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Abstract: Spatial frequency domain imaging (SFDI) is well established in biology and medicine
for non-contact, wide-field imaging of optical properties and 3D topography. Especially for turbid
media with displaced, tilted or irregularly shaped surfaces, the reliable quantitative measurement of
diffuse reflectance requires efficient calibration and correction methods. In this work, we present the
implementation of a generic and hardware independent calibration routine for SFDI setups based on
the so-called pinhole camera model for both projection and detection. Using a two-step geometric
and intensity calibration, we obtain an imaging model that efficiently and accurately determines 3D
topography and diffuse reflectance for subsequently measured samples, taking into account their
relative distance and orientation to the camera and projector, as well as the distortions of the optical
system. Derived correction procedures for position- and orientation-dependent changes in spatial
frequency and intensity allow the determination of the effective scattering coefficient µ′s and the
absorption coefficient µa when measuring a spherical optical phantom at three different measurement
positions and at nine wavelengths with an average error of 5% and 12%, respectively. Model-based
calibration allows the characterization of the imaging properties of the entire SFDI system without
prior knowledge, enabling the future development of a digital twin for synthetic data generation or
more robust evaluation methods.

Keywords: spatial frequency domain imaging; scattering; absorption; camera calibration; pinhole
camera model

1. Introduction

Spatial frequency domain imaging (SFDI) is a non-contact and fast measurement
method to determine both the 3D shape and optical properties of scattering samples. A ma-
jor advantage is the high lateral resolution that can be achieved to quantitatively map,
for example, the effective volume scattering coefficient µ′s, the absorption coefficient µa,
the phase function parameter γ or the surface scattering parameter rs [1,2]. The tech-
nology has considerable applications in biology and medicine, where the separation of
scattering and absorption can provide valuable information for imaging different tissue
types [3–5]. The measurement principle is based on the projection of periodic patterns onto
a sample, usually sinusoidally modulated along one spatial direction, and the detection
of the diffusely scattered light with a camera. A frequently used method is phase shifting,
i.e., subsequently recording a sequence of phase-shifted sinusoidal patterns to calculate
the amplitude modulation (AC), phase and offset (DC) using a single-pixel demodulation
algorithm [6]. Other methods aim to reduce the number of projections to ideally only a
single snapshot to enable real-time measurements based on multi-pixel demodulation [7,8].
In both cases, the individual modulation transfer function (MTF) describing the response of
the optical system at different spatial frequencies must be taken into account. The system’s
MTF can be determined, for example, by measuring a reference object with known optical
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properties. In subsequent measurements, the MTF of the system can then be separated
from the amplitude modulation emanating from the sample, i.e., the sample’s MTF, also
called the diffuse reflection [9]. Based on this characteristic quantity, the optical properties
of the sample, e.g., µ′s and µa, can be determined by the regression of a suitable light
propagation model such as the diffusion equation or an analytical solution of the radiative
transfer equation [10,11]. In addition, approaches based on machine learning and deep
learning are gaining importance [12–14]. However, regardless of the evaluation method,
the determination of diffuse reflectance is limited in accuracy and susceptible to various
sources of error, especially when measuring samples with irregularly shaped or inclined
surfaces and varying working distances [15]. This raises the question of how to achieve
robust and repeatable system calibration and data acquisition for the typical measurement
conditions encountered in the study of biological tissue.

In the simplified case of a flat sample, the diffuse reflectance can be corrected by mea-
suring a reference sample with known optical properties at exactly the same position [10].
For more complex sample surfaces, various profile corrections have been reported based on
phase profilometry [16–19]. In addition to triangulation-based approaches, which require
knowledge of the system parameters, e.g., the relative position between the projector and
camera, multi-height calibration, i.e., measuring a reference sample at known relative
heights, is well established [20,21]. In both cases, a linear relationship between phase and
height change relative to a defined reference plane is assumed. For additional angular
corrections, the positions and optical axes of the camera and projector relative to the sample
must be known or sufficiently accurately estimated. Both the calibration effort and the
required prior knowledge can be reduced by an improved modeling of the system. In this
context, the pinhole camera model introduced by Zhang [22] is noteworthy, originally
developed for camera calibration and later extended for projector-camera systems focusing
on improved 3D data determination [23–25]. The advantages of an easy-to-use calibra-
tion routine combined with the comprehensive characterization of imaging properties
motivated the application and extension of the pinhole model in the field of structured
illumination.

