentation of apples is an important task in the agriculture industry for quality
control and food safety. In this paper, we propose a deep learning approach for the automated
segmentation of apple defects using convolutional neural networks (CNNs) based on a U-shaped
architecture with skip-connections only within the noise reduction block. An ad-hoc data synthesis
technique has been designed to increase the number of samples and at the same time to reduce neural
network overfitting. We evaluate our model on a dataset of multi-spectral apple images with pixel-
wise annotations for several types of defects. In this paper, we show that our proposal outperforms
in terms of segmentation accuracy general-purpose deep learning architectures commonly used
for segmentation tasks. From the application point of view, we improve the previous methods
for apple defect segmentation. A measure of the computational cost shows that our proposal can
be employed in real-time (about 100 frame-per-second on GPU) and in quasi-real-time (about 7/8
frame-per-second on CPU) visual-based apple inspection. To further improve the applicability of
the method, we investigate the potential of using only RGB images instead of multi-spectral images
as input images. The results prove that the accuracy in this case is almost comparable with the
multi-spectral case.

Keywords: apple defect segmentation; multispectral imaging; real-time deep learning; visual inspection

1. Introduction

The food industry is concerned with the processing, production, handling, storage,
preservation, control, packaging, and distribution of food products made from raw foods [1].
The early detection of defects in raw food would make food production and selection
processes more efficient. Kumar Pothula et al. [2] propose a new singulating and rotating
mechanism for in-field grading and sorting, and Nturambirwe et al. [3] and Firouz et al. [4]
review the automatic non-destructive techniques for horticultural quality assessment. The
detection of defects in this case would allow food prices to be categorized according to
product quality, thus better matching consumer expectations with respect to a specific
product category [5].

Detecting defects during production, handling, storage, preservation, etc. is crucial
for prompting appropriate categorization of the products, especially in the food industry.
To this aim, it is essential to detect defects within a timeframe that is shorter or at least
comparable to the product processing time itself, thus ensuring that timely feedback or
alerts are provided.

Defect detection can be carried out through various methods. First, human opera-
tors can perform manual defect detection to actively monitor the manufacturing process.
Alternatively, computer-based systems equipped with imaging devices or sensors can
automatically monitor the production process. Lastly, there is the option of semi-automated
detection, where humans interact with computer-based monitoring systems [6] to analyze
critical cases.
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In this paper, we focus on the quality control of raw food, which is usually based on
shapes, colors, and textures [7], and in particular we address the problem of apple quality
control. Defect detection of apples is a relevant problem since the apple is the second most
consumed fruit in the world, following the banana [8]. China provides the largest apple
production in the world; it produced almost 40 million metric tons with a cultivation area
of 2.1 million hectares in 2013. Other leading countries include Turkey, the United States,
Poland, and India (see Table 1). The majority of apples produced in the world are destined
for fresh consumption, so a defect detection method is crucial to improve the market value
of these fruits. Serious or slight defects could be both naturally or non-naturally introduced
in the apple life cycle. Natural defects are produced during the fruit’s growth on the tree,
for example, frost damage, rot, hail damage, flesh damage, and scald. Non-natural defects
are introduced from the harvest operation onwards, for example, spoilage or mechanical
damage, transportation spillage, degradation, grading, sorting, washing, and distribution
in the stores. Typical non-natural defects are bruises, russets, scar tissue, limb rubs, and
flesh damage.

In this paper, we focus on apple defect detection using automatic visual inspection
methodologies based on computer vision and deep learning. The majority of the state-of-
the-art methods consider apple defect detection as a classification problem, where each
apple sample is classified as a defective/non-defective class with any information about
the defect localization and size [9]. However, the European Commission in 2004 defined
the marketing standard for apples, asserting that apples are classified in three classes on
the basis of the grade of defects in terms of size and visual characteristics [10]. In order
to be compliant with European standards, automatic methods for apple defect detection
should also output the segmentation of the defective regions. Defect segmentation makes it
possible that some apples could be sold at a lower price if the defect covers a small portion
of the surface.

Huang et al. [11] found that the use of hyper and multi-spectral cameras instead of
RGB cameras may bring an improvement in defect detection since some classes of defects
are more visible in specific spectral bands. Multi-spectral imaging for raw foods can be
performed using two common measurement modes, namely reflectance and transmittance.
The difference between them is related to the lighting and detector configurations. The
reflectance mode can obtain information concerning the sample surface in terms of color,
size, shape, and surface defects, without any contact with it [12]. The transmittance
mode measures the amount of light that passes through the sample [13], thus providing
information regarding the internal part of the sample. Concerning apples, the reflectance
mode is the most common choice because it is non-destructive, fast, simple, low-cost, and
environmentally friendly. In this field, Rahi et al. [14] review the spectroscopy and spectral
imaging techniques for non-destructive food microbial assessment, Gui et al. [15] propose
a CNN-SVM model for an SMV classification method trained on hyperspectral images with
256 bands in the range 383.70∼1032.70 nm, while Liu et al.’s [16] system discriminates and
eliminates damaged soybean seeds based on the acquired RGB images.

Notwithstanding the importance of visual-based automatic detection of apple defects,
the databases that are used for developing these types of systems are usually not available
for research. In this work, we employ the only public available multi-spectral database of
apples (reflectance mode: RGB + near infrared-NIR). The database has precise segmentation
and categorization of defects [17]. It consists of 280 and 256 images of healthy and defective
Jonagold apples, respectively. The multi-spectral (RGB + NIR) images are acquired in a
custom setup that includes a four band multi-spectral image acquisition device and a
specific set of lighting sources.

Before the emergence of convolutional neural networks (CNNs), traditional computer
vision techniques were commonly used for defect segmentation tasks. These methods
often relied on handcrafted features and rule-based algorithms to detect and segment
defects on apple surfaces. Here are a few techniques that were commonly used prior to the
widespread adoption of CNNs: Mizushima and Lu [18] propose an image segmentation
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algorithm for apple sorting and grading based on support vector machine and Otsu’s
method; Unay et al. [19] propose several thresholding and classification-based techniques
for defect segmentation on ‘Jonagold’ apples; Kleynen et al. [17] implement filters of
specific spectral bands for a multi-spectral image acquisition device for defect detection
on apples.

Convolutional neural networks (CNNs) have emerged as a powerful approach for
defect segmentation tasks, including the specific task of apple defect segmentation. CNNs
are deep learning models that excel at analyzing visual data and have the ability to auto-
matically learn and extract relevant features from images [20].

