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Abstract: Timely detection and management of daylily diseases are crucial to prevent yield reduction.
However, detection models often struggle with handling the interference of complex backgrounds,
leading to low accuracy, especially in detecting small targets. To address this problem, we propose
DaylilyNet, an object detection algorithm that uses multi-task learning to optimize the detection
process. By incorporating a semantic segmentation loss function, the model focuses its attention
on diseased leaf regions, while a spatial global feature extractor enhances interactions between leaf
and background areas. Additionally, a feature alignment module improves localization accuracy by
mitigating feature misalignment. To investigate the impact of information loss on model detection
performance, we created two datasets. One dataset, referred to as the ‘sliding window dataset’, was
obtained by splitting the original-resolution images using a sliding window. The other dataset, known
as the ‘non-sliding window dataset’, was obtained by downsampling the images. Experimental
results in the ‘sliding window dataset’ and the ‘non-sliding window dataset’ demonstrate that
DaylilyNet outperforms YOLOv5-L in mAP@0.5 by 5.2% and 4.0%, while reducing parameters and
time cost. Compared to other models, our model maintains an advantage even in scenarios where
there is missing information in the training dataset.

Keywords: daylily disease detection; complex background interference; multi-task learning

1. Introduction

Daylilies are extensively cultivated in China and serve as a significant agricultural
crop, providing an economic lifeline to rural communities. Recently, the government has
been promoting the daylily farming industry as a means to alleviate rural poverty and
expand cultivated land. However, daylilies are susceptible to diseases, especially during
the early to mid-growth stages, which can result in reduced income. Given the highly
contagious nature of daylily diseases, timely detection is imperative. Currently, crops
mainly rely on manual inspection, which is time-consuming.

In recent years, propelled by advancements in computer vision, image recognition
techniques based on deep learning have found applications in various fields, including
facial recognition, pedestrian detection, autonomous driving, object recognition, and object
tracking [1–3]. Deep learning methods for object detection involve locating the target
region and performing category classification. Due to their outstanding performance,
researchers in the field of plant disease detection have shifted their focus from traditional
visual inspection methods to deep learning approaches.

• Types of object detection algorithms in deep learning

Presently, object detection models in deep learning can be categorized into single-
stage and two-stage detection models. Furthermore, the classification distinguishes them

Sensors 2023, 23, 7879. https://doi.org/10.3390/s23187879 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23187879
https://doi.org/10.3390/s23187879
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23187879
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23187879?type=check_update&version=1


Sensors 2023, 23, 7879 2 of 24

based on using anchor boxes into anchor-free and anchor-based approaches. Remarkable
anchor-free models include FCOS [4] and CenterNet [5].

Object detection using these models encompasses two stages: object localization and
object classification. Theoretically, two-stage networks offer superior object localization
performance, while single-stage networks provide faster detection speed and lower memory
consumption. This study proposes a swifter, more accurate object detection algorithm
based on the single-stage approach to balance detection speed and performance.

The principal distinction between deep-learning-based approaches and traditional ma-
chine learning methods resides in their fundamental disparities. Deep learning algorithms
harness substantial volumes of data and employ gradient descent algorithms to iteratively
refine the parameters of feature extractors, thereby adapting them without necessitating
manual feature engineering. This trait empowers deep learning models to demonstrate
enhanced data-fitting capabilities. Furthermore, deep learning models comprise deeper
layers, enabling them to acquire and extract intricate semantic features from the data. As a
result, deep learning methods often surpass manually designed feature extractors. Partic-
ularly noteworthy is the fact that deep-learning-based techniques have led to significant
progress in plant disease detection in recent years.

• Development of plant disease detection technology based on deep learning

Li et al. [6] employed the Feature Pyramid Network (FPN) along with the Precise
Region of Interest (PROI) pooling module to enhance the detection accuracy of Faster
R-CNN for small targets with complex backgrounds. Xiong et al. [7] introduced a novel
image segmentation algorithm called AISA, effectively eliminating background information.
Their system achieved an identification accuracy of over 80% for 27 diseases across six
different crops in both laboratory and field environments. Chen et al. [8] developed a
comprehensive framework for extracting pest and disease features, localizing diseases,
and performing classification. They utilized a sliding window detection algorithm. Zhou
et al. [9] presented a method for detecting rice diseases using the Faster R-CNN framework,
achieving an average detection accuracy of 95% and a processing speed of 0.66 s per image.
Ghoury et al. [10] employed transfer learning methods to compare the performance of
SingleSSD_MobileNetv1 and Faster R-CNN in discerning healthy and diseased grape
leaves. Their investigation revealed that SingleSSD_MobileNetv1 boasted faster detection
speeds, while Faster R-CNN demonstrated superior detection accuracy. Fuentes et al. [11]
utilized three models, namely Faster R-CNN, R-FCN, and SSD, for accurately localizing and
classifying regions affected by tomato leaf diseases. Among these models, ResNet50 served
as the feature extractor, attaining an average precision (mAP) of 85.98%. Subsequently,
Fuentes et al. [12] introduced enhancements to the Faster R-CNN model by incorporating
secondary classification units to improve the identification of secondary categories and
reduce false detection rates, resulting in a 13% increase in mAP. Bhatt et al. [13] introduced
an innovative technique for detecting pests and diseases in tea gardens under uncontrolled
conditions. They employed YOLOv3 as the object detection model and achieved a mAP@0.5
performance of 86% with an IOU threshold of 50%. Singh et al. [14] established the PlantDoc
dataset for detecting plant diseases, emphasizing the detection speed for embedded devices.
Their research utilized MobileNet and SSD as detection models.

• The state-of-play and direction of research

(1) Considering further model enhancement using two-stage detection approaches to
improve detection accuracy in complex scenes.

(2) Refining single-stage models to decrease parameters and computations while
retaining detection accuracy for resource-constrained embedded devices. However, these
directions often emphasize complex scenes, where a single diseased leaf is positioned at
the image’s center with a blurred “background” during the capturing process, diverging
from real-world scenarios.
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(3) These approaches predominantly adopt the CNN-based approach, overlooking
global contextual information. These approaches may not always lead to enhancements in
accuracy when implemented for practical scene detection.

• Limitations with existing plant disease detection based on deep learning

(1) Much research has focused on target objects with less complex or noise-free back-
grounds. Nevertheless, the efficacy of these methods tends to be subpar in real-world
detection scenarios.