In this paper, we present a two-step calibration routine for SFDI systems: geometric
calibration involves measuring a calibration target with a circular grid at different positions
to determine the imaging characteristics and distortion of the projector and camera using the
pinhole camera model. After transformation to a uniform coordinate system, the geometry
of the projector-camera system can be described consistently, which is used to calculate a
3D map of the sample surface using a nonlinear phase distance model. Thus, for each 3D
point, the relative distance to the camera and the projector as well as the projection and
acquisition angle can be specified in cylindrical coordinates. Knowledge of the distortion
parameters allows for their correction after image acquisition and the calculation of pre-
distorted phase images, which produce sinusoidal patterns of high homogeneity when
projected onto a reference plane for a given working distance. If the sample surface
deviates from the reference surface, the resulting local change in spatial frequency can be
quantified geometrically. The second calibration step uses a calibration sample with known
optical properties to characterize the MTF of the system and the heterogeneous intensity
distribution within the calibrated volume. By parameterization and interpolation within
the entire calibrated volume, the model provides the system MTF and reference intensity
as a look-up table for subsequent measurements. Optical phantoms were measured for
validation, showing how the information from both calibration steps can be efficiently used
for post-processing the data without the need for further measurements. In particular, µ′s
and µa could be determined for a spherical phantom in three different positions with an
average deviation of 5% and 12%, respectively, at nine different wavelengths.

The aim of this work was to develop a generic and hardware-independent calibration
routine for SFDI setups based on the so-called pinhole camera model for projection and
detection. Through a two-step geometric and intensity calibration, we obtain an imaging
model that can be used to accurately determine the diffuse reflectance of turbid media with
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displaced or irregular surfaces. In particular, we present correction methods to account for
position- and orientation-dependent changes in the spatial frequency and intensity, which
are validated by measuring µ′s and µa of a spherical optical phantom at different positions
and wavelengths.

2. Materials and Methods
2.1. Multispectral SFDI Setup

Calibration and subsequent measurements were performed using a multispectral
SFDI system schematically shown in Figure 1a. The projection unit consists of a digital
micromirror device (DLP LightCrafter 6500, Texas Instruments, Dallas, TX, USA) in com-
bination with a self-configured LED light source that provides subsequent illumination
based on nine switchable LEDs (XLamp XP-E and XQ-E series, CreeLED, Durham, NC,
USA and LUXEON SunPlus series, Lumileds, San Jose, CA, USA) with peak emissions
between 447 nm and 945 nm and a narrow bandwidth of about 10 nm each. The light
emitted by the LEDs is collimated by a custom microlens array, which, in combination with
a light guide homogenization rod, provides virtually homogeneous illumination. The DLP
projects sinusoidal intensity patterns at an oblique angle of θ = 35° onto the sample and
the diffusely reflected light from a 21 mm× 21 mm area is detected by a vertically mounted,
cooled sCMOS camera (Zyla 4.2 sCMOS, Andor Technology, Belfast , UK) with a numerical
aperture of about 0.07. For the measurement, different spatial frequencies between 0 mm−1

and 1 mm−1 are recorded with at least three phase shifts of 0, 2π/3 and 4π/3, respectively.
The exposure time is about 20 ms per image, resulting in a total measurement time of
about 330 ms for five spatial frequencies with a complete sequence of 16 patterns (15 phase
patterns + 1 dark pattern) per wavelength. Thus, the multispectral data acquisition takes
less than 3 s in total. As shown in Figure 1b, the pixel-wise demodulation provides the
offset IDC, the modulation amplitude IAC and the phase. A detailed description of the
additional phase unwrapping used to avoid phase jumps can be found in Geiger et al. [26].

Figure 1. Schematic drawing of (a) the multispectral spatial frequency domain imaging (SFDI) setup
consisting of a projection unit with a digital micromirror device (DMD), a tunable LED lightsource
and a sCMOS camera to detect the diffuse reflect light. (b) Pixel-wise demodulation for spatial
frequency f yields the offset IDC, the modulation amplitude IAC and the unwrapped phase.

2.2. Calibration Model

The basis for calibration is an appropriate model that describes the imaging process,
in the most general case as a mapping of a ray from 3D space to a 2D pixel. Depend-
ing on the imaging system, there are both parameterized and non-parameterized models,
e.g., for pinhole cameras, stereo cameras, fisheye cameras or catadioptric cameras, as shown
in detail by Ramalingam [27] and Grossberg [28]. SFDI systems with commercial camera ob-
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jectives of a low numerical aperture (NA), i.e., high f-number, can usually be approximated
by a pinhole camera, for which Zhang [22] has presented a parameterized calibration model
taking distortion into account. This so-called pinhole camera model assumes collinear
mapping of object points along straight lines with a common intersection point in the
projection center (pinhole) onto an image plane [22]. Mathematically, this corresponds to
the transformation of a 3D point ~Pglob to its 2D projection ~p = (u, v) on the camera chip
given by

s~p = A[R | t] ~Pglob, (1)

with the scale factor s, the camera intrinsic matrix A and the extrinsic rotation-translation
matrix [R | t]. The extrinsic parameters transform the global coordinates of an object by
means of translation t and rotation R into the local camera coordinate system. Especially
for systems consisting of several cameras or projectors, this allows the corresponding
coordinates of the subsystems to be correlated. The camera intrinsic matrix

