
Citation: Wei, R.; Liu, Y.; Dong, H.;

Zhu, Y.; Zhao, J. A Graph-Based

Hybrid Reconfiguration Deformation

Planning for Modular Robots. Sensors

2023, 23, 7892. https://doi.org/

10.3390/s23187892

Academic Editors: Ankit

A. Ravankar, Jose Victorio Salazar

Luces and Abhijeet Ravankar

Received: 12 August 2023

Revised: 6 September 2023

Accepted: 13 September 2023

Published: 14 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Graph-Based Hybrid Reconfiguration Deformation Planning
for Modular Robots
Ruopeng Wei, Yubin Liu *, Huijuan Dong, Yanhe Zhu and Jie Zhao

State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150001, China;
weiruopeng_hit@163.com (R.W.)
* Correspondence: liuyubin@hit.edu.cn

Abstract: The self-reconfigurable modular robotic system is a class of robots that can alter its con-
figuration by rearranging the connectivity of their component modular units. The reconfiguration
deformation planning problem is to find a sequence of reconfiguration actions to transform one
reconfiguration into another. In this paper, a hybrid reconfiguration deformation planning algorithm
for modular robots is presented to enable reconfiguration between initial and goal configurations. A
hybrid algorithm is developed to decompose the configuration into subconfigurations with maximum
commonality and implement distributed dynamic mapping of free vertices. The module mapping
relationship between the initial and target configurations is then utilized to generate reconfiguration
actions. Simulation and experiment results verify the effectiveness of the proposed algorithm.

Keywords: modular robotics; self-reconfiguration; mobile robotics; reconfiguration deformation;
swarm robotics; path planning for multiple mobile robots

1. Introduction

Self-reconfigurable modular robots represent a novel class of robots that can au-
tonomously change their own shape by rearranging the connectivity of their component
parts [1]. This ability to dynamically reconfigure opens up new possibilities for adaptability
and versatility in robot systems [2]. A fundamental problem to achieve the ability is the re-
configuration deformation planning problem. The problem can be summarized as follows:
given an initial configuration and a goal configuration, find a sequence of module moves
that will reconfigure the robots from the initial configuration to the goal configuration [3].

Based on the different module unit structures and kinematic pairs, modular self-
reconfigurable robots can be classified into three types: lattice-type, chain-type, and mobile-
type. In lattice-type structures, the module units mostly have regular geometric shapes, are
positioned in lattice points, and reconfigure by interacting with adjacent lattice points [4–7].
However, lattice-type modular robots face challenges in generating autonomous locomotion
in dynamic environments due to inherent structural constraints. For chain-type modular
robots, the modules do not require regular geometric shapes. Multiple modules can connect
to form hyper-redundant chain structures, which provide the system overall with mobility
capabilities. There are already many research studies on chain-type robotic systems, such
as [8–12]. The mobile-type modular robotic system, in which each single module robot has
independent movement capability, moves between modules to reconfigure in a dynamic
environment. Some mobile-type robotic systems were developed in the past few years,
such as [13–15].

The problem of deforming a modular robot autonomously from an initial to a goal
configuration via motion actions on a module level is referred to as the Reconfiguration
Deformation Problem. Due to constraints imposed by the modules’ own structures, such
as mobility degrees of freedom, number and compatibility of docking mechanisms, and
physical connection constraints between multi-module units, the system has complex
constraints that make reconfiguration deformation planning more than just simple path

Sensors 2023, 23, 7892. https://doi.org/10.3390/s23187892 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23187892
https://doi.org/10.3390/s23187892
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23187892
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23187892?type=check_update&version=1

Sensors 2023, 23, 7892 2 of 18

planning for mobile robots. In addition, as the number of modules increases, the number of
possible configurations for the robotic system rises exponentially. Top-down optimization
control methods (centralized control) were proven to be NP-complete problems [16]. A
reconfiguration algorithm derived from the description of the configuration space based
on extended binary trees for shape-shifting modular robots with a triangular structure
is proposed in [17]; the algorithm is capable of solving the self-reconfiguration problem
for modular robots with a triangular structure. One main drawback of this approach is
that collision avoidance is not addressed. Ref. [18] presented an algorithm to carry out
configuration decomposition iteratively by adding virtual modules and virtual connections
to solve the reconfiguration problem with the SMORES robotic system. The main limitation
of this method is that the mapping between nodes with virtual connections is random,
without considering the shortest path issue. A hybrid particle swarm optimization and dif-
ferential evolution algorithm to optimize and minimize the distance of the total movement
of formation reconfiguration was proposed in [19]; however, the target assignment is static
allocation and does not consider collision avoidance.

In this paper, the focus is on self-reconfiguration deformation planning of mobile-
type modular reconfigurable robotic systems. A graph-based approach is utilized for
representing and recognizing modular robot reconfigurations. Additionally, a hybrid
reconfiguration deformation algorithm is developed to generate the reconfiguration actions
that will reconfigure the robots from the initial configuration to the goal configuration.

The innovations of this paper are as follows:

1. A graph theory-based graphical representation is utilized to describe the topology
of modular robots. A distributed configuration recognition algorithm is proposed
that uses the connection information between modules to identify the topological
configuration of the robot system and generate a graph-based tree description;

2. A hybrid algorithm is developed to segment configuration into multiple subconfigu-
rations, which share maximum common subconfigurations between initial and goal
configurations, and implement the distributed dynamic mapping of free vertices;

3. A reconfiguration action generation method is proposed that utilizes the module
mapping relationship in order to achieve reconfiguration.

The remainder of this paper is organized as follows. Section 2 provides an introduction
to the hardware platform and simulation model. The graph-based representation and
configuration recognition algorithm are explained in Section 3. Section 4 then presents
the reconfiguration planning algorithm. Next, Section 5 shows the simulation and results.
Section 6 shows the simulation result analysis. Section 7 provides an experiment in the real
world. Finally, Section 8 discusses the conclusions and potential future work.

2. Hardware Platform

The MMRP (Modular Mobile Reconfigurable Platform) system [20] is a modular
robotic system where each module is a complete mobile tracked robot with four connected
arms as shown in Figure 1, containing onboard sensors, an STM32 microcontroller, a UWB
positioning unit, and a 2.4 GHz NRF24L01 transceiver unit.

A cam–ball-type connection mechanism as shown in Figure 2, comprising an active
connector and a passive connector, performs docking and undocking functions between
modules.

Each MMRP module contains four docking faces (Top, Bottom, Left, and Right), with
two active connectors located on the Top and Right faces, as well as two passive connectors
located on the Bottom and Left faces. The connected faces are able to exchange data via
contact point by serial communication.

Sensors 2023, 23, 7892 3 of 18Sensors 2023, 23, x FOR PEER REVIEW 3 of 20

(a) (b)

Figure 1. (a) An MMRP module with four docking faces—two active and two passive dock-
ing faces; (b) MMRP module simulated model in CoppeliaSim Edu (Version 4.1.0).

A cam–ball-type connection mechanism as shown in Figure 2, comprising an active
connector and a passive connector, performs docking and undocking functions between
modules.

Figure 2. A pair of cam–ball-type connectors. Active connector on the left and passive connector on
the right.

Each MMRP module contains four docking faces (Top, Bottom, Left, and Right), with
two active connectors located on the Top and Right faces, as well as two passive connect-
ors located on the Bottom and Left faces. The connected faces are able to exchange data
via contact point by serial communication.

3. Configuration Representation and Recognition
3.1. Graph-Based Topology Representation

The modular reconfiguration and transformation task for modular robots can be de-
scribed as follows: Given an initial configuration, each module undergoes a series of mo-
tions (including changes in position and reconfiguration of connections) to form a speci-
fied goal configuration. The research problem lies in mapping and allocating the start and
end positions and connection states of each module between the initial and goal configu-
rations. Graph-based topology representation can clearly express the compositional con-
figuration relationships between modules in a modular robotic system. In particular, a
modular robot configuration can be represented as an undirected graph (,)G V E= , where
V is a set of vertices of the graph representing the modules and E is a set of edges rep-
resenting the connections between two modules in V . In graph theory, a tree is an undi-
rected graph in which any two vertices are connected by exactly one path, or equivalently
a connected acyclic undirected graph [21]. Due to the inherent nature of modular robots

Figure 1. (a) An MMRP module with four docking faces—two active and two passive docking faces;
(b) MMRP module simulated model in CoppeliaSim Edu (Version 4.1.0).

Sensors 2023, 23, x FOR PEER REVIEW 3 of 20

(a) (b)

Figure 1. (a) An MMRP module with four docking faces—two active and two passive dock-
ing faces; (b) MMRP module simulated model in CoppeliaSim Edu (Version 4.1.0).

A cam–ball-type connection mechanism as shown in Figure 2, comprising an active
connector and a passive connector, performs docking and undocking functions between
modules.

Figure 2. A pair of cam–ball-type connectors. Active connector on the left and passive connector on
the right.

Each MMRP module contains four docking faces (Top, Bottom, Left, and Right), with
two active connectors located on the Top and Right faces, as well as two passive connect-
ors located on the Bottom and Left faces. The connected faces are able to exchange data
via contact point by serial communication.

3. Configuration Representation and Recognition
3.1. Graph-Based Topology Representation

The modular reconfiguration and transformation task for modular robots can be de-
scribed as follows: Given an initial configuration, each module undergoes a series of mo-
tions (including changes in position and reconfiguration of connections) to form a speci-
fied goal configuration. The research problem lies in mapping and allocating the start and
end positions and connection states of each module between the initial and goal configu-
rations. Graph-based topology representation can clearly express the compositional con-
figuration relationships between modules in a modular robotic system. In particular, a
modular robot configuration can be represented as an undirected graph (,)G V E= , where
V is a set of vertices of the graph representing the modules and E is a set of edges rep-
resenting the connections between two modules in V . In graph theory, a tree is an undi-
rected graph in which any two vertices are connected by exactly one path, or equivalently
a connected acyclic undirected graph [21]. Due to the inherent nature of modular robots

Figure 2. A pair of cam–ball-type connectors. Active connector on the left and passive connector on
the right.