(2) The establishment of the model’s global feature extraction capability is often
inadequate. Most plant disease detection models rely on convolutional neural networks
(CNNs). While CNN-based segmentation methods have demonstrated improved outcomes
in coarse-grained object detection, these approaches confine the model’s focus to a limited
neighborhood, thereby diminishing its capacity to distinguish small disease targets from
intricate backgrounds and foliage.

• Research progress in multi-task learning

In recent years, many multi-task learning models have been proposed to utilize a
single backbone network to tackle two or more distinct tasks. The study conducted by
YOLOP [15] noted the existence of correlations among tasks and connections between
the objects involved in these tasks when performing various categories of tasks. Through
the establishment of shared weight parameters within a multi-task learning framework,
the tasks’ performance can be enhanced. Araki et al. [16] integrated a multi-task learning
strategy into the visual detection sub-model of a robot’s object grasping system, effectively
improving the detection accuracy for both object detection and semantic segmentation
tasks. Chen et al. [17] introduced the UNet as a feature extraction task and utilized its
Semantic Segmentation Head to aid the training process for infrared small-target detec-
tion. This approach led to enhanced average precision and an increased detection rate
of small targets.

• Research progress in small object detection

It is imperative to address the challenge of detecting small objects. When dealing with
small object detection, the scarcity of target features presents a formidable challenge for
conventional CNN structures to process these feature points adeptly. Despite the potential
alleviation of this issue through introducing FPN, the detection performance of small
objects might still be compromised in the presence of complex backgrounds. Sun et al. [18]
devised a variant of detection transformer (DETR) composed exclusively of an encoder
to tackle the challenge of feature extraction from small objects. This design improves
the detection accuracy of small objects, possibly reducing detection precision for larger
objects. Xu et al. [19] introduced a dual-keyword Transformer architecture to enhance
the efficacy of small object detection further. The incorporation of the Transformer was
observed to mitigate the drop in detection accuracy when small objects become occluded.
Dubey et al. [20] introduced the improving small objects detection using Transformer
(SOF-DETR) method, which utilizes a normalized inductive bias for object detection. Using
a self-attention mechanism to capture spatial relationships between objects situated at
varying distances within an image enhances the efficacy of small object detection.

• Analysis and solutions

Given the context above, we can surmise that the detection of daylily diseases in
real-world scenarios is challenged by background interference complexities and substantial
variations in target scales. These challenges have resulted in the suboptimal performance
of most deep-learning methods in this field. In an endeavor to tackle these challenges,
taking inspiration from YOLOP, Transformer [21], and CvT [22], this study presents a
pioneering daylily disease detection methodology named DaylilyNet. The introduced
approach amalgamates multi-task learning with a separable attention mechanism.

To counteract CNN models’ insufficient global feature correlation capabilities, we
incorporate the Separable Attention module derived from MobileViTv3 [23]. Furthermore,
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while tackling the problem of feature displacement inherent in the conventional Feature
Pyramid Network (FPN) architecture, we introduce the Feature-aligned Pyramid Network
(FaPN) and optimize it to amplify feature fusion capabilities and enhance flexibility.

Moreover, we devise a Decoupled Head to segregate the target classification and
localization tasks in object detection. We introduce a disease leaf Segmentation Head
alongside its corresponding loss function to mitigate the challenge posed by misclassifying
backgrounds. This joint optimization enhances the model and reduces the likelihood of
incorrectly classifying backgrounds as disease targets. The experimental findings demon-
strate the successful enhancement of the model’s proficiency in detecting daylily leaf
diseases through these improvements.

• Organizational structure of the article

Section 2 introduces the methodology proposed in this study. Section 3 provides
information about the dataset and presents the evaluation metrics. Section 4 presents the
experimental results and analysis. Section 5 discusses the experimental findings. Section 6
concludes the content and findings of this paper.

2. Materials and Methods

YOLOv5 achieves object localization and classification by directly regressing candidate
box positions and categories. It provides a straightforward and convenient approach while
retaining reasonable accuracy. Considering the intricate backgrounds in real-world daylily
disease images, scale variations from different distances to the camera for the same disease,
and significant non-rigid disease shape disparities, we introduce DaylilyNet, built upon
the foundation of YOLOv5. This approach harnesses the power of multi-task learning
and a separable attention mechanism to tackle these challenges encountered in daylily
disease detection.

2.1. The Architecture of DaylilyNet

DaylilyNet consists of an enhanced MobileViTv3 backbone (IMB), PAN structure with
the improved Feature Adaptive Pyramid Network (IFPN), a leaf disease segmentation
module (Seg), and the detection module named the Decoupled Head (DH), as depicted in
Figure 1.
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The FPN structure amplifies the semantic information from the original image within
deep feature maps. The fusion of multi-scale feature information and the addition of
semantic details contribute to the enhancement of detecting disease targets of smaller sizes.
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In this pathway, the feature maps at each scale are linked with the corresponding scale
outputs from the bottom-up path, thereby expanding semantic information.

Drawing inspiration from the Inception structure [24] and to further enlarge the
receptive field, the bottom-up pathway encompasses the simultaneous processing of inputs
through a 5 × 5 and a 3 × 3 convolution module, followed by an element-wise summation
of the resulting features from both modules.

Additionally, IFPN is utilized to rectify the feature misalignment induced by upsampling
and downsampling, thus augmenting the localization accuracy of the detection module.

Finally, the features of disease-infected leaves are extracted through the Segmentation
Head (Seg). The Segmentation Head employs the P2 feature map for multiple upsampling
and feature extraction iterations, ultimately augmenting the spatial resolution of the feature
maps to align with that of the original image. Furthermore, the disease target detection
module comprises a Decoupled Head (DH).

2.2. Improved MobileViTv3 Backbone

In the context of complex-background object detection, the performance of the feature
extraction layer holds paramount significance. Considering the extensive use of Transform-
ers in medical image segmentation, the powerful global feature extraction capability of
Transformers has been utilized to tackle the issue of diminished segmentation precision
caused by the complex spatial relationships of objects [25]. Considering the application
context and the resemblances in the features of the detection targets, this study has opted
to replace a pure CNN structure with the Transformer architecture for feature extraction.
However, owing to the presence of inductive bias, which results in inadequate detection
accuracy when identifying small objects in images with complex backgrounds [26], a lo-
cal feature extraction structure has been incorporated into the models. To mitigate the
computational complexity of self-attention, the Separable Attention mechanism from Mo-
bileViTv3 [23], known for its linear complexity, has been adopted to capture the global
spatial relations.