A =

 fx 0 cx
0 fy cy
0 0 1

 (2)

contains the focal lengths fx and fy and the principal points (cx, cy), which together with
the scale factor are called intrinsic parameters. In addition, the model can be extended to
take into account radial distortions that occur in real systems approximated by[

δu(r)
i

δv(r)i

]
=

[
ui(k1r2

i + k2r4
i + . . . )

vi(k1r2
i + k2r4

i + . . . )

]
(3)

with the radial distortion coefficients k1, k2, . . . kn and ri =
√

u2
i + v2

i , as well as lateral
distortions approximated by[

δu(t)
i

δv(t)i

]
=

[
2p1uivi + p2(r2

i + 2u2
i )

p1(r2
i + 2v2

i ) + 2p2uivi

]
(4)

with the lateral distortion coefficients p1 and p2 [29].
Figure 2 shows a schematic illustration of the pinhole camera model for a camera–

projector system typically used for SFDI. In this case, both the camera and the projector
are described individually by the pinhole camera model with its own set of parameters
and coordinates.

Figure 2. Schematic illustration of the pinhole camera model for a projector–camera system with
intrinsic and extrinsic parameters.
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There are several implementations of this parameterized pinhole camera model for
general calibration purposes, such as the Python module Camera Calibration and 3D
Reconstruction from the open source computer vision library (openCV) [30], which was
used in this work. For Matlab, an implementation with comparable functionality has
recently become available as part of the Camera Calibration Toolbox [31].

2.3. Calibration Routine

The calibration of the SFDI system is divided into two parts: the first calibration routine
uses a circular grid to characterize the imaging properties of the camera and projector based
on the pinhole camera model (referred to as geometric calibration), while afterwards, a
calibration standard with known reflectance properties is used for intensity calibration.

2.3.1. Geometric Calibration

The aim of geometric calibration is to determine the extrinsic and intrinsic parameters
using the pinhole camera model for both the camera and the projection system. If we
first restrict ourselves to camera calibration, according to Zhang [22], it is sufficient to
take snapshots of a calibration target in at least three different orientations and distances.
The calibration target is essentially a two-dimensional marker structure consisting of
regularly and grid-like arranged circles, points or a checkerboard. The two main axes
of the grid span a local coordinate system in which each marker point can be uniquely
assigned a 2D coordinate (in units of the grid constant a), which will be referred to as
object points in the following. After capturing the calibration target in different positions,
an image processing algorithm recognizes the individual marker structures in each of the
resulting camera images. Their pixel coordinates are referred to as image points in the
following and, together with the corresponding object points, serve as input parameters
for the actual modeling. Estimating the pose of the camera based on a set of 2D points
and their corresponding 3D points is also known as the perspective-n-point problem [32].
The solution approach followed in this study, called P3P [33], uses a Levenberg–Marquardt
optimization algorithm to determine the rotation, translation and intrinsic parameters
according to Equation (1), which minimizes the reprojection error of the 3D–2D point
correspondences for all acquired positions of the calibration target. Accordingly, the camera
calibration is valid only within the volume originally sampled by the calibration target,
hereafter referred to as the calibrated volume. The extent of the calibrated volume is
hardware limited, laterally by the field of view and in the z-direction by the depth of field
of the camera.

The procedure described for a single camera can be extended to the calibration of
a projector using the same pinhole camera model, but with reversed conceptualization.
The main difference is the determination of the image points, which are not directly
accessible with the projector in contrast to the camera. Instead, phase images are projected
onto the calibration target, allowing the pixel rows and columns of the projector chip to
be encoded onto the measurement plane. By evaluating the unique phase at each marker
structure, the required correspondence can thus be found indirectly. In this work, the phase
is determined using the phase shift method, which is based on the demodulation of at least
three sequentially recorded sinusoidal patterns, each shifted by 2π/3. The phase patterns
are adapted to the resolution of the DMD chip (NCol , NRow) and are projected both along
the direction of the pixel columns and rows, while the pixel-based spatial frequencies fCol
and fRow have to be specified in each case. Under this condition, the measured phase φu
and φv for patterns along rows and columns, respectively, can be uniquely associated with
a particular pixel coordinate (uDLP, vDLP) on the DMD chip, according to

uDLP =
φu

fCol · 4π/NCol
, (5)

vDLP =
φv

fRow · 4π/NRow
. (6)
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Once the two phase values and thus the corresponding image point for the projector cali-
bration are found for each marker point of the calibration target, the subsequent modeling
based on the pinhole camera model follows the approach already described for the camera.