By utilizing CNNs for apple defect segmentation, researchers have achieved significant
improvements in accuracy and efficiency compared to traditional computer vision tech-
niques. CNNs can handle complex and varied defect patterns, adapt to different lighting
conditions, and learn robust representations of the defects, making them a state-of-the-art
approach in this field [21].

To train these CNN models, large datasets of annotated apple images are required.
These datasets contain images of apples with different types and severities of defects, along
with corresponding manual annotations that indicate the locations and boundaries of the
defects. The process of creating these annotated datasets involves expert human annotators
who carefully label the defects in the images [17].

The main limitation of deep neural networks for defect detection is related to the
amount of diversity data in the training process. Acharya et al. [22] generate synthetic
data to overcome imbalance problems. Recent works increase the number of training
images by applying different traditional augmentation techniques like salt and pepper
noise, Gaussian noise, flips, rotation, brightness, and darkness operation [23]. But these
augmentation algorithms are not enough to increase the diversity of defects in the database
and they can change the naturalness of defects.

Moreover, relevant problems of CNNs are related to the inability to run on low compu-
tational devices and handle high resolution images in real-time. The most straightforward
solution to reduce the computational complexity is to resize the image, but this operation
introduces some artifacts and can alter the defects [24].

This paper proposes an advanced deep learning methodology for the automatic
segmentation of apple defects. Our approach is based on a U-shaped convolutional neural
networks (CNN) architecture [25]. To address the challenge of limited training data and
thus reduce the effect of the training overfitting, we propose here a novel data synthesis
technique. This technique aims to increase the number of available samples for training. To
assess the effectiveness of our approach, we conduct evaluations using the multi-spectral
apple dataset proposed by [17].

Our proposed methodology exhibits superior performance in terms of segmentation
accuracy compared to commonly used deep learning architectures designed for general
segmentation tasks. Our approach significantly improves existing methods for apple
defect segmentation, leading to substantial enhancements. Additionally, we evaluate
the computational cost of our proposal, demonstrating its suitability for real-time ap-
plications. Utilizing a GPU, our method achieves an impressive frame-per-second rate
of approximately 100, while with a CPU, it achieves a quasi-real-time performance of
about 7/8 frames-per-second in visual inspection processes. To enhance the versatility
of our method, we investigate the feasibility of using RGB images exclusively as input
data instead of multi-spectral images. Encouragingly, the results show that the accuracy
achieved in this scenario is nearly comparable to the multi-spectral approach. The ex-
periments can be reproduced using the code made available at the following address:
https://github.com/cimice15/Quasi_real-time_apple_defect_segmentation (accessed on 8
September 2023).

The paper is organized as follows: Section 2 presents related works, Section 3 presents
the database used in our experiments and the method we propose. Section 4 presents

https://github.com/cimice15/Quasi_real-time_apple_defect_segmentation
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evaluation metrics and experimental setups. Finally Section 5 discusses results of the
proposed method in comparison with state-of-the-art methods.

Table 1. Apple production (in 1000 metric tons) by world countries. FAOSTAT, 2023. FAO Statistics
Division. https://www.fao.org/ (accessed on 8 September 2023).

Country 2021 2020 2019

China 45,983 44,066 42,425
Turkey 4493 4300 3618
United States 4467 4665 5028
Poland 4067 3555 3080
India 2276 2814 2316
World 93,144 90,490 87,509

2. Related Works

We approach the apple quality assessment as a defect segmentation task because
binary classification restricts the possible performance evaluation and the value on the
market of the algorithms. So in this section we analyze the methods specifically designed for
the apple defect segmentation and the methods that perform apple classification exploiting
defect segmentation. The result of this analysis is reported in Table 2.

Table 2. The main state-of-the-art methods for defect segmentation. For each method, the database,
the color space, the spectral bands, the methodology, the output and finally the performance are
specified.

Author Database Color Space Spectral Bands (nm) Approach Output Performance

Unay et al. [19] 526 Jonagold Multi-spectral 450, 500, 750, 800 Pixel features + MLP Binary mask CSRE: 17%
Zhang et al. [26] 2000 Apples RGB N/A FCM-NPGA algorithm Label Accuracy: 98%
Huang et al. [11] 250 Fuji Hyper-spectral 325–1100 PCA + Threshold Label Accuracy: 95.3%
Moallem et al. [27] 120 Apples YCbCr, RGB N/A Threshold + SVM, MLP, KNN Label Accuracy: 89.2%

Lu et al. [28] 318 Delicious
250 Golden delicious Multi-spectral SIRI 730 BEMD + RF, SVM, CNN Label Accuracy: 98%

Bhargava et al. [29] 526 Jonagold Multi-spectral 450, 500, 750, 800 Threshold + KNN, SRC, SVM Label Accuracy: 95.21%
Fan et al. [30] 610 Apples RGB + NIR 850 YOLOV4 Label + BBox Accuracy: 93.9%

Unay et al. [19] propose an approach that compares several thresholding and
classification-based techniques for apple defect segmentation. The method extracts global
and local apple features using different neighbourhoods size and shape. Subsequently, the
defect detection is conducted using thresholding or classification. Thresholding applies
global or local threshold, while classification uses supervised and unsupervised methods.
The results shows that the multi layer perceptron (MLP) is the most promising architecture
to be used for the segmentation of surface defects.

Xiaobo et al. [31] propose a multi-threshold method to segment the apple image
from black background. Then, the Yang et al. [32] algorithm identifies patch-like defects
including calyxes and stem-ends. When two or more ROIs are identified, the apple is
classified into the rejection class. In this case, the segmentation of the defect is a previous
stage of the apple classification.

Zhang et al. [26] propose an approach for identifying defects in apples using a
combination of the fuzzy C-means algorithm and the nonlinear programming genetic
algorithm (FCM-NPGA), along with multivariate image analysis. Initially, the image was
subjected to denoising and enhancement through fractional differentiation. This process
eliminated noise and edge points while retaining essential texture details. Subsequently,
the FCM-NPGA algorithm was employed to segment potentially defective regions within
the apple. Ultimately, a strategy founded on multivariate image analysis was employed to
identify flaws within the mapped regions indicative of potential defects in the apples.

Bhargava et al. [29] applied a threshold to segment apple instance from background,
then the segmentation of a defective area is performed using fuzzy c-means. The method
is designed for apple classification, so the apple feature extraction is performed using

https://www.fao.org/
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various combinations of statistical textural, geometrical, Gabor wavelet, and discrete cosine
transform. Finally, for classification, three different classifiers, namely KNN, SRC (sparse
representation classifier) and SVM (support vector machine) have been applied.

