
Citation: Heo, Y.; Kang, S.; Seo, J.

Natural-Language-Driven

Multimodal Representation Learning

for Audio-Visual Scene-Aware Dialog

System. Sensors 2023, 23, 7875.

https://doi.org/10.3390/s23187875

Academic Editor: Juan M. Corchado

Received: 30 June 2023

Revised: 13 August 2023

Accepted: 28 August 2023

Published: 14 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Natural-Language-Driven Multimodal Representation Learning
for Audio-Visual Scene-Aware Dialog System
Yoonseok Heo 1 , Sangwoo Kang 2,* and Jungyun Seo 1

1 Department of Computer Science and Engineering, Sogang University, Seoul 04107, Republic of Korea;
ysheo419@sogang.ac.kr (Y.H.); seojy@sogang.ac.kr (J.S.)

2 School of Computing, Gachon University, Seongnam 13120, Republic of Korea
* Correspondence: swkang@gachon.ac.kr

Abstract: With the development of multimedia systems in wireless environments, the rising need
for artificial intelligence is to design a system that can properly communicate with humans with a
comprehensive understanding of various types of information in a human-like manner. Therefore,
this paper addresses an audio-visual scene-aware dialog system that can communicate with users
about audio-visual scenes. It is essential to understand not only visual and textual information but
also audio information in a comprehensive way. Despite the substantial progress in multimodal
representation learning with language and visual modalities, there are still two caveats: ineffective
use of auditory information and the lack of interpretability of the deep learning systems’ reasoning.
To address these issues, we propose a novel audio-visual scene-aware dialog system that utilizes a set
of explicit information from each modality as a form of natural language, which can be fused into a
language model in a natural way. It leverages a transformer-based decoder to generate a coherent
and correct response based on multimodal knowledge in a multitask learning setting. In addition, we
also address the way of interpreting the model with a response-driven temporal moment localization
method to verify how the system generates the response. The system itself provides the user with the
evidence referred to in the system response process as a form of the timestamp of the scene. We show
the superiority of the proposed model in all quantitative and qualitative measurements compared to
the baseline. In particular, the proposed model achieved robust performance even in environments
using all three modalities, including audio. We also conducted extensive experiments to investigate
the proposed model. In addition, we obtained state-of-the-art performance in the system response
reasoning task.

Keywords: multimodal deep learning; audio-visual scene-aware dialog system; event keyword
driven multimodal representation learning

1. Introduction

With the development of multimedia systems in wireless environments, multimodal in-
teractive systems aim to communicate with humans via speech, facial expressions, gestures,
and other modalities, resulting in further complexity in human–computer interaction [1].
However, all these technologies are based on the convergence of multiple types of intelli-
gence, including language, vision, audio, and so on, which is still a very challenging task in
the whole research domain. Such multimodality started with the convergence of visual and
language intelligence, such as visual question answering [2–4], and image captioning [4–8].
With the increasing success achieved by using large numbers of image–text pairs in the
transfer learning paradigm, interests have recently turned to the video domain. Video
captioning [9–16] is the task of describing a visual scene from a given video in a natural
language. It is much more challenging than image captioning, which only addresses a
static piece of information, in that it requires a comprehensive understanding of multiple
frames over the entire video. In fact, from a visual perspective, the key is that the model

Sensors 2023, 23, 7875. https://doi.org/10.3390/s23187875 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23187875
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4480-6415
https://orcid.org/0000-0002-0281-1726
https://orcid.org/0000-0003-3670-7334
https://doi.org/10.3390/s23187875
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23187875?type=check_update&version=1


Sensors 2023, 23, 7875 2 of 16

should have the ability to understand not only the static information but also the dynamics
presented over multiple frames. Also, from a linguistic point of view, it should be able to
generate coherent descriptions.

From the beginning of the work proposed in [17], research has extended to integrate
auditory information. The work [17] first introduced an audio-visual scene-aware dialog
task involving interaction with humans via a comprehensive understanding based on mul-
tiform information [18–20]. The premise of this task is the understanding of accurate visual
information, and of the various methodologies developed to generate accurate system utter-
ances based on multimodal data comprising visual and language information. In particular,
recent studies [21,22] have mainly focused on a method of leveraging transformer-based
language models to integrate individual information obtained from modality-specific fea-
ture extractors. Pasunuru and Bansal [23] exploited a dual-attention mechanism to fuse
information from multiple modalities. Li et al. [22] proposed a transformer-based multi-
modal dialogue generation framework that can integrate all the modality information in a
language model.

Despite the initial success of multimodal integration of the three modalities, there have
been problems in bridging the gap to reach commercialization. First of all, a standardized
method for effectively using audio information has not yet been proposed. Schwartz et al. [24]
have proposed a co-attention-based multimodal fusion algorithm. It has shown impressive
performance only with vision and text knowledge. This tendency has led to the maintenance
of a transformer-based approach [22]. More importantly, these works were heavily dependent
on summaries that contained the overall information of the scene as a natural language. The
finding shows that the performance drop occurs without summaries in inference time.