3. Configuration Representation and Recognition
3.1. Graph-Based Topology Representation

The modular reconfiguration and transformation task for modular robots can be
described as follows: Given an initial configuration, each module undergoes a series
of motions (including changes in position and reconfiguration of connections) to form
a specified goal configuration. The research problem lies in mapping and allocating
the start and end positions and connection states of each module between the initial
and goal configurations. Graph-based topology representation can clearly express the
compositional configuration relationships between modules in a modular robotic system.
In particular, a modular robot configuration can be represented as an undirected graph
G = (V, E), where V is a set of vertices of the graph representing the modules and E is a
set of edges representing the connections between two modules in V. In graph theory, a
tree is an undirected graph in which any two vertices are connected by exactly one path,
or equivalently a connected acyclic undirected graph [21]. Due to the inherent nature of
modular robots (e.g., a module cannot connect to itself to form a self-loop), it is reasonable
and convenient to represent configurations as trees. When there are closed-loop structures
between several modules in the initial or target configurations, one edge of the closed-loop
should be converted into a virtual connection to transform the configuration into an acyclic
configuration. Therefore, this paper assumes all configurations are acyclic configurations.

Once a configuration represented by a tree graph G = (V, E) is described, a special
vertex v0 ∈ V can be designated as the root of the tree graph G = (V, E). At this point,
G = (V, E) is a rooted tree graph with v0 as the root. In a rooted tree G = (V, E), the parent
of a vertex v ∈ V is the vertex connected to v on the path to the root and every vertex has
a unique parent except the root, which has no parent. A child of a vertex v is a vertex of

Sensors 2023, 23, 7892 4 of 18

which v is the parent. In a tree graph, any vertex can be designated as the root, but in order
to ensure the efficiency of the reconfiguration algorithm discussed below, a special vertex
that serves as the root is essential to maximize traversal efficiency, i.e., the center point of
the tree graph.

Theorem 1. The center of an acyclic graph always exists. It is a unique vertex or a unique pair
of adjacent vertices such that removing that vertex (or pair of vertices) from the graph leaves a
collection of components each having less than half of the vertices [22].

Given a tree G composed of n vertices and a random vertex v of G, G− v is the set
of all rest components after removing v from the tree G. According to Theorem 1, v is the
center vertex (root) if and only if G− v has no components composed of vertex numbers
more than n/2.

Each MMRP robotic module has four docking faces. Connecting two unit modules
via different faces results in different system configurations. Therefore, the corresponding
docking face relationships between connected unit modules must also be considered.

Definition 1. A connection between a parent vertex u’s connector face Fu and its child vertex v’s
connector face Fv is defined as follows:

connect(u Fu, v Fv) (1)

For vertex v, and form the perspective of v, its parent, which is connected via v’s connector

face, F is denoted as
←
v

F
and the mating connector face of

←
v

F
is
←
F .

Figure 3 shows an example of the connection between v2 and its parent vertex v0. The
connection shown in Figure 3 is connect(0L, 2R). From the perspective of vertex v2, its
parent vertex connected via the v2’s R face should be denoted as

←
v 2

R, which corresponds
to vertex v0 in the global view.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 20

(e.g., a module cannot connect to itself to form a self-loop), it is reasonable and convenient
to represent configurations as trees. When there are closed-loop structures between sev-
eral modules in the initial or target configurations, one edge of the closed-loop should be
converted into a virtual connection to transform the configuration into an acyclic config-
uration. Therefore, this paper assumes all configurations are acyclic configurations.

Once a configuration represented by a tree graph (,)G V E= is described, a special
vertex 0v V∈ can be designated as the root of the tree graph (,)G V E= . At this point,

(,)G V E= is a rooted tree graph with 0v as the root. In a rooted tree (,)G V E= , the par-
ent of a vertex v V∈ is the vertex connected to v on the path to the root and every vertex
has a unique parent except the root, which has no parent. A child of a vertex v is a vertex
of which v is the parent. In a tree graph, any vertex can be designated as the root, but in
order to ensure the efficiency of the reconfiguration algorithm discussed below, a special
vertex that serves as the root is essential to maximize traversal efficiency, i.e., the center
point of the tree graph.

Theorem 1. The center of an acyclic graph always exists. It is a unique vertex or a unique pair of
adjacent vertices such that removing that vertex (or pair of vertices) from the graph leaves a collec-
tion of components each having less than half of the vertices [22].

Given a tree G composed of n vertices and a random vertex v of G , G v− is the
set of all rest components after removing v from the tree G . According to Theorem 1,
v is the center vertex (root) if and only if G v− has no components composed of vertex
numbers more than / 2n .

Each MMRP robotic module has four docking faces. Connecting two unit modules
via different faces results in different system configurations. Therefore, the corresponding
docking face relationships between connected unit modules must also be considered.

Definition 1. A connection between a parent vertex u ’s connector face uF and its child vertex
v ’s connector face vF is defined as follows:

connect(,)u vu F v F (1)

For vertex v , and form the perspective of v , its parent, which is connected via v ’s connector
face, F is denoted as Fv and the mating connector face of Fv is F

.

Figure 3 shows an example of the connection between 2v and its parent vertex 0v .
The connection shown in Figure 3 is connect(0L, 2R) . From the perspective of vertex 2v ,
its parent vertex connected via the 2v ’s R face should be denoted as 2

Rv , which corre-
sponds to vertex 0v in the global view.

Figure 3. Due to Definition 1, the connection is defined as connect(0L,2R) . 2 0
Rv v=

 and the mating
connector face of 2

Rv is L

.

Since the MMRP modules have heterogeneous docking mechanisms requiring an ac-
tive docking face to connect with a passive face, there are only four viable connection ar-
rangements: connect(uT,vB), connect(uL,vR), connect(uT,vL), and connect(uR,vB) be-
tween modules u and v . Connections connect(uT,vL) and connect(uR,vB) result in mo-
tion self-locking between the two connected modules. Therefore, in the MMRP system,
connections are only available between the Top and Bottom faces and between the Left
and Right faces.

Figure 3. Due to Definition 1, the connection is defined as connect(0L, 2R).
←
v 2

R = v0 and the mating

connector face of
←
v 2

R is
←
L .

Since the MMRP modules have heterogeneous docking mechanisms requiring an
active docking face to connect with a passive face, there are only four viable connection ar-
rangements: connect(uT,vB), connect(uL,vR), connect(uT,vL), and connect(uR,vB) between
modules u and v. Connections connect(uT,vL) and connect(uR,vB) result in motion self-
locking between the two connected modules. Therefore, in the MMRP system, connections
are only available between the Top and Bottom faces and between the Left and Right faces.

3.2. Configuration Recognition

After multiple modules are connected to form the initial configuration, the current
topological configuration needs to be automatically identified, and a graph representation
of the current configuration should be generated to facilitate subsequent reconfiguration
planning. The modular robots connect to each other via docking mechanisms to form a
tree graph topological structure. The surface of the docking mechanisms integrates contact
point serial communication units, enabling half-duplex data interaction between adjacent
parent–child modules. The parent–child relationships form the basis of the tree graph topo-
logical structure. By determining the parent–child relationships between adjacent modules
and their corresponding connection relationships, the positions and orientations of the
modules can be identified, allowing recognition and representation of the overall topo-

Sensors 2023, 23, 7892 5 of 18

logical configuration. A configuration recognition algorithm that utilizes the distributed
connection information between modules is proposed.

The input to this algorithm is all the modules comprising the current configuration.
The output is the connection relationships between the modules in the current configuration.
The basic idea is to use breadth-first search order starting from any non-leaf vertex module
in the configuration to iteratively identify the parent–child connection relationships layer
by layer, successfully recognizing the configuration when all leaf vertices are traversed.
This configuration recognition progress can be finished in time O(|V|). The flowchart is
shown in Figure 4.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 20

3.2. Configuration Recognition
After multiple modules are connected to form the initial configuration, the current

topological configuration needs to be automatically identified, and a graph representation
of the current configuration should be generated to facilitate subsequent reconfiguration
planning. The modular robots connect to each other via docking mechanisms to form a
tree graph topological structure. The surface of the docking mechanisms integrates con-
tact point serial communication units, enabling half-duplex data interaction between ad-
jacent parent–child modules. The parent–child relationships form the basis of the tree
graph topological structure. By determining the parent–child relationships between adja-
cent modules and their corresponding connection relationships, the positions and orien-
tations of the modules can be identified, allowing recognition and representation of the
overall topological configuration. A configuration recognition algorithm that utilizes the
distributed connection information between modules is proposed.

The input to this algorithm is all the modules comprising the current configuration.
The output is the connection relationships between the modules in the current configura-
tion. The basic idea is to use breadth-first search order starting from any non-leaf vertex
module in the configuration to iteratively identify the parent–child connection relation-
ships layer by layer, successfully recognizing the configuration when all leaf vertices are
traversed. This configuration recognition progress can be finished in time ()O V . The
flowchart is shown in Figure 4.

Figure 4. Configuration recognition flowchart.

All modules in the current configuration simultaneously start detecting the connec-
tion status of their own connection faces. Modules with only one connected face are iden-
tified as leaf modules. The communication ports of all connected faces are switched to
Receiving Mode. Among non-leaf modules, one module is randomly selected to start
sending configuration identification information, including its own ID and the ID of its
current connected face. For a module with n total connected faces, after 1n− connected
faces receive the information, the remaining unreceived connection face switches to Send-
ing Mode to continue transmitting the information. After all leaf modules receive the data,
each module has collected the parent–child connection relationships and corresponding
connection face information of the modules in the configuration. This information can be
uploaded to the host computer to construct a graphical representation of the current con-
figuration. Compared to the configuration recognition algorithm designed in [11], this al-
gorithm only needs to detect the traversal results of leaf vertices to determine the conver-
gence state of the configuration recognition process, which improves the efficiency of de-
tecting the convergence state.

Figure 4. Configuration recognition flowchart.