Huang et al. [11] developed a multi-spectral imaging system to select the most
appropriate wavelengths for apple defect classification using principal component analysis
(PCA). Although the method is developed for the classification of normal or bruised apples,
the analysis highlights that three effective wavelengths are feasible for bruise segmentation
on apples.

Lu et al. [28] developed a multi-spectral structured illumination reflectance imaging
(SIRI) system to acquire near-infrared images of apples with various types of surface and
subsurface defects. Direct component (DC) and amplitude component (AC) images are
extracted and enhanced using bi-dimensional empirical mode decomposition (BEMD).
Defect detection algorithms are developed using random forest (RF), SVM, and CNN.

The most recent method proposed by Fan et al. [30] combines NIR images provided
by three consecutive rubber roller stations. Then, the defect detection and classification are
performed using a pruned YOLO V4 network.

Since our method is based on a U-shaped CNN architecture, we compare our method
with other U-shaped architectures as well as with other relevant CNN architecture specially
designed for image segmentation. In particular, we compare with a traditional U-Net [33]
and a variant, namely U-Net++ [34], the Pyramid Scene Parsing Network (PSPNet) [35],
DeepLabv3 [36] and PAN (Pyramid Attention Network) [37]. The U-net network consists
of a contracting path to capture context and a symmetric expanding path that enables
precise localization. Its variant U-Net++ is aimed at reducing the semantic gap between
the feature maps of the encoder and decoder sub-networks through a series of nested
and dense skip pathways. PSPNet embeds difficult scenery context features in a fully
convolutional network-based pixel prediction framework. DeepLabv3 network employs
atrous convolution in cascade or in parallel to capture multi-scale context by adopting
multiple rates. Finally, the PAN network combines attention mechanism and spatial
pyramid to extract precise dense features for pixel labeling instead of complicated dilated
convolution and artificially designed decoder networks.

3. Materials and Methods
3.1. Database

The apple image database [17] consists of 280 and 256 images of healthy and defective
Jonagold apples, respectively, with a resolution of 430× 560 pixels. The multi-spectral (RGB
+ NIR) images are acquired in a custom setup that includes a four band multi-spectral
image acquisition device and a specific set of lighting sources. The acquisition device is a
MultiSpec AgroImagerTM (Optical Insights LCC, Suwanee, GA, USA) with four interference
band-pass filters centred at 450, 500, 750 and 800 nm with a bandwidth of 80, 40, 80 and
50 nm, respectively. Each band is 8-bit encoded. The acquisition lighting setup is composed
by two Philips TL-D 18 W/18 fluorescent tubes emitting in the spectral band of the blue
colour and ten 30 W incandescent spots emitting in the visible and near-infrared spectra.
Lighting sources are placed to avoid specular reflections.

The apples in the database contain a large number of defect variants both in terms of
appearance and size: russets, scar tissue, frost damage, scald, hail damage (with and without
skin perforation), limb rubs, visible flesh damage, recent bruises (between 1 h and 2 h old), rot
and other (defects). Individual defects are further characterized, according to their severity
and size, as follows: slight defects (e.g., small russet), more serious (e.g., scar tissue), defects
leading to the rejection of the fruit (e.g., rot) and recent bruises. The defects distribution is
depicted in Figure 1. In the original database, all the defects have been manually outlined,
making it possible to faithfully verify the accuracy of the proposed method that is designed
to automatically identify the boundaries of defective areas whatever the type of defect is.
An example of these defects is depicted in Figure 2.
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Figure 1. Distribution of defect classes (left) and distribution of defects based on their severity and
size (right) .
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Figure 2. Examples of apple defects present in the database. The dataset is composed of 9 classes of
defect plus an other class. For each image the limited blue area highlights the defect area.

Figure 3 shows the spectral bands of some defective apples. It can be noticed that
some defects are difficult to see in some spectral bands. Since multispectral cameras are
usually more expensive than traditional RGB cameras, one of the research questions to be
addressed in concerns the actual need of the infrared channel for defect segmentation.

450nm 500nm 750nm 800nm RGB

450nm 500nm 750nm 800nm RGB

450nm 500nm 750nm 800nm RGB

Figure 3. Apple images with the corresponding defect segmentation. Each column presents the apple
images at a given band (450, 500, 750 and 800 nm). The last column presents the corresponding RGB
image. For each image the defective regions are highlighted in red. Each row displays apples with
different defect types.
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3.2. Data Synthesis

To further increase the number of apple samples used during the training process, and
so to reduce overfitting of the neural networks, we synthesize new defective apple images.
The data synthesis process is summarized as follows:

1. We randomly pick a defective apple image;
2. We apply two image transformations to the apple defect: (1) a random rotation of an

angle selected within the range [0, 360]deg; (2) a random warping using a deformation
grid [33];

3. We randomly pick a healthy apple image;
4. We define the apple Region Of Interest (ROI) by removing the background from the

healthy apple image [19];
5. We place the defect taken from the defective apple image selected at step 1 onto the

ROI of the healthy apple image.

To synthesize apples with multiple defects, we randomly place from one to three
defects onto a given healthy apple image.

To further analyze the effect of our data synthesis procedure, we have investigated
different data synthesis setups that are listed in Table 3. The first setup considers no
data synthesis at all; the second one considers only the generation of one synthetic defect
without any transformation; the third one considers one synthetic defect with random
defect rotation; the fourth one considers one synthetic defect with random defect rotation
and warping; the last two setups consider one to three synthetic defects along with defect
rotation and both defect rotation and warping, respectively.

Table 3. Ablation study of different proposed data synthesis setups.

Algorithm Synthesized Defects Rotation Warp

1 - - -
2 1 - -
3 1 X -
4 1 X X
5 1 to 3 X -
6 1 to 3 X X

The proposed data synthesis procedure is executed during the training phase with
a probability P . A graphical example of the proposed data synthesis procedure (setup
number 5, cfr. Table 3) is depicted in Figure 4. Each row corresponds to a different
defect type, while the first and second columns represent healthy apple without and with
synthesized defects, respectively.

Healthy
image

Synthesized
image

Figure 4. Examples from our data synthesis procedure. Each row represents a different healthy image
that is synthesized with 1, 2, and 3 defects respectively coming from non-healthy apples. For each
image the the limited blue area highlights the defect area.
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3.3. Proposed Model

Our approach is based on a U-shaped CNN architecture that has been successfully
employed in the literature for visual inspection tasks [38]. This architecture is a good trade-
off between accuracy and computational cost [33]. We show later that our proposal can be
employed in real-time (using a GPU) or quasi-real-time (using a CPU) visual inspection
tasks. Moreover, the network designed here allows the handling of full size images without
resizing and cropping that can alter defect details [39].