The architecture of the Improved MobileViTv3 backbone (IMB) is depicted in Figure 2.
The process of obtaining feature maps C1 to C4 is denoted as the Embedding process.
The Conv module is utilized for patch embedding, representing an improvement over the
traditional patch embedding module employed in ViT. Unlike the latter, our method solely
depends on convolutional modules for downsampling and modeling spatial relationships,
reducing computational costs and parameter quantities [27].
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Figure 2. The structure of the IMB backbone.

The feature map C4 is fed into the MobileViTv3 (MV) module, which includes the
LinearTransformer, a Transformer with linear computational complexity. This module
facilitates global feature extraction and the correlation of features. Notably, due to the
considerable semantic information contained within the input feature map, which possesses
a spatial resolution of 40 × 40, this feature map is fed into the MV module to extract global
spatial features. The final step entails fusing elements across different receptive fields using
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the Spatial Pyramid Pooling Fast (SPPF) module. However, the IMB employs a method
that encompasses two pixels for feature correlation, resulting in an indirect reduction in the
semantic resolution of the feature map and a weakening of the ability to extract features
from small targets. This study addressed this aspect by employing full-pixel sampling and
allocating weighted values to all spatial pixels.

The enhanced MV module, illustrated in Figure 3, consists of a global representation
(GR) module, a local representation (LR) module, and a fusion module. The GR module
establishes correlations within the global spatial context, while the LR module extracts
features from local spatial regions. The integration of the LR module enhances the model’s
ability to infer insights from two-dimensional spatial features in images, thereby expediting
the model’s convergence.
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The structure of the linear transformer is depicted in Figure 4. We employ the Pre-
norm approach [28] to improve the model’s convergence rate. In the original MobileViTv3
framework, a 1 × 1 convolutional layer was utilized in the FeedForward stage to facilitate
interaction between features from different channels within the feature map. However,
given the relatively small scale of plant leaf diseases, fully utilizing information from all
channels within the feature map is crucial. Therefore, we utilize the Linear module to
facilitate interaction among pixels at the same positions across all channels. This approach
improves the accuracy of localizing small targets.
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Figure 4. The structure of the linear transformer module.

In MobileViTv3, the linear transformer utilizes the Separable self-attention (SSA)
structure, as illustrated in Figure 5. When compared to the traditional Multi-Head Self-
Attention (MHSA) mechanism, the linear transformer demonstrates lower computational
complexity. The IMB integrates the separable self-attention mechanism SSA to mitigate
computational complexity and reduce the number of parameters. The computational
complexity of MHSA and SSA is presented in Table 1, where k represents the number of
tokens, equivalent to the number of pixels involved in global spatial feature modeling.
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Table 1. The computational complexity of MHSA and SSA.

Methods Complexities

Multi-head self-attention O(k2)
Separable self-attention O(k)

When configuring SSA parameters, a patch size of 2 is employed. It divides the feature
map into groups of four adjacent pixels per spatial domain, starting from the first pixel.
For a feature map with a resolution of h × w, this results in (h/2) × (w/2) groups. Tokens
in the same position within each group, referred to as tokens of the same color, are ordered
using the unfold operation. The sequence length becomes (h/2) × (w/2). Applying this
operation to the group feature map transitions the data shape from (b, c, h, w) to (b, c,
2 × 2, (h/2) × (w/2)). Then, the feature map is grouped along the channel dimension,
creating a data shape of (b, c, 2 × 2, (h/2) × (w/2)). A 1 × 1 convolution is conducted with
a channel number of 1 + 2 × e, where e represents the embedded dimension (set to 512 in
our network). The feature map is divided into I, K (also known as Q), and V, each with 1, e,
and e channel numbers, respectively. A Softmax operation is applied to the feature map I
along the row dimension, resulting in a context scores matrix representing token contextual
scores. This matrix is element-wise multiplied with the feature map K, producing a context
vector denoted as CV . The context vector encodes global information and is expanded
along the row dimension with uniform values. This expansion results in a context matrix,
which is element-wise multiplied with the feature map V to generate the global attention
feature map. Finally, a 1 × 1 convolution layer with a channel number of e is applied
to the feature map, followed by a Fold operation to restore its spatial feature map shape
to (b, c, h, w).

In the end, the separable attention can be represented by the following Equation:

y =
(
∑(σ(XWI)× XWK)× ReLU(XWV)

)
WO = Cv × ReLU(XWV)×WO, (1)

In this equation, X ∈ Rd×d represents the input feature map, σ signifies the softmax
function, and WI, WK, WV ∈ Rd×d denote the weights of the convolutional layers that
encode the input feature map X into I, K, and V. WO ∈ Rd×d represents the weights of
the 1 × 1 convolutional linear layer before the output. The variable d corresponds to the
token dimension.

The context vector CV can be represented as:

Cv = ∑k
i=0 Cs(i)XK(i) = ∑(σ(XWI)× XWK), (2)
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The context score CS can be represented as:

Cs = σ(XWI), (3)

2.3. PAN Structure with the IFPN

Compared to the feature pyramid network, the Path Aggregation Network (PAN)
offers advantages in enhancing object detection capabilities. However, when employing
traditional channel concatenation methods on upsampled and downsampled feature maps,
feature misalignment issues arise, which can lead to a decrease in object localization
accuracy. To tackle these concerns regarding feature misalignment, the proposed FaPN [29]
is introduced to align feature maps.

Moreover, we have observed that the existing fusion process involves a simple element-
wise addition of two sets of feature maps, which fails to address the uneven contributions
of these feature maps to the information. Consequently, we adapt the fusion mechanism
from element-wise summation to element-wise weighted summation, thereby enhancing
flexibility in the fusion process. This adjustment enables the network to assign varying
importance to different sets of feature maps, thus bolstering the model’s robustness. The
revised FaPN module is referred to as the Improved FaPN (IFPN). The overall workflow
of IFPN is illustrated in Figure 6. The horizontally concatenated features undergo feature
selection via FSM, and subsequently, the output feature map enters FAM to align the
bottom-up feature maps. The resultant feature maps from FSM and FAM are combined
through element-wise weighted summation using dynamically determined weights W1
and W2 during the network training process.
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2.3.1. FSM Module

In the original FPN framework, the fusion of bottom-up and lateral connection feature
maps was achieved solely through simple concatenation, inadvertently leading to the
incorporation of a substantial amount of redundant information from the lateral connection
feature maps.