All modules in the current configuration simultaneously start detecting the connection
status of their own connection faces. Modules with only one connected face are identified
as leaf modules. The communication ports of all connected faces are switched to Receiv-
ing Mode. Among non-leaf modules, one module is randomly selected to start sending
configuration identification information, including its own ID and the ID of its current
connected face. For a module with n total connected faces, after n − 1 connected faces
receive the information, the remaining unreceived connection face switches to Sending
Mode to continue transmitting the information. After all leaf modules receive the data,
each module has collected the parent–child connection relationships and corresponding
connection face information of the modules in the configuration. This information can
be uploaded to the host computer to construct a graphical representation of the current
configuration. Compared to the configuration recognition algorithm designed in [11],
this algorithm only needs to detect the traversal results of leaf vertices to determine the
convergence state of the configuration recognition process, which improves the efficiency
of detecting the convergence state.

As discussed in Section 3.1, when a configuration is described as a tree graph, this
tree graph must have one (or a pair) of central vertices serving as the root of the tree. A
distributed method is proposed in [23] using the connection information between adjacent
modules to find the root of a tree graph. This method requires coordinating the information
transmission sequence between modules, and each module needs to complete a full graph
traversal to obtain the number of all its child modules. For configurations with a large
number of modules, the efficiency of this algorithm will be greatly reduced. Therefore, a
centralized algorithm is adopted that sequentially removes non-leaf vertices from the tree
graph on the PC side, calculates the number of vertices in each acyclic subgraph of the
remaining graph, and locates the root node meeting the criteria.

Once the configuration graph G = (V, E) and its root node τ are determined, the
parent–child relationships between any node v in the configuration will also be determined.

Sensors 2023, 23, 7892 6 of 18

The configuration can be viewed as the result of iterative growth from the root node τ
layer-by-layer until the leaf vertices, as shown in Figure 5. In a rooted tree, the height of a
vertex is defined as the length of the longest downward path from that vertex to a leaf. The
root τ has the maximum height equivalent to the height of the tree, while leaf vertices have
a height of 0.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 20

As discussed in Section 3.1, when a configuration is described as a tree graph, this
tree graph must have one (or a pair) of central vertices serving as the root of the tree. A
distributed method is proposed in [23] using the connection information between adjacent
modules to find the root of a tree graph. This method requires coordinating the infor-
mation transmission sequence between modules, and each module needs to complete a
full graph traversal to obtain the number of all its child modules. For configurations with
a large number of modules, the efficiency of this algorithm will be greatly reduced. There-
fore, a centralized algorithm is adopted that sequentially removes non-leaf vertices from
the tree graph on the PC side, calculates the number of vertices in each acyclic subgraph
of the remaining graph, and locates the root node meeting the criteria.

Once the configuration graph (,)G V E= and its root node τ are determined, the
parent–child relationships between any node v in the configuration will also be deter-
mined. The configuration can be viewed as the result of iterative growth from the root
node τ layer-by-layer until the leaf vertices, as shown in Figure 5. In a rooted tree, the
height of a vertex is defined as the length of the longest downward path from that vertex
to a leaf. The root τ has the maximum height equivalent to the height of the tree, while
leaf vertices have a height of 0.

Figure 5. A graph-based tree (,)G V E= rooted with τ . The height of the tree is () 3h τ = .

4. Reconfiguration Planning Algorithm
According to the configuration identification method described in Section 3.2, the

current and target configurations can be represented as (,)c c cG V E= and (,)g g gG V E= ,
respectively. The first step in configuration matching is to determine whether the goal
configuration can be reconfigured from the current configuration. For the robotic system
in this paper, each unit module has independent mobility, so it only needs to be deter-
mined that the goal configuration has the same number of unit modules as the current
configuration, i.e., g cV V= . After confirming the configuration reconfiguring requirement
is met, further configuration reconfiguration can be performed.

There are various metrics to measure the efficiency of configuration reconfiguration
strategies, such as minimizing the total movement distance of all modules or minimizing
the number of reconnections. In practical applications, the docking process often involves
time-consuming behaviors such as alignment correction and operating the connection
mechanisms. Therefore, the reconfiguration strategy aims to maximize the reduction in
reconnections between modules as much as possible, thereby improving overall reconfig-
uration efficiency. The core idea of our proposed reconfiguration algorithm is thus finding
the maximum common subgraph (MCS) isomorphism between the initial and goal con-
figurations, reducing the number of modules involved in docking operations during re-
configuration.

Figure 5. A graph-based tree G = (V, E) rooted with τ. The height of the tree is h(τ) = 3.

4. Reconfiguration Planning Algorithm

According to the configuration identification method described in Section 3.2, the
current and target configurations can be represented as Gc = (Vc, Ec) and Gg = (Vg, Eg),
respectively. The first step in configuration matching is to determine whether the goal con-
figuration can be reconfigured from the current configuration. For the robotic system in this
paper, each unit module has independent mobility, so it only needs to be determined that
the goal configuration has the same number of unit modules as the current configuration,
i.e., Vg = Vc. After confirming the configuration reconfiguring requirement is met, further
configuration reconfiguration can be performed.

There are various metrics to measure the efficiency of configuration reconfiguration
strategies, such as minimizing the total movement distance of all modules or minimizing
the number of reconnections. In practical applications, the docking process often involves
time-consuming behaviors such as alignment correction and operating the connection
mechanisms. Therefore, the reconfiguration strategy aims to maximize the reduction in
reconnections between modules as much as possible, thereby improving overall recon-
figuration efficiency. The core idea of our proposed reconfiguration algorithm is thus
finding the maximum common subgraph (MCS) isomorphism between the initial and goal
configurations, reducing the number of modules involved in docking operations during
reconfiguration.

Definition 2. Given two graph-based representations of modular robot configurations
Gc = (Vc, Ec) and Gg = (Vg, Eg) , common subconfiguration is a set of graphs where
Gc
′ = (Vc

′, Ec
′) ⊆ Gc, Gg

′ = (Vg
′, Eg

′) ⊆ Gg such thatGc
′ and Gg

′ are isomorphic. The
corresponding bijective mapping of vertices and edges is defined as f ′ : (Vc

′, Ec
′)→ (Vg

′, Eg
′) .

Definition 3. Given the condition that module vc ∈ Vc of Gc = (Vc, Ec) must be mapped
to module vg ∈ Vg of Gg = (Vg, Eg), the common subconfiguration with maximum common
connections is called the Maximum Common Subconfiguration, with respect to vc and vg denoted
as MCS(vc, vg) with mapping f : (Vc, Ec)→ (Vg, Eg) where Vc ⊆ Vc and Vg ⊆ Vg.

To find the MCS, a DFS search algorithm is utilized, starting from the root to se-
quentially compare the docking face information of connected modules. This obtains the
MCS(v1, v2) between Gc and Gg relative to v1 and v2. Figure 6 shows an example of the
common subconfiguration and MCS between two configurations.

Sensors 2023, 23, 7892 7 of 18

Sensors 2023, 23, x FOR PEER REVIEW 7 of 20

Definition 2. Given two graph-based representations of modular robot configurations
(,)c c cG V E= and (,)g g gG V E= , common subconfiguration is a set of graphs where

(,)c c c cG V E G′ ′ ′= ⊆ , (,)g g g gG V E G′ ′ ′= ⊆ such that cG ′ and gG ′ are isomorphic. The corre-

sponding bijective mapping of vertices and edges is defined as : (,) (,)c c g gf V E V E′ ′ ′ ′′ → .

Definition 3. Given the condition that module c cv V∈ of (,)c c cG V E= must be mapped to mod-
ule g gv V∈ of (,)g g gG V E= , the common subconfiguration with maximum common connections
is called the Maximum Common Subconfiguration, with respect to cv and gv denoted as

),(c gvMCS v with mapping : (,) (,)c c g gf V E V E→ where c cV V⊆ and g gV V⊆ .

To find the MCS, a DFS search algorithm is utilized, starting from the root to sequen-
tially compare the docking face information of connected modules. This obtains the

1 2(),vMCS v between cG and gG relative to 1v and 2v . Figure 6 shows an example of
the common subconfiguration and MCS between two configurations.

(a) (b)

Figure 6. One of the common subconfigurations of (a,b) is marked by “—” with mapping 0 → 2, 1
→ 1 and connect(0T,1B) → connect(2T,1B). The subgraphs of (a,b) marked by “- -” are MCS(0, 2)
with mapping 0 → 2, 1 → 1, 2 → 3 and connect(0T,1B) → connect(2T,1B), connect(0L,2R) → con-
nect(2L,3R).

4.1. Configuration Decomposition
When modular robots perform reconfiguration tasks, to reduce the number of mod-

ules involving docking operations to ensure reconfiguration efficiency, the initial and goal
configurations need to be decomposed. The configurations are broken down into a maxi-
mum common subgraph with the most shared connection relationships between the ini-
tial and target configurations, along with several remaining subgraphs.

For a modular robot performing a reconfiguration task, let the initial and goal con-
figurations be (,)c c cG V E= and (,)g g gG V E= , respectively, with root modules cτ and

gτ . The maximum common subgraph of cG and gG , relative to cτ and gτ

(,)c gMCS τ τ under the mapping : (,) (,)c c g gf V E V E→ where c cV V⊆ and g gV V⊆ can

be efficiently found, and denoted as (,)c c cG V E= . Subtracting the MCS subconfiguration

cG from the initial configuration cG will generate a set of disconnected subgraphs

}{ (,) | 1, 2,i
c c c cG G V E i n= = = and potentially a set of detached free module vertices

Figure 6. One of the common subconfigurations of (a,b) is marked by “—” with mapping 0→ 2, 1→ 1
and connect(0T,1B) → connect(2T,1B). The subgraphs of (a,b) marked by “- -” are MCS(0, 2) with
mapping 0→ 2, 1→ 1, 2→ 3 and connect(0T,1B)→ connect(2T,1B), connect(0L,2R)→ connect(2L,3R).

4.1. Configuration Decomposition

When modular robots perform reconfiguration tasks, to reduce the number of modules
involving docking operations to ensure reconfiguration efficiency, the initial and goal con-
figurations need to be decomposed. The configurations are broken down into a maximum
common subgraph with the most shared connection relationships between the initial and
target configurations, along with several remaining subgraphs.