To better illustrate the combined calibration of the camera and projector, an overview
of the processing steps for the geometric calibration is shown in Figure 3. In step À, the cali-
bration target is positioned in the measurement field and three phase patterns are recorded
along the columns and rows of the projector. After demodulation, in step Á, we use the DC
images (corresponding to images under homogeneous illumination) to detect the marker
circles using the computer vision functionality of the openCV. Three points with a thicker
outline, thus distinguishable from the other points, define the origin and the main axes
of the object points with known distance a. In step Â, the pixel positions in the camera
image, i.e., the camera image points, are determined for each marker. In step Ã, φv and
φu are determined for each marker circle from the demodulated and unwrapped phase
images. Equation (5) yields the projector image points. Steps À to Ã are then repeated
for n different positions, but at least three times. The camera pinhole model is then deter-
mined separately for the camera and projector image points of all n positions with their
respective object points, resulting in their intrinsic and extrinsic parameters. Although this
technically completes the geometric calibration, there are some useful post-processing steps.
In step Ä, we define, without a loss of generality, a global coordinate system by trans-
forming the projector coordinates into the camera coordinate system. The transformation
matrix is obtained by transforming [RPro,n, tPro,n] to [RCam,n, tCam,n]. In step Å, we define
a reference plane in the center of the previously calibrated volume, aligned parallel to
the camera chip. Using the imaging model of the projector and the distortion parameters,
step Æ computes a series of predistorted phase patterns that, when projected onto the
reference plane, yield equidistant sinusoidal fringes with selectable spatial frequencies in
units of mm−1, ranging from 0 mm−1 to 1 mm−1. Finally, in steps Ç and È, a normalized
direction vector êPro,(u,v), êCam,(u,v) according to the imaging model is assigned to each pixel
of the projector and camera chip, respectively, which will be referred to as projector and
camera rays in the following.

Figure 3. Schematic illustration with an overview of the processing steps for the geometric calibration.
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2.3.2. Parametrized 3D Point Estimation

Geometric calibration allows a 3D point cloud to be determined by triangulation
using the phase information. This means that for a given camera pixel, the measured
global phase is directly linked to a unique 3D coordinate. Instead of a strictly geometric
determination, in this work, we applied a parameterized approach using the presented
pinhole camera model, as reported by Lu [34]. For this purpose, each camera ray defines a
vector within the calibrated volume, which is sampled with a certain number of 3D points
with known distances l(u,v) from the camera center. Using the inverted imaging model, each
of these 3D points can be associated with the corresponding 2D image point of the projector
(i.e., DMD pixel) and thus, with the corresponding global phase ϕglob,(u,v). An efficient
mapping between the scalars l(u,v) and ϕglob,(u,v) is obtained by the regression of a cubic
polynomial for each camera ray according to

l(u,v) = P(ϕglob,(u,v)) =
n=3

∑
k=0

ak,(u,v) ·ϕglob,(u,v). (7)

Once the coefficients ak are determined, the distances l(u,v) for all camera pixels of a
measured phase image can be computed efficiently and very quickly in the following, using
a hyperbolic solution [35], which we call the phase-distance conversion in the following.
Additional multiplication with the camera rays êCam,(u,v), i.e., the direction vectors, yields
the corresponding 3D coordinate:

~Pglob,(u,v)= êcam,(u,v) · l(u,v) = (x, y, z)(u,v). (8)

2.3.3. Calculating Normals and Angles for Spatial Frequency Correction

For the further post-processing of the point cloud, the open source library Open3D [36]
was used to calculate a normal vector ~nP for each 3D point ~Pglob considering its nearest
neighbors. The normal vectors ~nP, together with the corresponding projector rays~ePro,P
and the direction of the fringe maxima~epattern (i.e., the direction of the constant phase in
the reference plane), span a local coordinate system for every 3D point with the direction
vectors given by

~ez,P = ~nz,P, ~ex,P = ~epattern −~ePro,P

(
~nP ·~epattern

~np ·~ePro,P

)
and~ey,P = ~ez,p ×~ex,P, (9)

as shown schematically in Figure 4a. After nominating the direction vectors via

êx,P =
~ex,P

|~ex,P|
, êy,P =

~ey,P∣∣~ey,P
∣∣ , êz,P =

~ez,P

|~ez,P|
, (10)

we can calculate the rotation matrix

Rg,P =
(
êx,P, êy,P, êz,P

)−1, (11)

which transforms the camera and projections rays from global to local coordinates
according to