The introduction of the Feature Selection Module (FSM) aimed to address this issue.
The structure of the FSM module is depicted in Figure 7. Within the branch responsible
for channel feature importance scoring, the input features (input1) are initially subjected
to an average pooling layer to compress spatial information. Subsequently, the output
is directed to a 1 × 1 convolution module, which applies weighted scoring to the com-
pressed information of each channel. The resulting scores are then nonlinearized through
a sigmoid function, resulting in score1. This score1 is subsequently utilized to weigh the
channel scores of each individual input1, consequently generating feature2. Feature2 is
then combined with input1 through a residual connection and, ultimately, processed via
a 1 × 1 convolutional layer to selectively retain channels, thereby effectively suppressing
redundant features.
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2.3.2. FAM Module

Feature Alignment Module (FAM) is introduced to address the issue of misalignment
between the interpolated upsampled features from the shallow top-down layers and the
bottom-up feature maps, which are downsampled using convolutional modules in the
original FPN. The fusion of these two types of feature maps through element-wise addition
or channel concatenation followed by a 1 × 1 convolution can adversely affect the perfor-
mance of boundary box regression and classification in the prediction heads. Therefore,
the feature fusion methods that rely on element-wise addition or channel concatenation
can affect the prediction of object boundaries and result in misclassification during the
prediction process. To overcome these problems, the FAM module is introduced to align
the spatial positions of bottom-up feature maps. This method adjusts the positional offsets
of convolutional kernel sampling during the feature map sampling process to map the
features to their correct positions, thus achieving feature alignment.

The workflow of the Feature Alignment Module is illustrated in Figure 8. The module
takes two inputs: L1, which is the horizontally connected feature map obtained from the
FSM output, and T1, which is the top-down feature map. Both feature maps have the same
spatial resolution and channel number. Firstly, the two feature maps are concatenated
along the channel dimensions. Then, a 1 × 1 convolutional layer with C channels is applied
to extract the feature map O1, which represents the spatial pixel position offsets of the
two feature maps. Subsequently, both T1 and O1 are fed into the deformable convolution
module, where the feature offsets provided by O1 guide the deformable convolution kernel
to convolve T1, aligning the features based on the calculated offsets.
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2.4. Decoupled Head

Due to the distinct requirements of the localization and classification tasks, using a
single convolutional module for both tasks within a Non-Decoupled Head cannot effectively
extract the features necessary for each task [30]. Consequently, in our proposed model,
a Decoupled Head (DH) is employed for the detection of leaf disease targets. The DH
module comprises three separate heads, as depicted in Figure 9. The feature maps of sizes
256 × 20 × 20, 256 × 40 × 40, and 256 × 80 × 80 are fed into DH modules 1, 2, and 3,
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respectively, to detect large, medium, and small targets in the image. The structures of the
three DH modules are uniform, each consisting of four 1 × 1 convolutional modules and
one 3 × 3 convolutional module.
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After the feature maps are fed into the Decoupled Head, they undergo channel-wise
fusion through a 1 × 1 convolutional layer with 256 channels, followed by a 3 × 3 convo-
lutional layer with 256 channels to extract semantic information from neighboring pixels.
This process enhances the localization capability by capturing local semantic information.
The resulting feature maps are then simultaneously input into the Object (Obj.) branch,
Classification (Cls.) branch, and Regression (Reg.) branch for box prediction, classification,
and size estimation, respectively. These branches are constructed using 1 × 1 convolutional
modules with channel numbers of 13, cls*3, and 4*3, respectively. Here, 3 signifies the three
aspect ratios of anchor boxes within each prediction grid. In the Obj. branch, 1 indicates
the presence of a disease target in that grid, while cls represents the number of classes. In
this study, there are three disease classes; hence, cls is set to 3. The Reg. branch is respon-
sible for box localization, predicting the coordinates (x, y) and dimensions (h, w) of the
bounding boxes.

2.5. Segmentation Head

Given that the model frequently faces challenges like occlusion between leaves and
variable spatial distances between diseased leaves and the camera, it encounters variations
in the scale or shape of the same type of disease, leading to false detections. Furthermore,
the intricate background might cause the model to misinterpret background objects as
disease objects. Comparatively, detecting or segmenting diseased leaves themselves is
relatively easier and more accurate, as the scale of diseased leaves is generally larger than
that of disease targets. Therefore, our proposed model incorporates a Segmentation Head
for diseased leaves and introduces corresponding loss functions during training to jointly
optimize the model, aiming to diminishing false detections.

Drawing inspiration from multi-task models such as YOLOP, we integrate a Segmen-
tation Head (Seg) into the shallow layers of the model, given that segmenting diseased
leaves necessitates contour and texture information. Sufficient information for the segmen-
tation task can influence the parameter adjustments in the shallow feature extraction layers,
indirectly impacting the deeper disease detection module and optimizing the parameter
update direction to mitigate false detections in complex scenarios.

In our study, the semantic segmentation task involves only two classes: “diseased
leaves” and “background”, rendering it relatively straightforward. Thus, we employ
narrow-channel convolutional layers and the C3 module for feature extraction within the
Segmentation Head. The structure of the Segmentation Head is depicted in Figure 10. It
takes the input features and applies a 3 × 3 convolution followed by upsampling. The
C3 module is subsequently employed to extract local spatial interaction information. This
process is reiterated until the feature map is upsampled to match the dimensions of the
input image. Finally, a 1 × 1 convolution is utilized to classify the superpixels, with a
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channel size of 2 to accommodate the two classes. Following this step, the module can
classify each pixel in the original image into its respective category.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 24 
 

 

cates the presence of a disease target in that grid, while cls represents the number of clas-
ses. In this study, there are three disease classes; hence, cls is set to 3. The Reg. branch is 
responsible for box localization, predicting the coordinates (x, y) and dimensions (h, w) of 
the bounding boxes. 

2.5. Segmentation Head 
Given that the model frequently faces challenges like occlusion between leaves and 

variable spatial distances between diseased leaves and the camera, it encounters variations 
in the scale or shape of the same type of disease, leading to false detections. Furthermore, 
the intricate background might cause the model to misinterpret background objects as 
disease objects. Comparatively, detecting or segmenting diseased leaves themselves is rel-
atively easier and more accurate, as the scale of diseased leaves is generally larger than 
that of disease targets. Therefore, our proposed model incorporates a Segmentation Head 
for diseased leaves and introduces corresponding loss functions during training to jointly 
optimize the model, aiming to diminishing false detections. 