The proposed U-shaped architecture is depicted in Figure 5. The first two blocks of
the network encoder are designed for feature mapping and noise reduction. The feature
mapping is performed using a convolution layer that increases the number of features
and halves the image size so to reduce the computational cost. Then, the noise reduction
module is based on an inverted residual structure that is performed using a depth-wise
convolution and a point-wise convolution that halves the number of channels to remove
irrelevant features. Subsequently, the next group of bottleneck layers perform a channel
feature selection, where each bottleneck block is composed of three operations: firstly the
number of features is expanded by a factor of t using a point-wise convolution; secondly,
a depth-wise convolution with 3× 3 kernel of stride 2 halves the image size; finally the
number of features is reduced using a point-wise convolution. The last bottleneck layer
performs a feature mapping for the decoding phase. The number of bottleneck blocks
increase as the spatial dimension decreases in order to catch large details like bruises
and fine grain details like russet or scald, respectively. During the decoding phase, the
features of the lower level are up-sampled and concatenated with the features of the level
above. Then a 3× 3 convolution layer with a stride 1 and padding 1 is applied in order
to efficiently combine the information of the two different levels without changing the
number of features. Batch normalization and a ReLU6 non linearity function follow each
layer to encourages the model to learn sparse features earlier.
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Figure 5. Our proposed model architecture. Regarding the convolution operation, d, s and p refers
to the square kernel size, stride and padding, respectively. The C, t and c parameters of bottlenecks
indicate the input channels, the expansion ration of channels in the middle depth-wise convolution
and the output channels, respectively.
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To train our proposed architecture, we employ the Focal Tversky Loss (FTL) [40]
that permits to improve the precision and recall balance in semantic segmentation when
dealing with highly imbalanced dataset. The FTL gives better results than other binary
classification loss functions, such as the Binary Cross-Entropy, Weighted Cross-Entropy
and Dice Loss [41]. The FTL is defined as follows:

TIc =
∑N

i=1 picgic + ε

∑N
i=1 picgic + α ∑N

i=1 pic̄gic + (1− α)∑N
i=1 picgic̄ + ε

FTLc =∑
c
(1− TIc)

1/γ,

(1)

where pic is the probability that pixel i is predicted as defective c and pic̄ is the probability
that a pixel i is healthy c̄. gic and gic̄ is the pixel i ground-truth of the defective and healthy
class respectively. N is the total number of pixels in the image. The ε provides numerical
stability to prevent division by zero. The α parameter ranges in {0, 1} and it is used to train
a more recall or precision oriented model. The γ coefficient allows the model to focus more
on less accurate predictions that have been misclassified, such as those with small ROIs.

Comparison with the State-of-the-Art

To study the impact of different architectures in the detection of apple defects, we
compare our method with pixel-wise and CNN state-of-the-art models. The most relevant
pixel-wise approach in the state-of-the-art that experiments with the apple dataset under
investigation is proposed by Unay et al. [19]. Unlike convolutional neural networks, one of
the problems of pixel-wise methods is that they do not consider spatial correlation among
pixels in the detection of the defects which is indeed a relevant information in semantic
segmentation.

We compare our proposed architecture with several variants of U-shaped CNNs
commonly used in binary and semantic segmentation tasks. The first variant is a traditional
U-Net architecture that consists of three downsampling layers with 3× 3 convolution
followed by an average-pooling layer of size 2× 2. In this architecture and the following
models the output image is processed with a sigmoid activation aimed to get defect
probabilities. In order to reduce the semantic gap between the feature maps of the U-
Net encoder and decoder sub-networks, we experiment a U-Net++ model [34]. This
architecture is based on nested and dense skip connections between intermediate blocks,
making the model more accurate in image segmentation. The size of convolution filters
and up-sampling layers of U-Net++ are the same as those of the traditional U-Net.

We also include in our comparison some relevant CNN architectures for semantic
image segmentation: Pyramid Scene Parsing Network (PSPNet) [35], DeepLabv3 [36], and
PAN (Pyramid Attention Network) [37].

4. Experimental Setup
4.1. Evaluation Metrics

For the evaluation of our experiments we adopt traditional metrics, such as recall,
precision, f -score [42] and a special metric, namely Class-Specific Recognition Error (CSRE),
that takes into consideration the fact that defects may be very small [19] with respect to the
size of the apple.

Given an apple image, the CSRE is defined as follows:

CSRE =
FN

TP+FN + FP
TN+FP

2
, (2)

where TP is the number of defective pixels correctly detected, FP is the number of healthy
pixels incorrectly detected as defect, TN is the number of healthy pixels correctly detected,
and FN is the number of defective pixels incorrectly detected as healthy.
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The f -score is defined as follows:

f -score =
precision · recall

precision + recall
=

2TP
2TP + FP + FN

. (3)

The precision and recall scores for each method are as follows:

precision =
TP

TP + FP
recall =

TP
TP + FN

. (4)

4.2. Experiment Design

We conducted preliminary experiments with our solution adopting a 3-fold Cross
Validation (CV). Results with CV were quite stable across folds, suggesting the affordability
of using only one fold as test set so to saving computational resources. In fact, our experi-
ments included the training of seven different neural network models using two different
color spaces with and without data augmentation, resulting in 28 training from scratch.
Moreover, for the sake of comparison, we also conducted an ablation study of our data
synthesis method that required eight, training from scratch the proposed neural network.
Finally the total number of training processes is about 36. For all the experiments, we
divide the dataset into 2 folds: 67% for training/validation and 33% for testing. Training
data are further split into two sets containing actual training samples (50%) and validation
samples (17%).

The experimental setup relative to Unay et al. [19] follows the steps and the optimal
parameters provided in the original paper. For the training of all the CNN-based methods
(including our proposal) we adopt the same experimental setup. We set the max number
of epochs to 100 with early stopping of 15 epochs of no improvements on validation set.
Adam is used as the optimizer starting from lr = 1× 10−4, β(0.9, 0.999), ε = 1× 10−8 and
weight decay is set to 0. We schedule the learning rate with step of 0.7 every 10 epochs. FTL,
Equation (1), is used as loss function with γ = 0.75 and α = 0.5 as base configuration [40].

Our data synthesis procedure is applied with a probability P equal to 80%. In addition,
a traditional data augmentation techniques is applied to each image with 50% probability:
horizontal and vertical flip, and rotation [0, 90 deg] each with 50% probability are applied.