ê′Pro,P = Rg,P · êPro,P, (12)

ê′Cam,P = Rg,P · êCam,P. (13)

After the transformation from cartesian to spherical coordinates according to

θ = arccos

(
ê′z,P ·~nP

|ê′z,P ·~nP|

)
, φ = arctan

(
ê′y,P ·~nP

|ê′y,P ·~nP|
,

ê′x,P ·~nP

|ê′x,P ·~nP|

)
, (14)
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we obtain the projection angles (θPro,φPro) and detection angles (θCam,φCam) for each 3D
point, respectively.

Figure 4. (a) Schematic representation of a sinusoidal pattern with spatial frequency f0 projected
obliquely onto a plane surface in the local coordinate system of a point ~P. (b) Both a height shift of ∆z
and (c) an inclination of the sample relative to the reference plane by ∆θ lead to scaling of the local
spatial frequency f observed on the sample surface.

As shown in Figure 4a, the oblique projection of a fringe pattern with a spatial period
f−1
0 onto the sample surface results in a scaled spatial period f−1, i.e., a changed distance

between two fringe maxima, denoted by s1 and s2. The scaling factor Sang,‖ can be described
geometrically for a tilt parallel to the fringes as

Sang,‖ =
√

cos (θPro,P)
2 + sin (φPro,P)

2 sin (θPro,P)
2, (15)

and thus

f = Sang,‖ · f0. (16)

The scaling factor Sang,⊥ for a tilt perpendicular to the fringes is calculated similarly by

Sang,⊥,P =

√
cos (θPro,P)

2 + cos (φPro,P)
2 sin (θPro,P)

2. (17)

Knowing the spatial frequency fre f at a point ~Pre f ,(u,v) in the reference plane illuminated at
φPro,re f and θPro,re f , the spatial frequency fcorr at the point ~P(u,v) of a relatively shifted and
tilted surface is given as

f = fre f · Sz · Sang,‖(φPro,P, θPro,P) (18)

with the magnification factor

Sz =
|~Pre f |
|~P|

. (19)

2.3.4. Intensity Calibration

When determining the absolute diffuse reflectance, the inhomogeneous intensity
distribution and the MTF of the system, which were neglected so far during the geometric
calibration, must also be taken into account. For this purpose, the intensity calibration is
performed in a second step using a reference standard of known diffuse reflectance RSFD,re f
measured at Npos (usually 5 to 6) positions evenly distributed over the calibrated volume.
At each position, N f spatial frequencies (usually 8 to 9) are uniformly acquired between
0 mm−1 and 1 mm−1. After demodulation, as part of the data post-processing, we apply
all demonstrated tools of geometric calibration to obtain pixel-wise 3D coordinates, normal
vectors, angles and corrected spatial frequencies in addition to the AC and DC images.
Since the detected intensity depends not only on the absolute position of the reference
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target, but also on its relative position to the projector and camera, we use a Lambert
correction model:

SLambert,(u,v)(θCam, θPro,φPro) = cos(θCam) · Sang,⊥(θPro,φPro) · Sang,‖(θPro,φPro), (20)

assuming Lambertian reflection of the reference target as an approximation and thus

IDC,re f ,corr,(u,v) = IDC,re f (u,v,) · SLambert,(u,v), (21)

IAC,re f ,corr,(u,v) = IAC,re f (u,v,) · SLambert,(u,v). (22)

To achieve an efficient assignment and later on, the retrieval of the reference intensities
despite the large parameter set, we describe the corrected intensities pixelwise as a function
of both their 3D position (e.g., distance l(u,v) from the camera) and their corrected spatial
frequency f . Thus, for each camera pixel (u,v), we obtain N f · Npos grid-like arranged
reference intensities, which correspond to a 2D hypersurface given by

MTFre f ,(u,v)(l, f ) =

{
IDC,re f ,corr,(u,v)(l) f = 0
IAC,re f ,corr,(u,v)(l, f ) f 6= 0.

(23)

With additional 2D interpolation, the intensity reference MTFre f ,(u,v)(l, f ) can be approxi-
mated within the entire calibrated volume and stored in the form of a look-up table.