For a modular robot performing a reconfiguration task, let the initial and goal configu-
rations be Gc = (Vc, Ec) and Gg = (Vg, Eg), respectively, with root modules τc and τg. The
maximum common subgraph of Gc and Gg, relative to τc and τg MCS(τc, τg) under the
mapping f : (Vc, Ec)→ (Vg, Eg) where Vc ⊆ Vc and Vg ⊆ Vg can be efficiently found, and
denoted as Gc = (Vc, Ec). Subtracting the MCS subconfiguration Gc from the initial configu-
ration Gc will generate a set of disconnected subgraphs G̃c =

{
G̃i

c = (Ṽc, Ẽc)
∣∣∣i = 1, 2, . . . n

}
and potentially a set of detached free module vertices V̂c =

{
V̂ j

c

∣∣∣j = 1, 2, . . . m
}

, which
were leaf nodes in Gc exactly. Similar operations can be applied to the goal configuration Gg

to generate G̃α
g and potentially V̂β

g . This process is defined as a configuration decomposition
between Gc = (Vc, Ec) and Gg = (Vg, Eg) with respect to the root module vertex τc and τg,
denoted as CS(Gc, τc, Gg, τg). The progress of configuration decomposition can be finished
in time O(|Vc|2). The process is shown in Figure 7.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 20

{ }ˆ ˆ | 1,2,j
c cV V j m= = , which were leaf nodes in cG exactly. Similar operations can be ap-

plied to the goal configuration gG to generate gG
α and potentially ĝV

β . This process is
defined as a configuration decomposition between (,)c c cG V E= and (,)g g gG V E= with
respect to the root module vertex cτ and gτ , denoted as (, , ,)c c g gCS G Gτ τ . The progress

of configuration decomposition can be finished in time 2()cO V . The process is shown in
Figure 7.

(a) (b)

Figure 7. Configuration decomposition for initial configuration (a) and goal configuration (b).

4.2. Matching and Mapping between Subconfigurations
After decomposition of the initial configuration (,)c c cG V E= , it consists of
(,)c c cG V E= , i

cG , and ˆ j
cV (suppose free vertices are present). Similarly, the goal config-

uration (,)g g gG V E= consists of (,)g g gG V E= , gG
α , and ĝV

β after decomposition. All

the modules in cG and gG belong to the (,)c gMCS τ τ , and have a one-to-one mapping
relationship between them under mapping : (,) (,)c c g gf V E V E→ . For

}{ (,) | 1, 2,i
c c c cG G V E i n= = = composed of multiple subconfigurations, each subconfig-

uration i
cG can be expressed as a tree rooted with central node g

ατ . Similarly, each gG
α

can be expressed as a tree rooted with g
ατ . Therefore, the isomorphic parts between the

subconfigurations of the initial and goal configurations can be computed by sequentially
finding the (,)i

c gMCS ατ τ , completing the relational mapping of the modules comprising
the isomorphic graphs.

However, if (,)i
c gMCS ατ τ is searched sequentially between i

cG and gG
α , it will re-

quire i α× attempts. This may also find a large number of isomorphic mappings consist-
ing of only a small number of nodes, which is not very meaningful for overall configura-
tion mapping and will greatly reduce reconfiguration planning efficiency. Therefore, a
height-adjacent matching search rule is proposed to reduce the number of search at-
tempts.

Subconfigurations eligible for MCS search must satisfy the condition () () 1i
c gh h ατ τ− ≤

.
The height-adjacent matching search rule states that for subconfiguration i

cG in the
current configuration with central node i

cτ as its root, having height ()ich τ , i
cG can only

search MCS with subconfigurations gG
α that have either the same height as i

cG or are
within 1 layer of height difference, as shown in Figure 8.

Figure 7. Configuration decomposition for initial configuration (a) and goal configuration (b).

Sensors 2023, 23, 7892 8 of 18

4.2. Matching and Mapping between Subconfigurations

After decomposition of the initial configuration Gc = (Vc, Ec), it consists of
Gc = (Vc, Ec), G̃i

c, and V̂ j
c (suppose free vertices are present). Similarly, the goal configuration

Gg = (Vg, Eg) consists of Gg = (Vg, Eg), G̃α
g , and V̂β

g after decomposition. All the modules in
Gc and Gg belong to the MCS(τc, τg), and have a one-to-one mapping relationship between

them under mapping f : (Vc, Ec)→ (Vg, Eg) . For G̃c =
{

G̃i
c = (Ṽc, Ẽc)

∣∣∣i = 1, 2, . . . n
}

com-

posed of multiple subconfigurations, each subconfiguration G̃i
c can be expressed as a tree

rooted with central node τ̃α
g . Similarly, each G̃α

g can be expressed as a tree rooted with τ̃α
g .

Therefore, the isomorphic parts between the subconfigurations of the initial and goal configu-
rations can be computed by sequentially finding the MCS(τ̃i

c, τ̃α
g), completing the relational

mapping of the modules comprising the isomorphic graphs.
However, if MCS(τ̃i

c, τ̃α
g) is searched sequentially between G̃i

c and G̃α
g , it will require

i× α attempts. This may also find a large number of isomorphic mappings consisting of only
a small number of nodes, which is not very meaningful for overall configuration mapping
and will greatly reduce reconfiguration planning efficiency. Therefore, a height-adjacent
matching search rule is proposed to reduce the number of search attempts.

Subconfigurations eligible for MCS search must satisfy the condition
∣∣∣h(τ̃i

c)− h(τ̃α
g)
∣∣∣ ≤ 1.

The height-adjacent matching search rule states that for subconfiguration G̃i
c in the

current configuration with central node τ̃i
c as its root, having height h(τ̃i

c), G̃i
c can only

search MCS with subconfigurations G̃α
g that have either the same height as G̃i

c or are within
1 layer of height difference, as shown in Figure 8.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 20

Figure 8. Subconfigurations for i
cG are encircled by “--” while gG

α is encircled by “--”. The heights

of each subconfiguration are 1
7() () 1c ch G h v= = , 2

1() () 3c ch G h v= = , and 1
1() () 3g gh G h v= = . The

MCS searching between 2
cG and 1

gG is available.

Configuration matching starts with the subconfiguration k
cG with the highest level

in the current configuration’s set of subconfigurations cG . k
cG performs isomorphic

mapping with the subconfiguration gG
γ from the goal configuration’s set gG that meets

the search rule, (,)k
c gMCS γτ τ under mapping : (,) (,)c c g gf V E V E→ can be computed.

This forms a new pair of isomorphic subconfigurations denoted as { k
cG , gG

γ }. Then, the

configuration decomposition process in Section 4.1 is repeated as (, , ,)k k
c c g gCS G Gγ γτ τ , gen-

erating new subconfigurations k
cG ′ , gG

γ ′ and free vertices ˆ k
cV , ĝV

γ . The newly generated
k
cG ′ is added to set gG while ˆ k

cV is added to set ĉV to participate in subsequent sub-

configuration matching and mapping, and gG
γ ′ , ĝV

γ likewise. For the worst conditions,

this progress can be finished in time
3

()cO V . However, in reality, due to the height-adja-
cent matching search rule, this progress should be much smaller than the worst.

Isomorphic configuration searching and mapping between subconfigurations is com-
pleted by iterating this process until every subconfiguration in cG or gG has been vis-
ited. At this point, if there are still unmatched subconfigurations existing, the connections
between modules in cG are disconnected to make them free vertices, which are all

merged into set ĉV , and gG likewise. It is worth noting that at this point the number of

vertices in set ĉV equals the number in set ĝV . After this, the successfully matched and

mapped subconfigurations k
cG are collectively moved to the corresponding gG

γ loca-
tions to await subsequent steps.

4.3. Distributed Dynamic Mapping of Free Vertices
At this point, the current and goal configurations will consist of several isomorphic

subconfigurations and free vertices, as shown in Figure 9a.

Figure 8. Subconfigurations for G̃i
c are encircled by “--” while G̃α

g is encircled by “--”. The heights
of each subconfiguration are h(G̃1

c) = h(ṽc7) = 1, h(G̃2
c) = h(ṽc1) = 3, and h(G̃1

g) = h(ṽg1) = 3. The
MCS searching between G̃2

c and G̃1
g is available.

Configuration matching starts with the subconfiguration G̃k
c with the highest level in

the current configuration’s set of subconfigurations G̃c. G̃k
c performs isomorphic mapping

with the subconfiguration G̃γ
g from the goal configuration’s set G̃g that meets the search

rule, MCS(τ̃k
c , τ̃

γ
g) under mapping f : (Ṽc, Ẽc)→ (Ṽg, Ẽg) can be computed. This forms a

new pair of isomorphic subconfigurations denoted as {Gk
c , Gγ

g }. Then, the configuration
decomposition process in Section 4.1 is repeated as CS(G̃k

c , τ̃k
c , G̃γ

g , τ̃
γ
g), generating new

subconfigurations G̃k
c
′, G̃γ

g
′ and free vertices V̂k

c , V̂γ
g . The newly generated G̃k

c
′ is added to

set G̃g while V̂k
c is added to set V̂c to participate in subsequent subconfiguration matching

and mapping, and G̃γ
g
′, V̂γ

g likewise. For the worst conditions, this progress can be finished

in time O(
∣∣∣Ṽc

∣∣∣3). However, in reality, due to the height-adjacent matching search rule, this
progress should be much smaller than the worst.

Sensors 2023, 23, 7892 9 of 18

Isomorphic configuration searching and mapping between subconfigurations is com-
pleted by iterating this process until every subconfiguration in G̃c or G̃g has been visited. At
this point, if there are still unmatched subconfigurations existing, the connections between
modules in G̃c are disconnected to make them free vertices, which are all merged into set V̂c,
and G̃g likewise. It is worth noting that at this point the number of vertices in set V̂c equals
the number in set V̂g. After this, the successfully matched and mapped subconfigurations

Gk
c are collectively moved to the corresponding Gγ

g locations to await subsequent steps.

4.3. Distributed Dynamic Mapping of Free Vertices

At this point, the current and goal configurations will consist of several isomorphic
subconfigurations and free vertices, as shown in Figure 9a.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 20

(a) (b)

Figure 9. Current configuration (a) and goal configuration (b) consist of several isomorphic subcon-
figurations and free vertices.