Drawing inspiration from multi-task models such as YOLOP, we integrate a Segmen-
tation Head (Seg) into the shallow layers of the model, given that segmenting diseased 
leaves necessitates contour and texture information. Sufficient information for the seg-
mentation task can influence the parameter adjustments in the shallow feature extraction 
layers, indirectly impacting the deeper disease detection module and optimizing the pa-
rameter update direction to mitigate false detections in complex scenarios. 

In our study, the semantic segmentation task involves only two classes: “diseased 
leaves” and “background,” rendering it relatively straightforward. Thus, we employ nar-
row-channel convolutional layers and the C3 module for feature extraction within the 
Segmentation Head. The structure of the Segmentation Head is depicted in Figure 10. It 
takes the input features and applies a 3 × 3 convolution followed by upsampling. The C3 
module is subsequently employed to extract local spatial interaction information. This 
process is reiterated until the feature map is upsampled to match the dimensions of the 
input image. Finally, a 1 × 1 convolution is utilized to classify the superpixels, with a chan-
nel size of 2 to accommodate the two classes. Following this step, the module can classify 
each pixel in the original image into its respective category. 

 
Figure 10. The structure of the Segmentation Head. 

2.6. Loss Function 
The workflow of single-stage object detection can be summarized as follows: regres-

sion for predicting the position and size of the target box, regression for estimating the 
confidence of target presence at that position, and classification of the target. In this study, 
the object detection task encompasses three distinct loss functions, corresponding to the 
tasks of box position regression, probability estimation of target presence at each location, 
and target classification. These loss functions are denoted as L , L  and 퐿 . 

The introduced CIoU (Complete Intersection over Union) builds upon DIoU [31] by 
introducing additional losses for scale, width, and height. This refinement aids in making 
the predicted boxes be er aligned with the ground truth boxes. 

Figure 10. The structure of the Segmentation Head.

2.6. Loss Function

The workflow of single-stage object detection can be summarized as follows: regres-
sion for predicting the position and size of the target box, regression for estimating the
confidence of target presence at that position, and classification of the target. In this study,
the object detection task encompasses three distinct loss functions, corresponding to the
tasks of box position regression, probability estimation of target presence at each location,
and target classification. These loss functions are denoted as LCIOU, Lconf and Lseg.

The introduced CIoU (Complete Intersection over Union) builds upon DIoU [31] by
introducing additional losses for scale, width, and height. This refinement aids in making
the predicted boxes better aligned with the ground truth boxes.

Furthermore, this study introduces an additional task of semantic segmentation, aimed
at segmenting the regions of diseased leaves within the image and guiding the optimization
direction of the object detection task. With the incorporation of this task, a semantic
segmentation loss function is formulated for optimization.

Consequently, the complete form of the loss functions can be represented as follows:

Ltotal = LCIOU + Lcon f + Lcls + Lseg, (4)

The semantic segmentation loss function Lcls uses the BCE Loss, defined by the
following formula:

Lseg = − 1
N ∑N

m [ymlnŷm − (1− ym)ln(1− ŷm)], (5)

In the equation above, N denotes the count of pixels, which is configured as 2 in our
specific scenario (pertaining to disease leaf region and non-disease leaf region). The index
m signifies the “m-th” pixel, ŷm symbolizes the predicted class assigned by the algorithm
to the “m-th” pixel, and ym corresponds to the ground truth (GT) label attributed to
the “m-th” pixel.

3. Experiments
3.1. Datasets

To replicate scenarios with limited data, this study gathered images of diseased leaves
and performed meticulous annotations. To mimic real-world detection conditions, the data
collection was carried out using smartphone cameras in authentic planting environments.
This encompassed varying angles and distances for image capture, simulating diverse
perspectives. Notably, the same disease category exhibited distinct scales across different
photographs, contributing to the intricacy of detection. Additionally, data collection took
place under diverse weather and lighting conditions, encompassing fluctuations in intensity
and color temperature. To further intensify the challenges, occlusions between leaves and



Sensors 2023, 23, 7879 12 of 24

complex backgrounds consisting of structures, soil surfaces, and concrete grounds were
introduced, as highlighted in Figure 11.
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Figure 11. Pictures of data collected in the field.

A total of 300 images were amassed to replicate a small-scale dataset. Figure 12
illustrates instances of target detection annotations achieved using the LabelImg tool,
alongside semantic segmentation annotations produced via the Labelme tool for disease
regions and diseased leaves.
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Figure 12. Interface of LabelImg software.

In the course of our experiments, given the high prevalence of rust disease and the
relatively infrequent occurrence of other diseases, distinct disease types exhibited dissimilar
shapes and color characteristics at various stages. Thus, a reclassification of disease types
was undertaken, categorizing them into rust (as shown in Figure 13a), other diseases (as
shown in Figure 13b), and mid–late stage diseases (as shown in Figure 13c). With respect
to semantic segmentation tasks, a dataset for semantic segmentation was also curated,
differentiating segmentation types into two categories: leaf areas with diseases and leaf
areas without diseases.
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Figure 13. Characteristics of different diseases.

In total, 4914 instances of disease targets and 473 instances of diseased leaves were
meticulously annotated. Subsequently, the dataset was partitioned into training and testing
sets in an 8:2 ratio. Specifically, 240 images were randomly allocated for network training,
while the remaining 60 images constituted the testing dataset. The training set contained
3651 annotations for disease targets, and the testing set encompassed 1263 annotations, as
outlined in Table 2. Within the training and testing sets, the instances of diseased leaves
were 397 and 76, respectively.

Table 2. Number of data and number of target box annotations.

Dataset Type Rust Others Mid–Late Total

Training set 1344 2153 154 3651

Validation set 456 767 40 1263

Given the limited volume of data available, there was a concern that the trained
model might exhibit sub-optimal generalization capabilities. To bolster the network’s
aptitude for generalization, this study employed data augmentation techniques to expand
the training set within this small-sample dataset. The combination of OpenCV and imgaug
was harnessed to implement diverse augmentation methods on the collected images. These
methods encompassed the addition of mist, introduction of Gaussian noise, manipulation
of hue and saturation, and application of blurring. The augmented outcomes are visually
depicted in Figure 14. Following the augmentation process, the training set was expanded
to encompass a total of 606 images, as outlined in Table 3. Moreover, the count of annotated
disease target bounding boxes within the training set surged from 3651 to 14,342, as detailed
in Table 4. The strategic application of data augmentation effectively augmented the pool
of positive samples available for training the model. This served to mitigate the limitations
imposed by the constrained dataset volume.
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Table 3. The number of images in the dataset before and after data augmentation.