2.4. Phantom Measurements

After measuring a sample such as an optical phantom, we repeat the evaluation steps
shown so far. The geometric calibration provides a 3D model of the sample surface with
corrected spatial frequencies fu,v and angles (θPro,φPro) and (θCam,φCam). The diffuse
reflectance RSFD is obtained by

RSFD,(u,v)( f ) =


∑n

i

(
IDC,(u,v,)( fi)·SLambert,(u,v)

MTFre f (l,0)
· RSFD,re f (0)

)
/n f = 0

IAC,(u,v,)( fi)·SLambert,(u,v)
MTFre f (l, f ) · RSFD,re f ( fi) f 6= 0.

(24)

As a summary, both the calibration routines and the subsequent calculation steps for the
actual measurement are shown in Figure 5 as a flowchart.

Figure 5. Flowchart showing an overview of the calibration routines and processing steps with spatial
frequency and intensity correction applied to an SFDI measurement.

To evaluate the optical properties of the measured sample, we use an analytical
solution of the radiative transfer equation based on the PN approximation for semi-infinite
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media to model light propagation [11,37,38]. The model was applied to the post-processed
data using a nonlinear least squares algorithm with a computational accuracy of order
N = 11, resulting in µa, µ′s and the surface roughness parameter rs for each pixel. Additional
16× 16 binning reduced both evaluation time and data volume.

Optical phantoms made of epoxy resin with additional scattering particles (titanium
dioxide) and a mineral absorber (hematite) were used for the validation measurements.
The geometry and surface properties of the phantoms can be controlled by molding or
mechanical finishing. In the present case, flat cylindrical phantoms and spherical caps of
different sizes were used. The reference values of their optical properties were determined
with an integrating sphere [39].

3. Results and Discussion
3.1. Geometric Model of the SFDI Setup in Global Coordinates

For the geometric calibration of the SFDI device, an aluminum plate with a printed
grid of 40× 40 circles with a 1 mm diameter and 2 mm spacing was used. The depth of field
of the camera limited the volume for calibration to a lateral 21 mm× 21 mm with a height
of 25 mm centered around the focus position. Since the grid spacing enters Equation (1) via
the scaling factor, the extrinsic parameters shown in Figure 6 result directly in millimeter
units. The origin of the global coordinate system was chosen at the position of the virtual
camera center, the reference plane is at a distance of z = 320 mm below and the virtual
projector center is at (0.61 mm, 183.0 mm, 8.6 mm). The model predicts a camera field
of view in the reference plane (hereafter called the image area) with a lateral extent of
21.6 mm× 21.6 mm, while the projector field of view (hereafter called the illuminated area)
has a lateral extent of 56.8 mm× 27.9 mm. The camera image center in the reference plane
is at (−2.9 mm,−1.5 mm, 320 mm), i.e., the optical axis of the camera appears to be aligned
almost exactly perpendicular to the reference plane.

Figure 6. (a–c) 2D representation of the virtual camera and projector center, the illuminated area
and the image area in the global coordinate system as they result from the geometric calibration.
(d) The corresponding 3D illustration with the outer corner rays of both the camera (blue) and
projector (red).

Compared to the real SFDI setup, some of these parameters can be directly validated,
e.g., the size of the camera field of view in the reference plane can be easily measured
and checked with a ruler. Regarding the illumination field, it should be noted that the
DMD chip may not be fully illuminated and its margins are usually obscured by parts of
the projection optics. The fact that the illumination field is significantly larger than the
camera image serves to avoid marginal light propagation effects. The relative position of
the camera, projector and reference plane could also be roughly confirmed with a tape
measure, although the model parameters do not necessarily reflect the exact setup geometry.
In particular, the virtual camera and projector centers are not characteristic or distinctive
points of the real optical system. Strictly speaking, their specification is only meaningful if
the entire set of model parameters is taken into account.
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3.2. Phase-Distance Conversion

The geometric calibration allows the translation of the measured and unwrapped
phase directly into a distance l(u,v) according to Equation (7). To determine this correspon-
dence, ten virtual planes were defined in the calibrated volume, having been shifted in the
z-direction. The projected phase as seen from the camera was then calculated for each plane
using the known imaging model, shown exemplarily in Figure 7a for the pixel in the center
of the camera. By fitting a third-degree polynomial according to Equation (7), the unique
phase–distance relationship can be determined and stored for each pixel. In the subsequent
measurement, it is sufficient to specify the camera pixel index, the phase value and the
camera ray êCam,(u,v) to calculate l(u,v) or, according to Equation (8), the corresponding 3D
coordinate directly. Figure 7b shows three depicted planes in a 3D representation with
color-coded φglob, which can be assigned to a specific column of the DMD chip according to
Equation (5). Due to the oblique projection direction, φglob = 0 appears in the camera image
at a different position in each plane. The black arrow again represents the camera ray of the
center pixel. For validation, a flat reference target was measured in the reference plane and
its 3D topography was determined using the phase–distance conversion. Figure 7c shows
the surface error of the obtained point cloud determined by the regression of a plane to an
average deviation of about 15µm.