5. Results and Discussion

In this section, we present and discuss the results achieved with our proposal and
the comparison with the state-of-the-art in all the experimental setups. Before going into
details, we show Table 4 which summarizes all the experiments and comparisons. The table
shows the rank of all the experimented algorithms computed averaging the ranks with
respect all the evaluation metrics and across all experimental setups. Overall, our proposal
ranked at first position whatever the input data are (RGB or RGB + NIR) and whether or
not data augmentation is used, thus demonstrating the superiority of our proposal with
respect to the state-of-the-art. The second best method is DeeplabV3 while the third one
is PAN. The worst one is the method by Unay et al. [19], which is based on handcrafted
features and an MLP.

Table 4. Methods ranking across experimental setups.

Methods Aug TS Unay et al. [19] U-Net U-Net Nested PSP DeeplabV3 PAN Our

RGB no 7 6 4 5 3 2 1
RGB + NIR no 7 6 5 4 2 3 1
RGB yes 7 6 5 4 2 3 1
RGB + NIR yes 6 5 3 4 2 2 1
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5.1. Hand-Crafted and CNN-Based Methods in the State-of-the-Art

Table 5 shows the results in terms of CSRE, f -score, precision, recall of the proposed
method, and the state-of-the-art. We report on the use of RGB + NIR and RGB solely so
that we can evaluate the potential of using only RGB images instead of multi-spectral
ones. Overall, our method outperforms in terms of CSRE of about 1% and 16% CNN-based
methods and the hand-crafted method, respectively. In terms of f-score, our method outper-
forms about 3% and 34% CNN-based methods and the hand-crafted method, respectively.
Among CNNs, the second best approach is the Deeplab V3, which is based on a multi-scale
processing that helps to catch fine and coarse defects.

Table 5. Comparison with hand-crafted and CNN-based methods in the state-of-the-art. The methods
are evaluated in RGB + NIR and RGB configuration. For each method we report CSRE, f -score,
precision and recall. Down-arrow and up-arrow indicates lower is better and higher is better for each
metric, respectively. In each column, the best and second-best values are marked in boldface and
underlined, respectively.

Image Type Method Name CSRE ↓ f -Score ↑ Precision ↑ Recall ↑

RGB + NIR

Unay et al. [19] 0.2523 0.4398 0.5238 0.5166
U-Net 0.1563 0.6392 0.689 0.7023
U-Net nested 0.1297 0.7292 0.7947 0.7508
PSP 0.1240 0.7445 0.7945 0.7616
DeeplabV3 0.1177 0.7690 0.8291 0.7721
PAN 0.1191 0.7573 0.8147 0.7703
Our 0.0991 0.7888 0.8422 0.8086

RGB

Unay et al. [19] 0.2624 0.4546 0.6703 0.4896
U-Net 0.1683 0.5904 0.6240 0.6838
U-Net nested 0.1180 0.7330 0.7869 0.7740
PSP 0.1305 0.7145 0.7794 0.7493
DeeplabV3 0.1284 0.7452 0.8178 0.7541
PAN 0.1106 0.7439 0.7717 0.7919
Our 0.1093 0.7938 0.8600 0.7874

At this stage, it is important to highlight that the proposed data synthesis procedure is
adopted only in our CNN architecture, while traditional data augmentation is employed in
all CNNs. Later on (cfr. Section 5.5), we show the effects of the proposed data synthesis
procedure when applied to CNNs in the state-of-the-art.

Finally, the results show that RGB + NIR and RGB perform in a very similar way thus
showing the potential of using only RGB cameras in apple visual inspection instead of
multi-spectral cameras.

Figure 6 shows the segmentation output of a russet defective apple with the inves-
tigated methods in the RGB + NIR configuration. The first two images are RGB image
and the respective ground-truth segmentation. Regarding the segmentation performed
by the models, true positives, false positives, and false negatives are showed as green, red
and blue color respectively. For each method we report f -score, CSRE, precision and recall
of the segmentation with respect to the ground-truth. Our method outperforms by large
improvement the state-of-the-art models, specially for the smaller defective areas.



Sensors 2023, 23, 7893 12 of 19

RGB image GT

F1: 0.0114
CSRE: 0.4971

Precision: 0.9286
Recall: 0.0058

F1: 0.4205
CSRE: 0.3481

Precision: 0.6438
Recall: 0.3123

F1: 0.5281
CSRE: 0.3094

Precision: 0.8416
Recall: 0.3848

Unay et al. 2006 U-Net U-Net nested

F1: 0.4649
CSRE: 0.3334

Precision: 0.7397
Recall: 0.3390

F1: 0.4566
CSRE: 0.3415

Precision: 0.7893
Recall: 0.3212

F1: 0.5790
CSRE: 0.2793

Precision: 0.8249
Recall: 0.4460

F1: 0.6793
CSRE: 0.1975

Precision: 0.7594
Recall: 0.6145

PSP DeepLabV3 PAN Our

Figure 6. Predicted segmentation of RGB + NIR russet defective apple with the investigated methods.
The first two images are RGB image and respective ground-truth segmentation. Regarding the
segmentation performed by the models, true positives, false positives, and false negatives are showed
as green, red and blue color respectively. For each method we report f -score, CSRE, precision and
recall of the segmentation with respect to the ground-truth [19].

5.2. Comparison with Hand-Crafted and CNN-Based Methods in the State-of-the-Art in Terms of
Macro Class and Sub Class Defects Accuracy (RGB + NIR and RGB)

Tables 6 and 7 show the comparison between our method and the state-of-the-art in
terms of accuracy of the macro classes of defects when RGB + NIR and RGB are employed,
respectively. For what concerns RGB + NIR, we outperform the state-of-the-art in terms of
f -score on all classes apart from the class bruises where Deeplab v3 is about 3% better than
our solution. In contrast, in the case of RGB, we outperform in terms of both f -score and
CSRE the state-of-the-art on all macro classes of defects.

Table 6. Comparison with hand-crafted and CNN-based methods in the state-of-the-art in terms of
RGB + NIR macro class. For each method, f -score and CSRE are reported. Down-arrow and up-arrow
indicates lower is better and higher is better for each metric, respectively. In each column, the best
and second-best values are marked in boldface and underlined, respectively.