Data Augmentation
Image Count

Training Set Validation Set

No augmentation 153 41
With augmentation 606 41

Table 4. The count of annotated targets in the dataset before and after data augmentation.

Annotation
Type

Disease
Type

Training Set Object Count Validation Set
Object Count* No Aug * With Aug

bbox
Rust 1344 5306 456

Others 2153 8420 767
Mid–late 154 616 40

- Count 3651 14,342 1263
* No aug means without augmentation, With aug means with augmentation.

3.2. Evaluation Metrics

In this study, the evaluation of the proposed model’s performance was based on the
mean Average Precision (mAP) metric. The primary evaluation criterion was mAP@0.5,
where the accuracy of target predictions was determined by an intersection over union
(IoU) threshold greater than 0.5. Additionally, the mAP@0.5:0.95 metric was introduced
to offer a comprehensive assessment of localization accuracy. The model’s performance
across different target scales was gauged by calculating average precision values for small
(mAP-S), medium (mAP-M), and large (mAP-L) targets.

Beyond accuracy evaluation, this study delved into practical deployment aspects by
analyzing inference speed (Frames Per Second, FPS), computation volume (GigaFLOPS,
GFLOPS), and parameter count (Megabytes, MB). While mAP measured the detection
algorithm’s precision, FPS and GFLOPS provided insights into the efficiency of detection,
affecting hardware costs in deployment scenarios. Additionally, the parameter count
served as an indicator of the model’s size, which can impact storage requirements and
computational performance. Collectively, these metrics provided a holistic view of the
model’s performance, accuracy, efficiency, and scalability.
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4. Results and Analysis

This chapter presents the results of our ablation experiments to demonstrate the
effectiveness of the proposed modules and compares their performance against other
existing models. The diversity in disease types across various plants poses a challenge
for conducting standardized algorithm assessments. To address this, our study compares
the proposed model against general object detection algorithms commonly used in the
field. Specifically, we evaluate our model against two-stage models, namely Faster R-CNN
and Cascade R-CNN. Additionally, since our proposed model is a one-stage detector, we
compare its performance against classical one-stage object detection models, including SSD,
YOLOv3 [32], RetinaNet, and YOLOv6 [33].

In Section 4.1, we address the issue of training with high-resolution images, which can
consume significant GPU memory. Two approaches are employed to mitigate this challenge:

• Utilizing a sliding window technique to divide high-resolution images into smaller
640 × 640 sub-images.

• Downsampling the resolution of training images to 640 × 640.
• In this study, we compare the outcomes of these two methods. The dataset generated

using the sliding window approach is referred to as the “sliding window cropped
dataset”, while the dataset produced through downsampling is termed the “non-
sliding window dataset”. Table 5 provides an overview of the annotation types
present in both datasets. The process of window sliding for image cropping is visually
depicted in Figure 15, and the resulting cropped images are showcased in Figure 16.
Notably, each cropped image contains at least one diseased object, thanks to the image
segmentation process.

Table 5. An overview of the annotated data types included in different datasets.

Datasets Detection
Data

Segmentation
Data

Sliding window dataset Yes No
Non-sliding window dataset Yes Yes
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The comparative analysis was conducted on both the sliding window cropped dataset
and the non-sliding window dataset. It is important to highlight that our proposed model
accommodates semantic segmentation annotation input, a feature not available in other
models. The compatibility with different types of annotation inputs is summarized in
Table 6.
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Table 6. The models’ support for different annotated data types.

Models Support Applicable Datasets

Faster R-CNN, Cascade
R-CNN, SSD512, YOLOv3,

Retinanet, YOLOv6-M,
YOLOv5-L

* Det.
1. Non-sliding window dataset
(for object detection)
2. Sliding window dataset

Ours * Det. + * Seg./* Det. 1. Non-sliding window dataset
2. Sliding window dataset

* Det. stands for object detection data, and Seg. represents semantic segmentation-type data.

4.1. Ablation Studies

To validate the effectiveness of the proposed performance-enhancement model, this
section employs the original YOLOv5-L as the baseline. The model is improved by replacing
the backbone network with the IMB module, substituting the FPN with the IFPN module,
and integrating the DH module to replace the coupled Detection Head. Additionally, for
training and testing on the non-sliding window dataset, the Seg module is introduced
along with corresponding loss functions to guide the optimization direction during training.
Experimental results are presented on both the sliding window cropped dataset and the
non-sliding window dataset, with detailed outcomes in Tables 7 and 8. The experimental
findings indicate that our approach effectively enhances network performance in the
complex scenario of the disease dataset.

Table 7. Ablation experiments with sliding window dataset.

Models
mAP

@0.5:0.95
(%)

mAP
@0.5
(%)

mAP-S
(%)

mAP-M
(%)

mAP-L
(%)

YOLOv5-L 22.6 44.1 17.6 25.2 27.3
YOLOv5-L + IMB 23.4 47.3 22.1 28.4 25.2

YOLOv5-L + IMB + IFPN 26.2 48.3 23.5 31.8 30.2
YOLOv5-L + IMB + IFPN + DH 26.5 49.3 23.8 29.1 31.7
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Table 8. Ablation experiments with non-sliding window dataset.

Models
mAP

@0.5:0.95
(%)

mAP
@0.5
(%)

mAP-S
(%)

mAP-M
(%)

mAP-L
(%)

YOLOv5-L 13.8 29.1 7.5 20.8 17.7
YOLOv5-L + IMB 14.1 30.2 7.9 21.1 17.7

YOLOv5-L + IMB + IFPN 14.5 31.3 8.5 21.4 17.1
YOLOv5-L + IMB + IFPN + DH 14.8 31.9 8.8 22.7 16.8

YOLOv5-L + IMB + IFPN + DH + Seg 16.0 33.1 9.9 24.3 19.1

As depicted in Figure 17, the replacement of CSPdarknet53 from YOLOv5 with the
IMB module yields notable improvements. On the non-sliding window dataset, there are
enhancements of 1.3% in mAP@0.5 and 0.3% in mAP@0.5:0.95. On the sliding window
dataset, these improvements increase to 3.2% in mAP@0.5 and 0.8% in mAP@0.5:0.95.
Moreover, the improved model exhibits reductions in parameter count and computation
volume compared to CSPdarknet53.
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With the incorporation of IFPN, the model showcases mAP@0.5 and mAP@0.5:0.95
enhancements of 1.1% and 0.4%, respectively, on the non-sliding window dataset. The
improvements are even more pronounced on the sliding window dataset. IFPN effectively
aligns feature maps, providing adaptive weighting during fusion and enhancing feature
selection flexibility, which ultimately improves localization accuracy.