Figure 7. For a single pixel, e.g., in the center of the CCD, φglob can be described as a function of
the distance l(u,v) between the sample surface and the camera (blue dots). Fitting a third degree
polynomial gives the analytical phase–distance conversion (black line). (b) shows three planes with a
distance of 10 mm, centered around the reference plane, with color coding showing φglob. The black
arrow corresponds to the profile shown in (a) while the red dashed line marks φglob = 0 in each
case. (c) For validation, we measured the 3D topography of a flat reference target using the presented
phase–distance conversion. The mean surface deviation was determined by the regression of a plane
as 15µm.

3.3. Calculating the Projection and Detection Angles

To illustrate the determination of the projection and detection angles, a custom-made
planar phantom with a central spherical cap with a diameter of approximately 10 mm was
measured. Figure 8a shows the 3D point cloud obtained by the phase–distance conversion,
with 8× 8 pixel binning chosen for clarity. The black arrows illustrate the normal vectors
computed for each pixel, while the color map codes are l(u,v). Figure 8b shows an enlarged
section of the point cloud with the additional representation of the camera rays (blue)
and projector rays (red) as well as the propagation direction of the fringe pattern (red).
Figure 8c,d show the polar angles calculated according to Equation (14) for projection
and detection, respectively. The incidence angle of the projection φPro is on average 35°,
the detection angle φCam of the camera is about 4° and θCam and θPro are on average 0°.
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Figure 8. (a) 3D topography of an optical phantom with a centered spherical cap showing the normal
vectors (black arrows) and color-coded z-coordinate. (b) Detailed view with the additional marking
of the incident projector direction (red arrows) and the camera detection (blue arrows). (c,d) show the
polar angles (θCam, θPro) and (φCam,φPro), respectively, with the mean angles indicated by a white
bar in the colorbar.

3.4. Look-Up Table for Intensity Reference

For the intensity calibration, a white coated, highly scattered aluminum plate with
known reflectance properties was used as a reference target for further intensity calibration.
It was measured at six different positions in the calibrated volume, each at nine spatial
frequencies ranging from 0 mm−1 to 1 mm−1. Figure 9a shows the corresponding DC
images for measurements at three positions with a respective distance of 10 mm. It can be
clearly seen that the intensity distribution is not homogeneous and changes laterally as well
as for different heights. The black arrow marks the camera ray associated with the pixel at
the center of the CCD chip. Figure 9b shows, for this pixel, the corresponding reflectance
reference map MTFre f (l, f )(u,v) obtained by an 2D interpolation of the acquired measure-
ments. It shows the color-coded reflectance for this pixel as a function of distance l(u,v) from
the camera along êCam,(u,v) and as a function of the spatial frequency f . The outset on the
right shows three intensity profiles as a function of l(u,v) but constant spatial frequencies
at 0.01 mm−1, 0.43 mm−1 and 0.87 mm−1, corresponding to the vertical lines in Figure 9a.
In all three cases, the intensity decreases at short and long distances due to the limited
depth of field of the camera. The intensity maximum at 316 mm indicates the distance
of the camera focal plane. The outset below shows the change in intensity as a function
of the spatial frequency for three fixed distances at about 309 mm, 318 mm and 326 mm.
These curves correspond to the horizontal profiles in Figure 9a. Fringes with a high spatial
frequency can obviously only be resolved properly near the focal plane, at distances from
approx. ±8 mm; the decrease of the MTF indicates blurring.
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Figure 9. (a) Three-dimensional representation of the DC images for three intensity reference mea-
surements, each shifted by ∆z = 10 mm in the z-direction, with an exemplary camera ray marked
in the center of the image (black arrow). (b) shows for this selected ray the reflectance resulting
from the intensity calibration, which is plotted in 2D, color-coded against spatial frequency and
distance. The right plot shows an example of the change in reflectance at f = 0 mm−1, f = 0.4 mm−1,
and f = 0.8 mm−1 for different distances as solid lines, and the bottom plot shows the MTF in the
range between 0 mm−1 and 1 mm−1 for distances 310 mm, 320 mm and 325 mm as dashed lines.