Defect Class Unay et al. [19] U-Net U-Net Nested PSP DeeplabV3 PAN Our

f -score ↑

Bruises 0.6122 0.7978 0.8490 0.8789 0.9018 0.8676 0.8729
Reject 0.6406 0.7271 0.8889 0.8780 0.9271 0.9252 0.9392
Serious defect 0.4632 0.6274 0.7220 0.7179 0.7440 0.7367 0.7528
Slight defect 0.1760 0.4882 0.5525 0.5918 0.5998 0.5929 0.6660

CSRE ↓

Bruises 0.2015 0.0836 0.0462 0.0502 0.0358 0.0423 0.0344
Reject 0.1428 0.1366 0.0619 0.0336 0.0253 0.0299 0.0321
Serious defect 0.2539 0.1696 0.1278 0.1253 0.1123 0.1174 0.1157
Slight defect 0.3566 0.2274 0.1612 0.1806 0.1488 0.1625 0.1211
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Table 7. Comparison with hand-crafted and CNN-based methods in the state-of-the-art in terms
of RGB macro class. For each method are reported f -score and CSRE. Down-arrow and up-arrow
indicates lower is better and higher is better for each metric, respectively. In each column, the best
and second-best values are marked in boldface and underlined, respectively.

Defect Class Unay et al. [19] U-Net U-Net Nested PSP DeeplabV3 PAN Our

f -score ↑

Bruises 0.5856 0.7917 0.8849 0.8863 0.8705 0.8912 0.9051
Reject 0.6164 0.6240 0.9032 0.8237 0.9041 0.8596 0.9404
Serious defect 0.5059 0.5362 0.7368 0.7173 0.7114 0.7442 0.7598
Slight defect 0.2197 0.4828 0.5193 0.5285 0.5879 0.5718 0.6539

CSRE ↓

Bruises 0.1440 0.1096 0.0475 0.0465 0.0411 0.0557 0.0321
Reject 0.1073 0.2114 0.0516 0.0376 0.0290 0.0665 0.0266
Serious defect 0.1748 0.2170 0.1328 0.1375 0.1248 0.1204 0.1039
Slight defect 0.2574 0.2221 0.1788 0.1960 0.1519 0.1932 0.1100

Tables 8 and 9 show the comparison between our method and the state-of-the-art in
terms of accuracy of the sub classes of defects when RGB + NIR and RGB are employed
respectively. For what concerns RGB + NIR, on average we outperform the state-of-the-art
in terms of f -score, but we perform much worse than Deeplab v3 on the class other that
includes defects with a very low impact to the visual appearance of the apple and that
rarely have effects to the inner part of the apple. However, in the case of RGB the other
class of defects is detected with a higher f -score with respect to the case RGB + NIR and
very close the best method (below about 1%). This result also confirms the goodness of the
proposed method when only RGB input is processed with respect to the multi-spectral one.

Table 8. Comparison with hand-crafted and CNN-based methods in the state-of-the-art in terms of
RGB + NIR sub class. For each method, f -score and CSRE are reported. Down-arrow and up-arrow
indicates lower is better and higher is better for each metric, respectively. In each column, the best
and second-best values are marked in boldface and underlined, respectively.

Defect Class Unay et al. [19] U-Net U-Net Nested PSP DeeplabV3 PAN Our

f -score ↑

Bruise 0.6504 0.7987 0.8938 0.8931 0.9259 0.8909 0.9199
Flesh damage 0.5959 0.8233 0.8717 0.8679 0.8737 0.8723 0.8969
Frost damage 0.5314 0.5978 0.8142 0.8413 0.8382 0.7935 0.8782
Hail damage 0.2176 0.6305 0.6342 0.7169 0.6865 0.7144 0.7976
Hail damage perf 0.5646 0.4971 0.6974 0.6512 0.7594 0.7601 0.8010
Limb rub 0.6660 0.5370 0.9256 0.8306 0.8741 0.9016 0.9196
Other 0.2817 0.4853 0.4338 0.5790 0.6349 0.5606 0.5264
Rot 0.6001 0.7621 0.8551 0.8609 0.8537 0.8861 0.8765
Russet 0.0836 0.5272 0.6400 0.6084 0.6088 0.6497 0.6493
Scald 0.5206 0.5870 0.6996 0.6981 0.7052 0.6137 0.8016

CSRE ↓

Bruise 0.1820 0.0857 0.0483 0.0478 0.0362 0.0442 0.0357
Flesh damage 0.1570 0.1169 0.0645 0.0764 0.0693 0.0731 0.0554
Frost damage 0.2417 0.1095 0.0641 0.0566 0.0720 0.0860 0.0697
Hail damage 0.2540 0.1960 0.1178 0.1281 0.0770 0.0901 0.0860
Hail damage perf 0.2451 0.2746 0.1521 0.1265 0.0879 0.0906 0.1022
Limb rub 0.2344 0.2211 0.0425 0.1314 0.1073 0.0841 0.0529
Other 0.3705 0.2390 0.1980 0.1734 0.1373 0.1683 0.1403
Rot 0.1162 0.0987 0.0783 0.0649 0.0264 0.0436 0.0645
Russet 0.3769 0.1413 0.1246 0.1427 0.1647 0.1334 0.1073
Scald 0.2793 0.2608 0.1509 0.1827 0.1244 0.2046 0.1171
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Table 9. Comparison with hand-crafted and CNN-based methods in the state-of-the-art in terms
of RGB sub class. For each method, f -score and CSRE are reported. Down-arrow and up-arrow
indicates lower is better and higher is better for each metric, respectively. In each column, the best
and second-best values are marked in boldface and underlined, respectively.

Defect Class Unay et al. [19] U-Net U-Net Nested PSP DeeplabV3 PAN Our

f -score ↑

Bruise 0.6210 0.7899 0.9048 0.8971 0.9019 0.9066 0.9170
Flesh damage 0.5827 0.7657 0.8736 0.8649 0.8609 0.8494 0.8779
Frost damage 0.5993 0.2797 0.8340 0.7622 0.7302 0.8546 0.8858
Hail damage 0.2999 0.5696 0.6117 0.6308 0.6232 0.6985 0.7312
Hail damage perf 0.5365 0.3664 0.7084 0.6179 0.7824 0.6299 0.8038
Limb rub 0.7914 0.7089 0.9035 0.7964 0.9069 0.9183 0.9251
Other 0.3488 0.5310 0.4374 0.4933 0.5772 0.6013 0.5856
Rot 0.5580 0.7578 0.8771 0.8664 0.8473 0.8716 0.8793
Russet 0.1267 0.4838 0.6547 0.6213 0.6044 0.6122 0.7076
Scald 0.5089 0.6006 0.6430 0.6033 0.7078 0.6488 0.7370