After integrating the DH module, testing on the non-sliding window dataset results
in mAP@0.5 and mAP@0.5:0.95 improvements of 0.6% and 0.3%, respectively, with even
more significant enhancements on the sliding window dataset. DH facilitates the selection
of various feature types across multi-scale output feature maps. The classification branch
emphasizes texture features, while the localization branch favors edge contour features.
The decoupling of the detection task enhances feature selection flexibility for each task,
allowing distinct parameter spaces and broader optimization possibilities.
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When training with the Seg module, testing on the non-sliding window dataset demon-
strates significant performance gains, with mAP@0.5 and mAP@0.5:0.95 both increasing by
1.2%. The Seg module, along with its corresponding loss function, guides the parameter
optimization direction of the backbone network during training, focusing attention on
disease leaves and suppressing background noise.

The baseline model (IMB) has a computation volume of 94.6 GFLOPs and 24.95 million
parameters. The introduction of IFPN, DH, and Seg into the IMB base model leads to a
20 GFLOPs increase in computation volume and a 9.75 MB increment in parameter count.
This enhancement contributes to a 5% improvement in mAP@0.5:0.95 and a 2.7% im-
provement in mAP@0.5. Focusing solely on the disease detection task, the removal of the
Semantic Segmentation Head reduces the computation volume by 11.3 GFLOPs and the
parameter count by 0.33 million, further enhancing detection speed.

Notably, substantial enhancements are observed in various mAPs, with a particularly
noteworthy improvement in mAP-S, which is beneficial for datasets containing many
small targets in plant disease instances. Alongside the reduction in parameter count and
computation volume, as illustrated in Figure 17, these outcomes emphasize the superior
performance of the introduced modules and model in effectively detecting disease within
the dataset’s realistic context.

4.2. Comparison with Different Object Detection Networks
4.2.1. Testing on Sliding Window Dataset

Tables 9 and 10 present a comparative analysis between the five previously mentioned
models and the model introduced in this study. Notably, the SSD512 model failed to achieve
convergence during dataset training, resulting in missing experimental outcomes. The
proposed model exhibited superior performance across most metrics when compared to
the other models. Particularly, it outperformed other two-stage object detection algorithms
in terms of the mAP-S metric, highlighting its enhanced precision in detection.

Table 9. Comparison of detection results of 8 models on the sliding window dataset.

Models mAP@0.5:0.95
(%)

mAP@0.5
(%)

mAP-S
(%)

mAP-M
(%)

mAP-L
(%)

Faster R-CNN 17.0 31.5 14.2 4.9 27.0
Cascade R-CNN 17.1 32.4 16.0 5.1 25.4

SSD512 - - - - -
YOLOv3 12.4 28.7 10.1 5.3 21.9
Retinanet 13.2 24.8 11.3 4.0 22.0

YOLOv6-M 25.8 46.4 22.8 28.3 29.5
YOLOv5-L 22.6 44.1 17.6 25.2 27.3

Ours 26.5 49.3 23.8 29.1 31.7

Table 10. mAR results for detection results of 8 models on the sliding window dataset.

Models mAR
(%)

mAR-S
(%)

mAR-M
(%)

mAR-L
(%)

Faster R-CNN 23.9 7.6 38.0 33.7
Cascade R-CNN 24.8 8.9 36.0 36.4

SSD512 - - - -
YOLOv3 20.4 10.0 31.8 23.2
Retinanet 24.7 11.0 35.7 29.9

YOLOv6-M 57.8 49.2 53.5 60.8
YOLOv5-L 48.3 41.0 45.5 54.7

Ours 56.0 47.6 54.7 61.6
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Turning to Table 10, the proposed model also stands out in terms of detection recall,
surpassing mainstream models. Furthermore, Figure 18 provides information about de-
tection speed, showing that the proposed model significantly outperforms YOLOv6-M.
This discrepancy is attributed to the additional computational resources consumed by
YOLOv6-M’s post-processing steps following model execution, leading to lower AVGFPS.
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Figure 18 additionally illustrates a comparison of computational volume and average
detection speed, avoiding an “EfficientNet-like” scenario, where reduced GFLOPS cor-
responds to slower detection speed. Notably, each model’s default input resolution was
retained. The RCNN series and Retinanet utilized an input resolution of 1333 × 800, SSD
used 512, YOLOv3 employed 608, and the remaining models adopted 640. This observation
underscores that the proposed model in this study, compared to most contrastive models,
not only demonstrates superior speed but also higher accuracy. It is noteworthy that train-
ing with the Segmentation and removing it during testing leads to certain improvements in
detection speed.

In conclusion, the proposed model in this study strikes a harmonious balance between
detection speed and accuracy. Unlike YOLOv5-L, which also emphasizes balance, the
proposed model achieves both greater accuracy and swifter speed. This emphasizes the
practicality of the proposed detection model in real-world scenarios involving the detection
of daylily diseases.

4.2.2. Testing on Non-Sliding Window Dataset

Furthermore, a comparative analysis was conducted among the mentioned models
using the non-sliding window dataset. It is important to note that the non-sliding window
dataset includes both object detection annotations and semantic segmentation annotations.
Some of the models listed in Table 6 utilize only object detection annotations for loss
calculation, while the model proposed in this study simultaneously employs both types of
annotations to calculate loss.

Tables 11 and 12 provide the performance results of various models trained and
evaluated on the non-sliding window dataset. Due to the downsizing of original images
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within the non-sliding window dataset, the pixel representation decreases, leading to a
decrease in the overall mAP value, particularly affecting the mAP-S metric, which focuses
on the accuracy of detecting small objects. Notably, the SSD512 and RetinaNet models
struggle to achieve convergence under these downsized conditions.

Table 11. Comparison of detection results of 8 models on the non-sliding window dataset.

Models mAP@0.5:0.95
(%)

mAP@0.5
(%)

mAP-S
(%)

mAP-M
(%)

mAP-L
(%)

Faster R-CNN 14.5 29.5 7.8 22.0 21.2
Cascade R-CNN 16.3 32.4 4.8 24.5 23.7

SSD512 - - - - -
YOLOv3 12.4 28.7 5.3 21.9 18.2
Retinanet - - - - -

YOLOv6-M 14.6 29.8 10.8 20.0 20.7

YOLOv5-L 13.8 29.1 7.5 20.8 17.7
Ours 16.0 33.1 9.9 24.3 19.1

Table 12. mAR results of 8 models on the non-sliding window dataset.