3.5. Determining Multispectral Optical Properties of a Hemispherical Phantom

To evaluate the influence of frequency and intensity corrections on the determination
of optical properties, another custom-made hemispherical phantom with a radius of curva-
ture of 40 mm was measured at three different positions in the calibrated volume. The SFD
measurement was performed at all nine available wavelengths recording six spatial fre-
quencies between 0.01 mm−1 and 0.45 mm−1, with respect to the reference plane, and three
phase patterns each. Figure 10a shows the three measurement positions where Pos. 2 was
approximately at the reference plane and Pos. 1 and Pos. 3 were 10 mm above and below it,
respectively. The false colors show the geometrically corrected spatial frequency due to the
offset and curvature of the sample for a spatial frequency of 0.45 mm−1. A clear gradient
between 0.28 mm−1 and 0.45 mm−1 becomes apparent, which increases with shallower
angles between the illumination direction and normal surface. Averaged over the entire
field of view, the curvature causes about 15% deviation of the spatial frequency relative to
the reference plane, and the height difference between Pos. 1 and Pos. 3 causes an additional
variation of about 6%. Figure 10b shows RSFD at a wavelength of 521 nm compared for the
post-processing with and without consideration of both the spatial frequency correction
and intensity correction. For comparison, the dashed line shows a forward calculation with
a semi-infinite solution of the RTE. As a reference, the optical properties were determined
by means of an integrating sphere as µ′s = 1.98 mm−1 and µa = 0.18 mm−1, assuming the
anisotropy factor g = 0.6 and refractive index n = 1.52. While the measured RSFD is shifted
to higher spatial frequencies and intensities without corrections, it agrees well with the
prediction for all three positions with corrections. The deviations at low spatial frequen-
cies probably result from the deviation from the assumed semi-infinite model. Figure 10c
shows the corresponding optical properties for all wavelengths compared with and without
correction, with the results of an integrating sphere measurement given as a reference. With-
out corrections, the deviations for µ′s and µa average 35% and 45%, respectively, over all
wavelengths, while the deviations with a frequency correction are 5% and 12%, respectively.
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Figure 10. (a) Measurement of a hemispherical optical phantom with a radius of curvature of 40 mm
in three different z-positions using false colors to display the geometrically corrected spatial frequency
for a pattern with f = 0.45 mm−1 in the reference plane. (b) Averaged reflectances measured at a
wavelength of 521 nm after post-processing considering (circles) and neglecting (squares) frequency
and intensity correction and compared to a forward calculation. (c) Spectrally resolved effective
scattering coefficient µ′s and absorption coefficient µa determined after post-processing, taking into
account (circles) and neglecting (squares) the frequency and intensity correction compared to an
integrating sphere measurement.

4. Summary and Outlook

The presented approach of a two-step geometry and intensity calibration allows
a comprehensive and coherent description of the entire SFDI system with a large set of
internal and external parameters obtained both for the projector and camera. In combination
with the 3D topography of the sample, available through the phase information, local
changes in spatial frequency or intensity can be determined directly from the displacement
or tilt of the sample surface and taken into account in a further analysis. This allows the
investigation and further development of correction methods that require virtually no
prior knowledge of the setup. The parameterized approach to phase–distance conversion
and intensity correction using rays associated with an individual camera and projector
pixels provides an efficient and insightful representation of the measurement process and
subsequent data processing. A general drawback, however, is the extensive algorithms that
must be developed and implemented once for post-processing.

Overall, the results of the calibration, i.e., the characterization of the geometric imaging
properties, including realistic distortions and inhomogeneous intensity distributions, can
be further used to establish a digital twin of the setup. A future goal is therefore to simulate
the entire measurement process with forward calculations using numerical methods such
as the Monte Carlo method [40,41]. This would make it possible, for example, to determine
the mutual error contribution in the simultaneous determination of the optical properties
and the 3D topography of turbid samples or to enable new possibilities for data evaluation.
The first progress with a similar approach for the corrected determination of 3D topog-
raphy of teeth was recently shown by Geiger et al. [26]. In particular, for such complex
sample geometries where analytical solutions of the radiative transfer equation do not exist,
a regression algorithm to determine the optical properties by solving the inverse problem
for virtually any 3D surface would be conceivable.

From an application perspective, the calibration model can provide advantages in var-
ious fields, such as medical imaging. After the one-time calibration, which does not require
any prior knowledge of the specific hardware used in the application, comprehensive infor-
mation on the distance and relative orientation of different image areas of the examined
specimen is available in addition to the diffuse reflectance. A major advantage is that no
additional image acquisition is required for their determination, i.e., the measurement time
remains unchanged. In addition to the presented quantitative approach for the determina-
tion of scattering and absorption properties, applications in the field of machine learning
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are becoming more and more important. For example, in the automated classification of
tissue types based on reflectance properties, additional knowledge of their relative position
and distance to the camera and projector could enable more stable prediction models.
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