CSRE ↓

Bruise 0.1470 0.1145 0.0500 0.0437 0.0430 0.0567 0.0332
Flesh damage 0.1194 0.1578 0.0696 0.0770 0.0724 0.0663 0.0615
Frost damage 0.0928 0.3353 0.0785 0.0456 0.1230 0.0865 0.0385
Hail damage 0.0813 0.2468 0.1045 0.1463 0.1007 0.1288 0.0821
Hail damage perf 0.2136 0.3226 0.1671 0.0872 0.0879 0.2048 0.0878
Limb rub 0.1229 0.2178 0.0579 0.1648 0.0513 0.0303 0.0537
Other 0.2891 0.1680 0.2193 0.2412 0.1502 0.1505 0.1273
Rot 0.0993 0.1347 0.0601 0.0769 0.0163 0.0464 0.0490
Russet 0.2552 0.1762 0.1225 0.1509 0.1513 0.1634 0.0931
Scald 0.2532 0.2408 0.1996 0.2328 0.1430 0.1941 0.1262

5.3. Sensitivity of the Proposed Method to the Parameter α of the TFL

The Focal Tversky Loss (FTL), Equation (1), performs a combination of False Positives
(FP) and False Negatives (FN). The α parameter represents a trade-off between FP and FN,
thus the tuning of this parameter allows to obtain a more precision or recall oriented model,
Figure 7. The model becomes more recall oriented as we increase the value of α, while the
model becomes more precision oriented as we decrease the value of α. The behavior of
the f -score highlights that the model performs in a good way starting from a value of α of
about 0.5 that corresponds to our choice.

Alpha

0.700

0.750

0.800

0.850

0.900

0.3 0.4 0.5 0.6 0.7

F-score precision recall

Figure 7. The study of α (Alpha) parameter of FTL.

5.4. Data Synthesis Ablation Study (RGB + NIR and RGB)

Table 10 shows the comparison between different variants of the proposed data syn-
thesis algorithm applied to our model when the input is RGB. The first row in the table
corresponds to no data synthesis at all. The second variant adds one synthesized defect
to the healthy apple without any rotation and warping of the defect. The third and forth
variants consider also the rotation and warping of the defect. Finally, the fifth and the sixth
consider multiple synthesized defects (from 1 to 3) along with rotation and warping.

Results show that defect rotation improves all metrics, while the defect warping
operation does not improve the performance. This is due to the warping operation that adds
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pixel artifacts in order to perform the defect deformation. Overall, considering multiple
synthesized defects instead of a single synthesized defect improves slightly improves the
f -score and precision. The best algorithm, in terms of evaluation metrics, is the number 5,
where the synthesized apple has 1 to 3 defects that are randomly rotated. To the sake of
comparison, we show the difference between the variant number 1 and number 5 when the
input is RGB + NIR. Also in this case, it is clear the improvement we achieve with our data
synthesis methodology.

Table 10. The performance of different proposed data synthesis setups. For each algorithm, CSRE,
f -score, precision and recall metrics are reported. The best configuration (5) is also evaluated in the
RGB + NIR scenario. Down-arrow and up-arrow indicates lower is better and higher is better for
each metric, respectively. In each column, the best and second-best values are marked in boldface
and underlined, respectively.

Configuration Algorithm Number of Defects Rotation Warp CSRE ↓ f -Score ↑ Precision ↑ Recall ↑

RGB

1 - - - 0.1110 0.7831 0.8333 0.7856
2 1 - - 0.1180 0.7658 0.8405 0.7712
3 1 X - 0.1071 0.7793 0.8423 0.7924
4 1 X X 0.1269 0.7548 0.8478 0.7526
5 1 to 3 X - 0.1093 0.7938 0.8600 0.7874
6 1 to 3 X X 0.1121 0.7812 0.8491 0.7824

RGB + NIR 1 - - - 0.1200 0.7680 0.8332 0.7674
5 1 to 3 X - 0.0991 0.7888 0.8422 0.8086

5.5. Comparison with CNN-Based Methods in the State-of-the-Art that Use Data Synthesis (RGB +
NIR and RGB)

To reduce the effect of the training overfitting, we apply the proposed data synthesis
technique also to the state-of-the-art methods. This technique aims to generate different
images, thus increasing the number of available samples for training. Table 11 shows the
results in terms of CSRE, f -score, precision, recall of the proposed method and the CNN-
based state-of-the-art where the proposed data synthesis is applied. For all methods, the
variant number 5, that is the one with multiple synthesized defects (from 1 to 3) along
with rotation, is applied. We report on the use of RGB + NIR and RGB solely so that we
can evaluate the potential of using only RGB images instead of multi-spectral ones. The
use of data synthesis improves the mean performance of CSRE by RGB and RGB + NIR
configurations. Our method outperforms the state-of-the-art in terms of CSRE, f -score and
recall, but we perform worse than PAN on precision in the case of RGB + NIR. It is interesting
to note that the PAN approach with data synthesis becomes the second best along with
Deeplab V3.

Table 11. Comparison with hand-crafted and CNN-based methods in the state-of-the-art with the
proposed data synthesis procedure. The methods are evaluated in RGB + NIR and RGB configuration.
For each method we report CSRE, f -score, precision and recall. Down-arrow and up-arrow indicates
lower is better and higher is better for each metric, respectively. In each column, the best and
second-best values are marked in boldface and underlined, respectively.

Image Type Method Name CSRE ↓ f -score ↑ Precision ↑ Recall ↑

RGB + NIR

U-Net 0.1439 (−7.93%) 0.6040 (−5.51%) 0.6238 (−9.46%) 0.7366 (+4.88% )
U-Net nested 0.1060 (−18.27%) 0.7087 (−2.81%) 0.7067 (−11.07%) 0.8043 (+7.13% )
PSP 0.1229 (−0.89%) 0.7417 (−0.38%) 0.8037 (+1.16%) 0.7630 (+0.18% )
DeeplabV3 0.1038 (−11.81%) 0.7590 (−1.30%) 0.7872 (−5.05%) 0.8059 (+4.38% )
PAN 0.1160 (−2.60%) 0.7750 (+2.34%) 0.8527 (+4.66%) 0.7742 (+0.51%)
Our 0.0991 (−17.42%) 0.7888 (+2.71%) 0.8422 (+1.08%) 0.8086 (+5.37%)

RGB

U-Net 0.2257 (+34.11%) 0.4552 (−22.90%) 0.5292 (−15.19%) 0.5715 (−16.42%)
U-Net nested 0.1347 (+14.15%) 0.7375 (+0.61%) 0.8098 (+2.91%) 0.7399 (−4.41% )
PSP 0.1344 (+2.99%) 0.7440 (+4.13%) 0.8224 (+5.52%) 0.7385 (−1.44%)
DeeplabV3 0.1181 (−8.02%) 0.7706 (+3.41%) 0.8535 (+4.37%) 0.7708 (+2.21%)
PAN 0.1248 (+12.84%) 0.7528 (+1.20%) 0.8581 (+11.20%) 0.7587 (−4.19% )
Our 0.1093 (−1.53%) 0.7938 (+1.37%) 0.8600 (+3.20%) 0.7874 (+0.23% )
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5.6. Analysis of the Computational Cost

To assess the applicability of the proposed method in real-world scenarios, we measure
and compare the computational cost of the proposed method and state-of-the-art. Experi-
ments are performed on a workstation equipped with an Intel Core i7-7700 CPU@3.60 GHz,
16 GB DDR4 RAM 2400 MHz, and NVIDIA Titan Xp with 3840 CUDA cores. The operating
system is Ubuntu 22.04. All methods are implemented using Python and the Deep Learning
framework Pytorch.