By establishing a one-to-one mapping between the free vertices in ĉV and ĝV , the
overall reconfiguration mapping plan from the initial configuration to the goal configura-
tion can be completed. This process must consider not only the travel efficiency of moving
the current free vertex modules to the target locations, but also the computational load,
which grows rapidly when there are a large number of free vertex modules. Continuing
centralized planning would reduce overall planning efficiency. Therefore, for this stage of
reconfiguration planning, a distributed dynamic mapping strategy using artificial forces
is proposed to solve the mapping problem from free vertices ĉV to target vertices ĝV
dynamically in a distributed way.

For vertices ˆˆg gv V∈ , there exists a connection between ˆgv and a subconfiguration

gG
α in the goal configuration that has completed subconfiguration mapping, and denoted

as connect(ˆgv , gv
α) where ˆˆg gv V∈ and g gv Gα α∈ , as shown in Figure 9b. Each vertex in ĝV

has at least one such connection, which determines the position of the vertex in ĝV within

the goal configuration. Since gv
α exists in the MCS, the target positions of vertices in ĉV

are known. The target positions are broadcast to all vertex in ĉV . Under an artificial forces
field, the vertex in ĉV automatically selects the nearest target position from its current

position for matching. Since ĉV and ĝV have equal numbers of vertices, the vertices will

ultimately form a one-to-one mapping ˆ ˆ: c gf V V→ . In this process, three types of artificial
forces are constructed: attractive force, repulsive force, and obstacle avoidance force.

The attractive force denoted by aF

, from the vertex in ĉV towards goal position, is

to attract the nearest free vertex to the position of ĝV to form a mapping from ĉV to ĝV
. The force is calculated as

2

,c g

a
a

v v

K
F

d
=

(2)

where 2 2
, () ()
c g c g c gv v v v v vd x x y y= − + −

 is the Euclidean distance from the vertex in ĉV

towards each goal position, and aK is the attractive force factor.
The repulsive force denoted by rF

 is to push two free vertices away when their dis-

tance is less than the specified value. The force is calculated as

1 2

1 2

,2

,

, if 0<

0

r
v v r

r v v

K d d
F d

else

 <
=

(3)

Figure 9. Current configuration (a) and goal configuration (b) consist of several isomorphic subcon-
figurations and free vertices.

By establishing a one-to-one mapping between the free vertices in V̂c and V̂g, the
overall reconfiguration mapping plan from the initial configuration to the goal configuration
can be completed. This process must consider not only the travel efficiency of moving
the current free vertex modules to the target locations, but also the computational load,
which grows rapidly when there are a large number of free vertex modules. Continuing
centralized planning would reduce overall planning efficiency. Therefore, for this stage of
reconfiguration planning, a distributed dynamic mapping strategy using artificial forces
is proposed to solve the mapping problem from free vertices V̂c to target vertices V̂g
dynamically in a distributed way.

For vertices v̂g ∈ V̂g, there exists a connection between v̂g and a subconfiguration Gα
g

in the goal configuration that has completed subconfiguration mapping, and denoted as
connect(v̂g,vα

g) where v̂g ∈ V̂g and vα
g ∈ Gα

g, as shown in Figure 9b. Each vertex in V̂g has
at least one such connection, which determines the position of the vertex in V̂g within the
goal configuration. Since vα

g exists in the MCS, the target positions of vertices in V̂c are
known. The target positions are broadcast to all vertex in V̂c. Under an artificial forces field,
the vertex in V̂c automatically selects the nearest target position from its current position
for matching. Since V̂c and V̂g have equal numbers of vertices, the vertices will ultimately
form a one-to-one mapping f : V̂c → V̂g . In this process, three types of artificial forces are
constructed: attractive force, repulsive force, and obstacle avoidance force.

The attractive force denoted by
→
Fa, from the vertex in V̂c towards goal position, is to

attract the nearest free vertex to the position of V̂g to form a mapping from V̂c to V̂g. The
force is calculated as

→
Fa =

Ka
→

dvc ,vg

2 (2)

Sensors 2023, 23, 7892 10 of 18

where
→

dvc ,vg =

→√
(xvc − xvg)

2 + (yvc − yvg)
2 is the Euclidean distance from the vertex in V̂c

towards each goal position, and Ka is the attractive force factor.

The repulsive force denoted by
→
Fr is to push two free vertices away when their distance

is less than the specified value. The force is calculated as

→
Fr =

Kr
→

dv1,v2

2 , if 0 <

∣∣∣∣ →dv1,v2

∣∣∣∣ < dr

0 else
(3)

where dv1,v2 is the Euclidean distance between any two free vertices in V̂c, and Kr is a
repulsive force factor.

The obstacle avoidance force denoted by
→

Fobs is to push free vertices away from
isomorphic subconfigurations that are mapped already. And the force is calculated as

→
Fobs =

− Kr
→

dobs

, 0 <

∣∣∣∣ →dobs

∣∣∣∣ < dsa f e−

0, dsa f e− ≤
∣∣∣∣ →dobs

∣∣∣∣ ≤ dsa f e+

Kr ·
→

dobs,
∣∣∣∣ →dobs

∣∣∣∣ > dsa f e+

(4)

where
→

dobs is the Euclidean distance from the free vertex to the subconfigurations.

The attractive force
→
Fa pulls the free vertex towards the nearest target point while

the repulsive force
→
Fr pushes free vertices away to keep a safe distance avoiding collision.

The obstacle avoidance force
→

Fobs keeps the free vertices moving in a ring area around the
robotic system. Combing the forces above, the resultant force (shown in Figure 10) acting
on the free vertex is as follows: →

F =
→
Fa +

→
Fr +

→
Fobs (5)

Sensors 2023, 23, x FOR PEER REVIEW 11 of 20

where
1 2,v vd is the Euclidean distance between any two free vertices in ĉV , and rK is a

repulsive force factor.
The obstacle avoidance force denoted by obsF

 is to push free vertices away from iso-

morphic subconfigurations that are mapped already. And the force is calculated as

, 0<

0,

,

r
obs safe

obs

obs safe obs safe

r obs obs safe

K d d
d

F d d d

K d d d

−

− +

+

− <

= ≤ ≤

 ⋅ >

(4)

where obsd

 is the Euclidean distance from the free vertex to the subconfigurations.
The attractive force aF

 pulls the free vertex towards the nearest target point while

the repulsive force rF

 pushes free vertices away to keep a safe distance avoiding colli-
sion. The obstacle avoidance force obsF

 keeps the free vertices moving in a ring area

around the robotic system. Combing the forces above, the resultant force (shown in Figure
10) acting on the free vertex is as follows:

a r obsF F F F= + +

 (5)

The free vertex moves simply by the resultant force acting on it without centralized
planning. When a free node reaches its target position, the target position stops providing
attractive force and the free vertex stops moving. This establishes a mapping ˆ ˆ: c gf v v→
between ˆcv and the corresponding ˆgv represented by the target position node.

(a) (b)

Figure 10. In the current configuration (a), the dashed circles indicate the corresponding target po-
sitions in the target configuration (b). The arrows show the forces acting on the free vertices, which
will move the vertices to the nearest target positions and establish a mapping with the vertices in
the goal configuration.

When all free nodes have reached their target positions, at this point, all vertices in
the initial configuration and vertices in the goal configuration have a one-to-one mapping

: c gf V V→ . The vertices belonging to the MCS satisfy mapping : (,) (,)c c g gf V E V E′ ′ ′ ′→ .
This progress can be finished in time ()O d , where d is the total distance of free vertices
traveled.

Figure 10. In the current configuration (a), the dashed circles indicate the corresponding target
positions in the target configuration (b). The arrows show the forces acting on the free vertices, which
will move the vertices to the nearest target positions and establish a mapping with the vertices in the
goal configuration.

The free vertex moves simply by the resultant force acting on it without centralized
planning. When a free node reaches its target position, the target position stops providing

Sensors 2023, 23, 7892 11 of 18

attractive force and the free vertex stops moving. This establishes a mapping f : v̂c → v̂g
between v̂c and the corresponding v̂g represented by the target position node.

When all free nodes have reached their target positions, at this point, all vertices in
the initial configuration and vertices in the goal configuration have a one-to-one mapping
f : Vc → Vg . The vertices belonging to the MCS satisfy mapping f : (V′c, E′c)→ (V′g, E′g) .

This progress can be finished in time O(d), where d is the total distance of free vertices
traveled.

4.4. Reconfiguration Action Generation based on Mapping

Once the Reconfiguration Mapping process is completed, corresponding reconfig-
uration actions can be determined. The mapping f : Vc → Vg provides the mapping
relations that map each module and corresponding connection from the initial configura-
tion Gc = (Vc, Ec) into the goal configuration Gg = (Vg, Eg). The reconfiguration actions
can be generated by comparing the edge mappings of the corresponding mapped module
pair between Gc and Gg. Under the mapping f : Vc → Vg , if a module pair (vc, vg) where
vc ∈ Vc and vg ∈ Vg is in any MCS during the mapping process meanwhile its correspond-

ing parent module pair (
←
v

F
c ,
←
v

F
g) is in the same MCS, indicating that no reconfiguration

action is needed for this connected module pair. Otherwise,
←
v

F
g will be mapped to a unique

vertex v′c (which is not the parent vertex
←
v

F
c of vc) under the mapping f−1 : Vg → Vc , and

the reconfiguration actions are undocking vc from
←
v

F
c by removing connect(vcF,

←
v

F
c
←
F) and

then docking vc with v′c by establishing connect(vcF, v′cF). The reconfiguration actions
will be generated by traversing all modules in Gc. This process can be carried out in time
O(|Vc|). Following the complete traversal of all modules, the initial configuration Gc will be
transformed into the goal configuration Gg via the execution of the reconfiguration actions
computed by the planning algorithm.