Models mAR
(%)

mAR-S
(%)

mAR-M
(%)

mAR-L
(%)

Faster R-CNN 23.9 7.6 38 33.7
Cascade R-CNN 24.8 8.9 36 36.4

SSD512 - - - -
YOLOv3 20.4 10 31.8 23.2
Retinanet - - - -

YOLOv6-M 34.5 30.0 43.5 29.9
YOLOv5-L 27.7 30.5 41.5 27.8

Ours 35.2 46.6 44.6 25.3

When analyzing Table 11, it becomes evident that the proposed model in this study
surpasses other mainstream models across most metrics. While YOLOv6-M performs well
in detecting small and large objects, the proposed model’s superior overall precision and
comprehensive performance overshadow this difference. In comparison to YOLOv5-L, the
proposed model demonstrates improvements in all metrics. Similarly, Table 12 supports
these conclusions, with mAR-L slightly trailing behind YOLOv6-M.

Taken together, these findings highlight the proposed model’s efficiency in accurately
detecting small objects even in downsampled images. The detection of small objects is often
susceptible to background interference. Therefore, these experimental results showcase
the model’s enhanced capability to handle complex background-object relationships and
foliage intricacies.

Based on the results presented above, it is clearly demonstrated that the model intro-
duced in this study exhibits superior performance compared to mainstream models on both
the sliding window dataset and the non-sliding window dataset. The model demonstrates
an enhanced ability to extract information from small objects and effectively differentiate
complex backgrounds from targets. Across both datasets, the achieved detection accuracy
surpasses that of YOLOv6-M and shows comprehensive improvement over YOLOv5-L.
Furthermore, the proposed model’s inference speed is 1.17 times faster than YOLOv5-L
and 1.27 times faster than YOLOv6-M, highlighting the clear superiority of the model
introduced in this study.



Sensors 2023, 23, 7879 21 of 24

5. Discussion

In this study, a total of six models were evaluated through testing, and the results of
inference were visually presented. Utilizing an input resolution of 640 × 640, the entire im-
age was input into the pre-trained models for detection. The inference results are depicted
in Figure 19. Upon observation, it becomes evident that the two-stage models perform well
across various scales, particularly the Cascade R-CNN. However, the single-stage Faster
R-CNN, equipped with only a detection module, lags behind the two-stage models in terms
of detection rate. Among the single-stage YOLO series models, YOLOv3 demonstrates
relatively poorer performance, exhibiting lower disease detection rates compared to both
the two-stage models and other YOLO series models.
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Figure 19. Comparison of experimental results of 6 models. There are a total of 5 images, labeled as
(a) to (e) respectively. These images were captured in real-life scenarios, and each column displays
the detection results of a model for images (a–e).

Building upon the foundation of YOLOv5-L, the model proposed in this study exhibits
improvements. As illustrated in Figure 19d, for example, the proposed model successfully
detects leaf diseases in the middle of the image, where YOLOv5-L falls short. Similar trends
are evident in Figure 19e, where YOLOv5-L fails to detect diseases in the middle of the
image and on the leaf surface. On the other hand, YOLOv6-M incorrectly classifies the
disease type of the lesion on the bottom-left leaf. Across the other images, it is apparent
that our proposed model achieves detection rates similar to YOLOv6-M. Notably, in the
bottom-right leaf detection, YOLOv6-M achieves a higher detection rate but incorrectly
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identifies the reflective region between leaves as a disease target. Across other instances, it
is evident that, compared to YOLOv6, our model still displays some limitations in detecting
large objects. Future algorithmic improvements should focus on addressing the detection
of large objects.

This analysis strongly suggests that the incorporation of the algorithm proposed in
this study leads to enhanced detection rates and accuracy for daylily disease targets in
complex scenarios. This implies that the algorithm possesses an improved capability to
address the task of daylily disease detection in real-world settings.

6. Conclusions

When performing disease target detection on daylily leaf images captured in real-
world environments, existing models encounter challenges in accurately identifying disease
targets due to complex backgrounds, varying lighting conditions, and significant varia-
tions in the appearance and size of the same disease type. Moreover, these models often
make mistakes by classifying background objects as disease targets. To tackle these is-
sues, this study introduces an object detection model called DaylilyNet, which leverages
multi-task learning to guide the optimization process. The main contributions of this
study are as follows:

(1) Enhanced Global Spatial Modeling: DaylilyNet incorporates a separable self-
attention mechanism based on global spatial features, improving the modeling of spatial
boundaries between leaves, diseases, and backgrounds. This refinement enhances the
accuracy of detecting small targets by providing better spatial context.

(2) Improved FaPN (IFPN): The proposed IFPN module employs adaptive feature
weighting during fusion, placing greater emphasis on large target information. This
helps counteract the decrease in accuracy for detecting large targets caused by the
addition of separable self-attention. Consequently, the overall disease localization
performance is enhanced.

(3) Decoupled Head (DH): The DH module is introduced, where the target localiza-
tion branch independently extracts relevant features and filters out noise that is irrelevant
to target positioning. This approach leads to improved target localization performance.

(4) Semantic Segmentation Task: DaylilyNet adds a Semantic Segmentation Task
Head along with corresponding loss functions. This allows the model to focus its attention
more precisely on disease-inflicted leaves, thus enhancing the detection accuracy of disease
targets at various scales.

Experimental results conducted on actual daylily disease leaf datasets demonstrate
that the proposed DaylilyNet model outperforms other mainstream object detection net-
works in terms of detection accuracy. It also surpasses most mainstream networks in
detecting large, medium, and small targets. Additionally, the model showcases lower
computational complexity and a reduced parameter count, which, in turn, leads to lower
hardware requirements. It is important to note that the challenges faced in handling com-
plex backgrounds are not unique to daylily diseases but are also relevant to the detection of
other plant leaf diseases. Thus, the insights gained from this approach hold relevance for
various leaf disease detection tasks.

However, it is important to acknowledge that the method proposed in this study
requires the establishment of a semantic segmentation dataset. While manual annotation
was previously relied upon, today, tools like Segment Anything (SAM) [34] simplify the
annotation process. Nonetheless, while annotation tools have streamlined this process,
they also raise the bar for dataset requirements. Consequently, the study intends to explore
unsupervised or semi-supervised approaches in the future, such as few-shot and zero-shot
learning, to further mitigate data requirements for model training.
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