The results are presented in Table 12 and depicted in Figure 8. The table shows Class-
Specific Recognition Error (CSRE) [19], Frame Per Seconds (FPS) when the method is run
on CPU and GPU, and the number of Floating-Point Operations (FLOPS) measured in
billions (G). For the FLOPS and CSRE metrics, lower is better, while for the FPS higher
is better. This comparison is done considering RGB + NIR as input. The color grading
from red to green stands for worse and better behavior, respectively. Results show that
the hand-crafted method is the one with the lowest computational cost but with the worst
CSRE. Amongst the CNN-based approaches, our proposal has the best trade-off between
CSRE and computational cost. It permits to achieve up to 124 FPS with about 7 GFLOPS and
a CSRE lower than 0.1. Figure 8 graphically summarizes this comparison in terms of CSRE
vs FPS measured on CPU and GPU. The size of the bubbles refers to the computational cost.
The larger is the bubble the larger is the computational cost. This picture clearly shows that
our method is the one with the best trade-off between performance and computational cost.

Table 12. (Best viewed in colors). Methods comparison for CPU and GPU configuration related to
RGB + NIR images. FPS = Frame Per Seconds, CSRE = Class-Specific Recognition Error, FLOPS(G) =
Floating-Point Operations measured in billions (G). Down-arrow and up-arrow indicates lower is
better and higher is better for each metric, respectively. For each metric green and red colors indicate
best and worst results among all methods respectively.

Method Name CSRE ↓ FPS (CPU) ↑ FPS (GPU) ↑ FLOPS (G) ↓
Unay et al. [19] 0.2523 22.23 27 0.011
U-Net 0.1563 9.2 178 5.769
U-Net nested 0.1297 3.37 74 17.87
PSP 0.1240 5.55 113 14.381
DeeplabV3 0.1177 1.12 22 130.248
PAN 0.1191 2.56 37 47.151
Our 0.0991 8.17 124 7.352
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Figure 8. Methods FPS, CSRE, and FLOPS(G) comparison of RGB + NIR configuration. The first and
the second plots are related to the CPU and GPU configurations, respectively. Top-left configuration
is better.

6. Final Remarks and Conclusions

In this paper, we proposed a novel deep learning approach for the automated segmen-
tation of apple defects using a convolutional neural network (CNN) based on a U-shaped
architecture with skip-connections only within the noise reduction block. To increase
the number of samples and at the same time to reduce neural network overfitting, we
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designed an ad-hoc data synthesis technique to generate new images of apples having
a large variety of defects. We compared the proposed approach, both with and without
data synthesis, with different CNN-based methods, namely Pyramid Scene Parsing Net-
work (PSPNet) [35], DeepLabv3 [36] and PAN (Pyramid Attention Network) [37], and a
hand-crafted method proposed by Unay et al. [19]. To further improve the applicability
of the method, we also investigated the potential of using only RGB images instead of
multi-spectral (RGB + NIR) ones.

The results show that all the experimented CNN-based approaches outperform, in
terms of f -score, of about 35% the hand-crafted algorithm proposed by Unay et al. [19] in
both RGB and RGB + NIR configurations. This behavior was expected since the method by
Unay et al. [19] is pixel-wise so it does not consider spatial correlations that are typical in
small defective regions. On the contrary, CNN-based approaches process the input image
using different receptive fields that permit taking into account spatial correlations among
defective pixels.

Our method outperforms, in terms of f -score, the other CNN-based approaches by an
average of about 6% (the worst of about 15% and the second best of about 2%) with the
RGB + NIR configuration. The gap between our method and other CNN-based approaches
is much more evident in the case of RGB, which is on average about 9%. Our architecture
requires fewer computations with respect to the other CNN-based approaches we experi-
mented with, since it includes a few bottlenecks and uses skip-connections only within the
noise reduction block. Since the dataset is of a small amount of defective apples, neural
models with a lower capacity are more likely to work better.

To demonstrate that the goodness of our approach does not rely only on the use of
the proposed data synthesis procedure, we also experimented with it in combination with
the other CNN-based approaches. Results show that, on average, data synthesis permits
an improvement of the performance of all CNN-based approaches we experimented with.
However, the best of the these CNN-based approaches achieves a performance that is still
lower than that of our proposal, so demonstrating the goodness of our architecture. In
fact, our method achieves an f -score about 4% higher than the state-of-the-art (the worst of
about 9% and the second best of about 1%) with RGB + NIR configuration. In the case of
RGB the average increment is about 3%.

Experimental results confirm that using learning-based methods instead of hand-
crafted ones enable the use of RGB solely instead of RGB + NIR thus enabling the use
of conventional cameras in a visual-based apple inspection pipeline. Conventional RGB
cameras are at a lower cost with respect to multi-spectral ones and, more importantly, they
permit fastening of the processing since the amount of information to be processed is lower.

Finally, the approach we present has the potential to significantly impact automatic
visual inspection applications that face the following critical challenges: constrained com-
putational resources and a scarcity of annotated data. To satisfy these real-world constraints,
hand-crafted computer vision techniques for feature extraction are applied in conjunction
with traditional machine-learning classifiers such as support vector machines. We are
all aware that convolutional neural networks can obtain better results. However, these
methodologies require large annotated datasets for the training process and significant com-
putational resources at both the training and operating stages. In this regard, our proposed
method obtains results that allow us to overcome the aspects mentioned above. Firstly,
the superiority of deep neural networks over hand-crafted methodologies demonstrates
the capability of our data synthesis technique as a tool to mitigate the lack of training data
for these networks. Secondly, our neural network outperforms the state-of-the-art alter-
natives, in terms of both the accuracy and efficient utilization of computational resources,
demonstrating that a well-engineered neural network architecture can give rise to tailored
solutions capable of satisfying the computational constraints commonly encountered in
real-time applications.

In this work we focused on segmentation, as precise as possible, of defects. Defect
classification is at this point much more easier both with neural and hand crafted methods.
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Our segmentation and data augmentation methods could also be used on other types
of fruit.
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