5. Simulation

The reconfiguration algorithm is implemented in Python and validated in the robotics
simulator CoppeliaSimEdu. A modular robotic system composed of 9 MMRP robots is
simulated to reconfigure from an initial cross configuration to a probe configuration to
validate the reconfiguration deformation planning method proposed in this paper. The
initial and goal configurations are shown in Figure 11.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 20

4.4. Reconfiguration Action Generation based on Mapping
Once the Reconfiguration Mapping process is completed, corresponding reconfigu-

ration actions can be determined. The mapping : c gf V V→ provides the mapping rela-
tions that map each module and corresponding connection from the initial configuration

(,)c c cG V E= into the goal configuration (,)g g gG V E= . The reconfiguration actions can be
generated by comparing the edge mappings of the corresponding mapped module pair
between cG and gG . Under the mapping : c gf V V→ , if a module pair (,)c gv v where

c cv V∈ and g gv V∈ is in any MCS during the mapping process meanwhile its corre-
sponding parent module pair (,)F F

c gv v is in the same MCS , indicating that no reconfig-
uration action is needed for this connected module pair. Otherwise, F

gv
 will be mapped

to a unique vertex cv′ (which is not the parent vertex F
cv

 of cv) under the mapping
1 : g cf V V− → , and the reconfiguration actions are undocking cv from F

cv

 by removing

connect(cv F , F
cv F
) and then docking cv with cv′ by establishing connect(cv F , cv F′).

The reconfiguration actions will be generated by traversing all modules in cG . This pro-
cess can be carried out in time ()cO V . Following the complete traversal of all modules,
the initial configuration cG will be transformed into the goal configuration gG via the
execution of the reconfiguration actions computed by the planning algorithm.

5. Simulation
The reconfiguration algorithm is implemented in Python and validated in the robot-

ics simulator CoppeliaSimEdu. A modular robotic system composed of 9 MMRP robots is
simulated to reconfigure from an initial cross configuration to a probe configuration to
validate the reconfiguration deformation planning method proposed in this paper. The
initial and goal configurations are shown in Figure 11.

(a) (b)

Figure 11. Reconfigure the initial configuration—cross configuration (a) into the goal configura-
tion—probe configuration (b), with 9 MMRP modules involved. The connector marked in red is
Top-Face.

The first step involves running configuration recognition algorithm 1 to detect all
connections in the initial configuration. Each module in the configuration detects the con-
nection status of its own faces to identify the leaf modules, which are Modules 6, 7, 8, and
9. A non-leaf Module 2 is randomly selected to start discovering all the connections, and
the sequence of discovering is shown in Table 1.

Figure 11. Reconfigure the initial configuration—cross configuration (a) into the goal configuration—
probe configuration (b), with 9 MMRP modules involved. The connector marked in red is Top-Face.

Sensors 2023, 23, 7892 12 of 18

The first step involves running configuration recognition algorithm 1 to detect all
connections in the initial configuration. Each module in the configuration detects the
connection status of its own faces to identify the leaf modules, which are Modules 6, 7, 8,
and 9. A non-leaf Module 2 is randomly selected to start discovering all the connections,
and the sequence of discovering is shown in Table 1.

Table 1. Configuration recognition sequence for cross configuration.

Search Level Connection

Level 1 connect(2T, 6B) connect(2B, 1T)
Level 2 connect(1R, 3L) connect(1B, 4T) connect(1L, 5R)
Level 3 connect(3R, 7L) connect(4B, 8T) connect(5L, 9R)

The graph of initial cross configuration Gc = (Vc, Ec) can be built based on the above
connections and messages. And the graph of goal configuration Gg = (Vg, Eg) can also be
built. The initial and goal configuration topology graph-based representations are shown
in Figure 12. With Gc = (Vc, Ec) and Gg = (Vg, Eg), the roots τc and τg can be computed.
Root τc corresponds to Module 1 in Gc and root τg corresponds to Module 1 in Gg.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 20

Table 1. Configuration recognition sequence for cross configuration.

Search Level Connection
Level 1 connect(2T, 6B) connect(2B, 1T)
Level 2 connect(1R, 3L) connect(1B, 4T) connect(1L, 5R)
Level 3 connect(3R, 7L) connect(4B, 8T) connect(5L, 9R)

The graph of initial cross configuration (,)c c cG V E= can be built based on the above
connections and messages. And the graph of goal configuration (,)g g gG V E= can also be
built. The initial and goal configuration topology graph-based representations are shown
in Figure 12. With (,)c c cG V E= and (,)g g gG V E= , the roots cτ and gτ can be com-
puted. Root cτ corresponds to Module 1 in cG and root gτ corresponds to Module 1 in

gG .

(a) (b)

Figure 12. (a) Graph-based representation of the initial cross configuration. (b) Graph-based repre-
sentation of the goal probe configuration.

According to graphs (,)c c cG V E= and (,)g g gG V E= , (,) (1,1)c gMCS MCSτ τ = con-

tains five modules, and the mapping relations are shown in Table 2. cG and gG are gen-
erated.

Table 2. Mapping relations in MCS(1, 1).

Vertex Mapping Edge Mapping

1 → 1 cτ → gτ

5 → 7 connect(1L, 5R) → connect(1L, 7R)
2 → 2 connect(1T, 2B) → connect(1T, 2B)
6 → 3 connect(2T, 6B) → connect(2T, 3B)
3 → 4 connect(1R, 3L) → connect(1R, 4L)

The result of configuration decomposition (, , ,) (,1, ,1)c c g g c gCS G G CS G Gτ τ = is
shown in Figure 13.

Figure 12. (a) Graph-based representation of the initial cross configuration. (b) Graph-based repre-
sentation of the goal probe configuration.

According to graphs Gc = (Vc, Ec) and Gg = (Vg, Eg), MCS(τc, τg) = MCS(1, 1)
contains five modules, and the mapping relations are shown in Table 2. Gc and Gg are
generated.

Table 2. Mapping relations in MCS(1, 1).

Vertex Mapping Edge Mapping

1→ 1 τc → τg
5→ 7 connect(1L, 5R)→ connect(1L, 7R)
2→ 2 connect(1T, 2B)→ connect(1T, 2B)
6→ 3 connect(2T, 6B)→ connect(2T, 3B)
3→ 4 connect(1R, 3L)→ connect(1R, 4L)

The result of configuration decomposition CS(Gc, τc, Gg, τg) = CS(Gc, 1, Gg, 1) is
shown in Figure 13.

Sensors 2023, 23, 7892 13 of 18Sensors 2023, 23, x FOR PEER REVIEW 14 of 20

(a) (b)

Figure 13. The subconfigurations and free vertex obtained after applying (,1, ,1)c gCS G G operations

to the initial configuration (a) and goal configuration (b) is indicated by “--”. cG and gG are indi-
cated by “--”.

After performing configuration decomposition, subconfigurations were generated:
subconfiguration 1

cG rooted at 1
cτ , corresponding to Module 4 in the initial configuration,

and subconfigurations 1
gG rooted at 1

gτ corresponding to Module 8 and 2
gG rooted at

2
gτ corresponding to Module 5 in the goal configuration. Module 9 and Module 7, which

are identified as free vertices, are added to set ĉV . 1 1 2() () () 2c g gh h hτ τ τ= = = , which means

MCS matching searching between 1
cG and 1

gG (or 1
cG and 2

gG) is feasible.
1 1(,) (4,8)c gMCS MCSτ τ = contains two modules and the mapping relations are shown in

Table 3. Module 5 and Module 6 undock all connected faces to convert them into free
vertices. Based on the mapping result, Module 4 and Module 8 move as a whole to the
corresponding position to await subsequent steps.

Table 3. Mapping relations in MCS(4, 8).

Vertex Mapping Edge Mapping

4 → 8 1
cτ → 1

gτ

8 → 9 connect(4B, 8T) → connect(8B, 9T)

Free vertices Module 9 and Module 7 receive the target positions. Under the artificial
potential field, they dynamically find the nearest target nodes and move to those positions
and the mapping ˆ ˆ: c gf V V→ is 7 → 5, 9 → 6 according to the simulation result. This pro-
cess is shown in Figure 14.

Figure 13. The subconfigurations and free vertex obtained after applying CS(Gc, 1, Gg, 1) operations to
the initial configuration (a) and goal configuration (b) is indicated by “--”. Gc and Gg are indicated by “--”.

After performing configuration decomposition, subconfigurations were generated: sub-
configuration G̃1

c rooted at τ̃1
c , corresponding to Module 4 in the initial configuration, and

subconfigurations G̃1
g rooted at τ̃1

g corresponding to Module 8 and G̃2
g rooted at τ̃2

g correspond-
ing to Module 5 in the goal configuration. Module 9 and Module 7, which are identified as
free vertices, are added to set V̂c. h(τ̃1

c) = h(τ̃1
g) = h(τ̃2

g) = 2, which means MCS matching
searching between G̃1

c and G̃1
g (or G̃1

c and G̃2
g) is feasible. MCS(τ̃1

c , τ̃1
g) = MCS(4, 8) contains

two modules and the mapping relations are shown in Table 3. Module 5 and Module 6 undock
all connected faces to convert them into free vertices. Based on the mapping result, Module 4
and Module 8 move as a whole to the corresponding position to await subsequent steps.

Table 3. Mapping relations in MCS(4, 8).

Vertex Mapping Edge Mapping

4→ 8 τ̃1
c→ τ̃1

g
8→ 9 connect(4B, 8T)→ connect(8B, 9T)

Free vertices Module 9 and Module 7 receive the target positions. Under the artificial
potential field, they dynamically find the nearest target nodes and move to those positions
and the mapping f : V̂c → V̂g is 7 → 5, 9 → 6 according to the simulation result. This
process is shown in Figure 14.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 20

Figure 14. Under the influence of an artificial force field, the free vertex Module 7 and Module 9
dynamically seek out their target to complete the vertex mapping.

At this point, one-to-one mapping relations : c gf V V→ are established between all
vertices in the initial configuration and goal configuration. The reconfiguration actions are
generated as detailed in Table 4.

Table 4. Reconfiguration actions for cross configuration to probe configuration.

Action ID Face ID Face
Undock 4 Top 1 Bottom

Dock 4 Top 5 Bottom
Undock 7 Left 3 Right

Dock 7 Bottom 3 Top
Undock 9 Right 5 Left

Dock 9 Top 7 Bottom

Once the connectors complete their assigned reconfiguration actions, the reconfigu-
ration deformation process from the initial cross configuration into the goal probe config-
uration process is finished. The reconfiguration process is shown in Figure 15.

Figure 14. Under the influence of an artificial force field, the free vertex Module 7 and Module 9
dynamically seek out their target to complete the vertex mapping.

Sensors 2023, 23, 7892 14 of 18

At this point, one-to-one mapping relations f : Vc → Vg are established between all
vertices in the initial configuration and goal configuration. The reconfiguration actions are
generated as detailed in Table 4.

Table 4. Reconfiguration actions for cross configuration to probe configuration.

Action ID Face ID Face

Undock 4 Top 1 Bottom
Dock 4 Top 5 Bottom

Undock 7 Left 3 Right
Dock 7 Bottom 3 Top

Undock 9 Right 5 Left
Dock 9 Top 7 Bottom

Once the connectors complete their assigned reconfiguration actions, the reconfigura-
tion deformation process from the initial cross configuration into the goal probe configura-
tion process is finished. The reconfiguration process is shown in Figure 15.

Sensors 2023, 23, x FOR PEER REVIEW 16 of 20

Figure 15. Reconfiguration process from the initial cross configuration into the goal probe configu-
ration. Differently colored module clusters present the corresponding mapping relations between
initial and goal configurations after configuration decomposition and subconfiguration mapping
are computed in Python. Subconfiguration matching and free vertices distributed dynamic mapping
to reconfigure goal configuration.

6. Simulation Result Analysis
In this part, a simulation result analysis and discussion of graph-based hybrid recon-

figuration deformation planning are presented. In comparison to the virtual connections
reconfiguration algorithm (VCR) proposed in [18], taking the cross configuration to probe
configuration example in Section 5, although the configuration deformation process for
both methods requires 3 docking and undocking actions, the VCR does not consider the
distance to the target configuration when establishing virtual connections between mod-
ules, as all virtual connections are equivalent. This can result in discarding closer modules
in favor of more distant ones, such as mapping Module 9 to Module 5 and Module 7 to
Module 6, even though closer module mappings are available. The dynamic mapping
method for free vertices based on potential field forces solves this problem while also ad-
dressing the multi-objective collision issue discussed in [19]. Take, for another example,
the driver configuration to snake configuration case proposed in [18] as shown in Figure
16. Using the method proposed in this paper, the reconfiguration can be completed with
two docking and undocking actions, compared to four actions required by the method
VCR.

(a) (b)

Figure 15. Reconfiguration process from the initial cross configuration into the goal probe configu-
ration. Differently colored module clusters present the corresponding mapping relations between
initial and goal configurations after configuration decomposition and subconfiguration mapping are
computed in Python. Subconfiguration matching and free vertices distributed dynamic mapping to
reconfigure goal configuration.

6. Simulation Result Analysis

In this part, a simulation result analysis and discussion of graph-based hybrid recon-
figuration deformation planning are presented. In comparison to the virtual connections
reconfiguration algorithm (VCR) proposed in [18], taking the cross configuration to probe
configuration example in Section 5, although the configuration deformation process for
both methods requires 3 docking and undocking actions, the VCR does not consider the

Sensors 2023, 23, 7892 15 of 18

distance to the target configuration when establishing virtual connections between mod-
ules, as all virtual connections are equivalent. This can result in discarding closer modules
in favor of more distant ones, such as mapping Module 9 to Module 5 and Module 7 to
Module 6, even though closer module mappings are available. The dynamic mapping
method for free vertices based on potential field forces solves this problem while also
addressing the multi-objective collision issue discussed in [19]. Take, for another example,
the driver configuration to snake configuration case proposed in [18] as shown in Figure 16.
Using the method proposed in this paper, the reconfiguration can be completed with two
docking and undocking actions, compared to four actions required by the method VCR.

Sensors 2023, 23, x FOR PEER REVIEW 16 of 20

Figure 15. Reconfiguration process from the initial cross configuration into the goal probe configu-
ration. Differently colored module clusters present the corresponding mapping relations between
initial and goal configurations after configuration decomposition and subconfiguration mapping
are computed in Python. Subconfiguration matching and free vertices distributed dynamic mapping
to reconfigure goal configuration.

6. Simulation Result Analysis
In this part, a simulation result analysis and discussion of graph-based hybrid recon-

figuration deformation planning are presented. In comparison to the virtual connections
reconfiguration algorithm (VCR) proposed in [18], taking the cross configuration to probe
configuration example in Section 5, although the configuration deformation process for
both methods requires 3 docking and undocking actions, the VCR does not consider the
distance to the target configuration when establishing virtual connections between mod-
ules, as all virtual connections are equivalent. This can result in discarding closer modules
in favor of more distant ones, such as mapping Module 9 to Module 5 and Module 7 to
Module 6, even though closer module mappings are available. The dynamic mapping
method for free vertices based on potential field forces solves this problem while also ad-
dressing the multi-objective collision issue discussed in [19]. Take, for another example,
the driver configuration to snake configuration case proposed in [18] as shown in Figure
16. Using the method proposed in this paper, the reconfiguration can be completed with
two docking and undocking actions, compared to four actions required by the method
VCR.

(a) (b)

Figure 16. (a) Graph-based representation of the initial driver configuration. (b) Graph-based
representation of the goal snake configuration.

Via comparison with the VCR method, the algorithm proposed in this paper not only
reduces the number of docking and undocking actions during reconfiguration but also
resolves the multi-objective node mapping conflict issue.

From a computational complexity perspective, the most time-consuming part of the
algorithm proposed in this paper is the matching and mapping between subconfigurations

process, which has a time complexity of O(
∣∣∣Ṽc

∣∣∣3). In comparison, the VCR method has a

time complexity of O(|Vc|3). Although both algorithms have the same order of complexity,
since free vertices are dynamically mapped in a distributed manner,

∣∣∣Ṽc

∣∣∣ ≤ |Vc| =
∣∣Vg
∣∣ for

the same configuration deformation task. In actual engineering applications, involving
fewer modules in high-level planning will significantly reduce decision time, thereby
decreasing the time required for configuration deformation, which has positive implications
for practical engineering applications.

7. Experiment

To validate the effectiveness of the graph-based hybrid configuration deformation
planning proposed in this paper, an experiment was conducted in the real world. The
experiment demonstrated a configuration deformation from a Series configuration to a
T configuration using 4 MMRP robots. The modular robots communicate with the PC
via NRF24L01 for data transmission. Relative position and pose relationships between
modules are obtained using UWB positioning units.

The initial and goal graph representations are shown in Figure 17 where τc is Module 2
and τg is Module 1, respectively.

After Configuration Decomposition progress, MCS(τc, τg) = MCS(2, 1) contains two
modules under mapping 2→ 1 and 1→ 2. Under the influence of artificial forces, the free
vertices Module 3 and 4 dynamically search for the nearest target positions and eventually
form the mappings: 3→ 3 and 4→ 4. The experiment of configuration deformation from
Series configuration into T configuration is shown in Figure 18.

Sensors 2023, 23, 7892 16 of 18

Sensors 2023, 23, x FOR PEER REVIEW 17 of 20

Figure 16. (a) Graph-based representation of the initial driver configuration. (b) Graph-based rep-
resentation of the goal snake configuration.

Via comparison with the VCR method, the algorithm proposed in this paper not only
reduces the number of docking and undocking actions during reconfiguration but also
resolves the multi-objective node mapping conflict issue.

From a computational complexity perspective, the most time-consuming part of the
algorithm proposed in this paper is the matching and mapping between subconfigura-
tions process, which has a time complexity of

3
()cO V . In comparison, the VCR method

has a time complexity of 3()cO V . Although both algorithms have the same order of com-
plexity, since free vertices are dynamically mapped in a distributed manner,

c c gV V V≤ = for the same configuration deformation task. In actual engineering appli-
cations, involving fewer modules in high-level planning will significantly reduce decision
time, thereby decreasing the time required for configuration deformation, which has pos-
itive implications for practical engineering applications.

7. Experiment
To validate the effectiveness of the graph-based hybrid configuration deformation

planning proposed in this paper, an experiment was conducted in the real world. The
experiment demonstrated a configuration deformation from a Series configuration to a T
configuration using 4 MMRP robots. The modular robots communicate with the PC via
NRF24L01 for data transmission. Relative position and pose relationships between mod-
ules are obtained using UWB positioning units.

The initial and goal graph representations are shown in Figure 17 where cτ is Mod-
ule 2 and gτ is Module 1, respectively.

(a) (b)

Figure 17. (a) Graph-based representation of the initial series configuration. (b) Graph-based repre-
sentation of the goal T configuration.

After Configuration Decomposition progress, (,) (2,1)c gMCS MCSτ τ = contains two
modules under mapping 2 → 1 and 1 → 2. Under the influence of artificial forces, the free
vertices Module 3 and 4 dynamically search for the nearest target positions and eventually
form the mappings: 3 → 3 and 4 → 4. The experiment of configuration deformation from
Series configuration into T configuration is shown in Figure 18.

Figure 17. (a) Graph-based representation of the initial series configuration. (b) Graph-based
representation of the goal T configuration.

Sensors 2023, 23, x FOR PEER REVIEW 18 of 20

Figure 18. The experiment of configuration deformation from Series configuration into T configura-
tion.

It should be noted that due to the need for further improvements in the current con-
nection mechanism design and the limited number of fabricated connection arms, the an-
gles of the connection rods relative to Modules 2 and 3 were manually adjusted in the
experiment to represent different docking faces on the same module. The docking faces
represented by the connection rods are marked in the figures.

Experiment results verify the effectiveness of the proposed algorithm. The main
shortage discovered during the experiment was problems with the docking mechanism
design. Since the MMRP platforms lack lateral mobility, the lateral docking between two
modules requires manual adjustment of the relative angle between docking faces. There-
fore, the optimization of the docking mechanism will be considered in future work. One
proposed improvement is to add a radial joint to the connection arms, so that the active
and passive faces can rotate 90° and −90°, respectively during lateral docking between two
modules, enabling lateral docking functionality.

8. Conclusions
In this paper, a new reconfiguration deformation planning for modular robots is pre-

sented. Graph-based representations are utilized to model and recognize the topological
configuration of the modules based on distributed information. An available hybrid algo-
rithm is developed to segment configuration into multiple subconfigurations, which share
maximum common subconfigurations between initial and goal configurations and imple-
ment the distributed dynamic mapping of free vertices. The module mapping relationship
between the initial and target configurations is utilized to generate reconfiguration actions
to achieve reconfiguration between the configurations. Simulation and experiment verify
the effectiveness of this algorithm. The reconfiguration deformation planning algorithm
proposed in this paper has universal applicability across mobile-type modular self-recon-
figurable robotic systems.

There are still several issues in this research that need to be further addressed in fu-
ture work, such as optimizing the physical structure to resolve lateral docking limitations,

Figure 18. The experiment of configuration deformation from Series configuration into T configuration.

It should be noted that due to the need for further improvements in the current
connection mechanism design and the limited number of fabricated connection arms, the
angles of the connection rods relative to Modules 2 and 3 were manually adjusted in the
experiment to represent different docking faces on the same module. The docking faces
represented by the connection rods are marked in the figures.

Experiment results verify the effectiveness of the proposed algorithm. The main
shortage discovered during the experiment was problems with the docking mechanism
design. Since the MMRP platforms lack lateral mobility, the lateral docking between
two modules requires manual adjustment of the relative angle between docking faces.
Therefore, the optimization of the docking mechanism will be considered in future work.
One proposed improvement is to add a radial joint to the connection arms, so that the active
and passive faces can rotate 90◦ and −90◦, respectively during lateral docking between
two modules, enabling lateral docking functionality.

Sensors 2023, 23, 7892 17 of 18

8. Conclusions

In this paper, a new reconfiguration deformation planning for modular robots is pre-
sented. Graph-based representations are utilized to model and recognize the topological
configuration of the modules based on distributed information. An available hybrid al-
gorithm is developed to segment configuration into multiple subconfigurations, which
share maximum common subconfigurations between initial and goal configurations and
implement the distributed dynamic mapping of free vertices. The module mapping rela-
tionship between the initial and target configurations is utilized to generate reconfiguration
actions to achieve reconfiguration between the configurations. Simulation and experiment
verify the effectiveness of this algorithm. The reconfiguration deformation planning al-
gorithm proposed in this paper has universal applicability across mobile-type modular
self-reconfigurable robotic systems.

There are still several issues in this research that need to be further addressed in
future work, such as optimizing the physical structure to resolve lateral docking limitations,
coordinated motion control of multiple modules, and practical configuration planning
for real-world engineering applications. Future work will focus on mechanical structure
optimization, coordinated motion control, and navigation of connected modular robots
in dynamic environments. Improving the algorithm’s capability in handling Hamiltonian
cycles in topological configurations will also be a direction for future research.

Author Contributions: Conceptualization, R.W. and Y.Z.; methodology, R.W.; software, R.W.; vali-
dation, R.W. and Y.L.; formal analysis, R.W.; investigation, R.W.; resources, J.Z.; data curation, R.W.;
writing—original draft preparation, R.W.; writing—review and editing, Y.L.; visualization, Y.Z.;
supervision, H.D. and J.Z.; project administration, Y.Z. and H.D.; funding acquisition, J.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Major Research Plan of the National Natural Science
Foundation of China under Grant 91948201.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yim, M.; Shen, W.M.; Salemi, B.; Rus, D.; Moll, M.; Lipson, H.; Klavins, E.; Chirikjian, G.S. Modular Self-Reconfigurable Robot

Systems [Grand Challenges of Robotics]. IEEE Robot. Autom. Mag. 2007, 14, 43–52. [CrossRef]
2. Moubarak, P.; Ben-Tzvi, P. Modular and Reconfigurable Mobile Robotics. Rob. Auton. Syst. 2012, 60, 1648–1663. [CrossRef]
3. Stoy, K.; Brandt, D.; Christensen, D.J. Self-Reconfigurable Robots: An Introduction; MIT Press: Cambridge, MA, USA, 2010.
4. Romanishin, J.W.; Gilpin, K.; Claici, S.; Rus, D. 3D M-Blocks: Self-Reconfiguring Robots Capable of Locomotion via Pivoting in

Three Dimensions. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA,
USA, 26–30 May 2015; Volume 2015, pp. 1925–1932. [CrossRef]

5. Bie, D.; Zhu, Y.; Wang, X.; Zhang, Y.; Zhao, J. L-Systems Driven Self-Reconfiguration of Modular Robots. Int. J. Adv. Robot. Syst.
2016, 13, 1729881416669349. [CrossRef]

6. Fitch, R.; Butler, Z. Million Module March: Scalable Locomotion for Large Self-Reconfiguring Robots. Int. J. Rob. Res. 2008,
27, 331–343. [CrossRef]

7. Liang, G.; Luo, H.; Li, M.; Qian, H.; Lam, T.L. FreeBOT: A Freeform Modular Self-Reconfigurable Robot with Arbitrary Connection
Point—Design and Implementation. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 6506–6513. [CrossRef]

8. Yim, M.; Duff, D.G.; Roufas, K.D. PolyBot: A Modular Reconfigurable Robot. In Proceedings of the 2000 IEEE International
Conference on Robotics and Automation (ICRA), San Francisco, CA, USA, 24–28 April 2000; Volume 1, pp. 514–520. [CrossRef]

9. Salemi, B.; Moll, M.; Shen, W.M. SUPERBOT: A Deployable, Multi-Functional, and Modular Self-Reconfigurable Robotic System.
In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–13 October
2006; pp. 3636–3641. [CrossRef]

10. Wei, H.; Chen, Y.; Tan, J.; Wang, T. Sambot: A Self-Assembly Modular Robot System. IEEE/ASME Trans. Mechatron. 2011,
16, 745–757. [CrossRef]

https://doi.org/10.1109/MRA.2007.339623
https://doi.org/10.1016/j.robot.2012.09.002
https://doi.org/10.1109/ICRA.2015.7139450
https://doi.org/10.1177/1729881416669349
https://doi.org/10.1177/0278364907085097
https://doi.org/10.1109/IROS45743.2020.9341129
https://doi.org/10.1109/ROBOT.2000.844106
https://doi.org/10.1109/IROS.2006.281719
https://doi.org/10.1109/TMECH.2010.2085009

Sensors 2023, 23, 7892 18 of 18

11. Zhao, N.; Gao, L.; Yang, Z.; Qi, J.; Han, K.; Sui, X.; Zhao, J.; Zhu, Y. Meta-Module Mutual Assistance: A Bioinspired Design for
Self-Assembly of Modular Space Robot. Adv. Intell. Syst. 2023, 5, 2200450. [CrossRef]

12. Freesn, S.R.; Tu, Y.; Member, S.; Lam, T.L.; Member, S. Configuration Identification for a Freeform Modular. IEEE Trans. Robot.
2023, 1–17. [CrossRef]

13. O’Grady, R.; Groß, R.; Christensen, A.L.; Dorigo, M. Self-Assembly Strategies in a Group of Autonomous Mobile Robots. Auton.
Robot. 2010, 28, 439–455. [CrossRef]

14. Yang, H.A.; Cao, S.; Bai, L.; Zhang, Z.; Kong, J. A Distributed and Parallel Self-Assembly Approach for Swarm Robotics. Rob.
Auton. Syst. 2019, 118, 80–92. [CrossRef]

15. Ozkan-Aydin, Y.; Goldman, D.I. Self-Reconfigurable Multilegged Robot Swarms Collectively Accomplish Challenging Terrady-
namic Tasks. Sci. Robot. 2021, 6, eabf1628. [CrossRef] [PubMed]

16. Hou, F.; Shen, W.M. On the Complexity of Optimal Reconfiguration Planning for Modular Reconfigurable Robots. In Proceedings
of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 2791–2796.
[CrossRef]

17. Gerbl, M.; Gerstmayr, J. Self-Reconfiguration of Shape-Shifting Modular Robots with Triangular Structure. Rob. Auton. Syst. 2022,
147, 103930. [CrossRef]

18. Liu, C.; Whitzer, M.; Yim, M. A Distributed Reconfiguration Planning Algorithm for Modular Robots. IEEE Robot. Autom. Lett.
2019, 4, 4231–4238. [CrossRef]

19. Gao, C.; Ma, J.; Li, T.; Shen, Y. Hybrid Swarm Intelligent Algorithm for Multi-UAV Formation Reconfiguration. Complex Intell.
Syst. 2023, 9, 1929–1962. [CrossRef]

20. Liu, Y.; Wei, R.; Dong, H.; Zhu, Y.; Zhao, J.I.E. A designation of modular mobile reconfigurable platform system. J. Mech. Med.
Biol. 2020, 20, 2040006. [CrossRef]

21. Bender, E.A.; Williamson, S.G. Lists, Decisions and Graphs with an Introduction to Probability; University of California San Diego: La
Jolla, CA, USA, 2010.

22. McColm, G.L. On the Structure of Random Unlabelled Acyclic Graphs. Discrete Math. 2004, 277, 147–170. [CrossRef]
23. Hou, F.; Shen, W.M. Distributed, Dynamic, and Autonomous Reconfiguration Planning for Chain-Type Self-Reconfigurable

Robots. In Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008;
pp. 3135–3140.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/aisy.202200450
https://doi.org/10.1109/TRO.2023.3303848
https://doi.org/10.1007/s10514-010-9177-0
https://doi.org/10.1016/j.robot.2019.04.011
https://doi.org/10.1126/scirobotics.abf1628
https://www.ncbi.nlm.nih.gov/pubmed/34321347
https://doi.org/10.1109/ROBOT.2010.5509642
https://doi.org/10.1016/j.robot.2021.103930
https://doi.org/10.1109/LRA.2019.2930432
https://doi.org/10.1007/s40747-022-00891-7
https://doi.org/10.1142/S0219519420400060
https://doi.org/10.1016/S0012-365X(03)00156-0

	Introduction
	Hardware Platform
	Configuration Representation and Recognition
	Graph-Based Topology Representation
	Configuration Recognition

	Reconfiguration Planning Algorithm
	Configuration Decomposition
	Matching and Mapping between Subconfigurations
	Distributed Dynamic Mapping of Free Vertices
	Reconfiguration Action Generation based on Mapping

	Simulation
	Simulation Result Analysis
	Experiment
	Conclusions
	References