Therefore, we propose a novel audio-visual scene-aware dialog system that utilizes
a set of explicit information from each modality as a form of natural language, which
can be fused into a language model. Then, the model is able to generate the appropriate
answer to a given query. We also propose a multitask learning method using the summary
generation problem as an auxiliary task to better understand multimodal information and
generate a more robust response. To the best of our knowledge, this approach has not been
explored yet. However, it can address the existing limitations in a robust way. In addition,
we propose a response-driven temporal moment localization method to strengthen the
interpretability of the system response generation process. The system itself provides the
user with the evidence referred to in the system response process as a form of the timestamp
of the scene. The performance showed robust generation capabilities compared with the
baseline model. We also conducted extensive experiments to investigate the model. In
addition, we obtained state-of-the-art performance in the system response reasoning task.
The contributions of this paper can be summarized as follows:

• We introduce a novel audio-visual scene-aware dialog system with natural-language-
driven multimodal representation learning through which the system can infer all
information by sequentially encoding the keywords obtained from each modality into
the transformer-based language model;

• We also propose a response-driven temporal moment localization method in which
the system itself provides the user with the segment of the video that the system
referred to for response generation;

• In addition to the ability to generate responses with improved quality, the proposed
model showed robust performance even in an environment using all three modalities
of information, including audio. With regard to the system response reasoning task,
our proposed method achieved state-of-the-art performance.

The remainder of this paper is organized as follows. Section 2 introduces related
works. Then, the explanation of the proposed architecture is addressed in Section 3. In
Sections 4 and 5, we describe the experiment and discussion, and then finalize the paper
in Section 6.
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2. Related Works
2.1. Video-Grounded Text Generation

Video-grounded text generation is the generation of a text given a video. This task
needs to address the convergence between video and text. At the beginning of the study,
rule-based approaches [25–29] were proposed to produce sentences using a fixed set of pre-
defined templates, a triple consisting of a subject, verbs, and objects. Notwithstanding their
high grammatical accuracy, these have strong limitations in terms of the low-complexity
rules for sentence construction and generalization. With the growth of deep learning,
encoder–decoder-based architectures have been utilized in various ways. SCN [30] is a
semantic concept detection method that obtains the probabilities of concepts appearing
in a video from CNN. They incorporated concept-dependent information into LSTM to
compose semantic representations. SGLSTM [31] introduced a method for jointly evaluat-
ing visual and semantic features using two semantic guiding layers by adopting different
levels of semantics as guidance to control the language model to generate sentences.

Unlike image-to-text generation tasks, which handle only static moments, video-
grounded text generation tasks should address the means for understanding the dynamics
that appear across multiple frames in the video. SemSynAN [32] introduced a method to
strengthen the understanding of temporal composition by mapping visual concepts to their
corresponding part-of-speech tags in text descriptions. In addition, Chen and Jiang [33]
introduced a recurrent region-based attention mechanism and motion-guided information
control method to selectively capture temporal relationships. Moreover, with the success of
transformer-based architectures in most vision-language tasks, SwinBERT [34] proposed a
method of incorporating a transformer-based video feature extractor and transformer-based
encoder. It showed a considerably high performance in video captioning tasks. Moreover,
MVGPT [35] introduced a large-scale video-to-text model using a pretraining-finetuning
strategy. It contains a large-scale video understanding model [36] and transformer-based
decoder [37] as its backbone. Because the model capacity is the largest among all the works,
it has shown significant results. However, it has a high dependency on resources.

2.2. Audio-Visual Scene-Aware Dialog

Most recent studies on multimodal dialogue systems were accompanied by a transformer-
based network. Huang et al. [21] proposed a multimodal transformer network that obtained
individual information from feature extractors for each modality and combined these using
a text-based cross-modal attention mechanism. Li et al. [22] proposed a transformer-
based generative framework that integrates all the modalities by encoding features into
the system and generates better multimodal-based system responses using multi-task
learning methods. Chu et al. [38] described a consecutive multimodal fusion strategy using
joint modal attention during conversation. Although these approaches exhibit significant
performances, they have two limitations. One is that the overall system performance
is considerably dependent on the usage of summaries during the training phase [39].
Second, effective multimodal integration strategies using audio have not been demonstrated
sufficiently.

3. Proposed Architecture

In this section, we propose a novel audio-visual scene-aware dialog system with
system-generated response verification. As shown in Figure 1, it accepts video, audio, a
dialogue history, and the last user query as inputs. It consists of two parts: event-keyword-
driven multimodal integration and response generation using a pretrained language model.
The first part extracts event keywords from visual and auditory information using modality-
specific event extractors. Unlike the previous works [21,22] that employed implicit features
from modality-specific encoders, event keywords are explicit information that appears
in the scene. Then, this information, including the dialog history, can be combined via
iterative encoding into a pretrained language model. In the internal modules in this model,
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all the information can be integrated into a shared semantic space, which can be fed into
the response generation process.

Figure 1. The proposed architecture for audio-visual scene-aware dialog.

Next, we leverage a pretrained language model to combine all the knowledge and
generate an appropriate response by training it in a multi-task learning paradigm. Inspired
by the previous works [39] wherein the response generation performance relied significantly
on the summary, this model is trained on a new auxiliary task called summary generation.
This task generates a summary given a set of event keywords from the visual and audio
modalities. Therefore, the language is trained in multi-task learning. This can address the
summary dependency issue.

Existing multimodal works [21,22] on the three modalities have two requirements.
One is that we require an understanding model for both visual and speech models. The
second is that we require a mechanism for fusion. In general, the features obtained from
each modality are combined using a self-attention structure. More importantly, these incur
significant costs because training accompanied by a large amount of data is essential.

However, a significant advantage of the proposed system is that it can conveniently
address this problem. Our proposed model utilizes pre-trained visual and audio event
extractors without additional training. In addition, the pre-trained language model enables
the model to infer the relationship between the knowledge inherent in the model and the
dialogue history related to the event keyword. It also enables meaningful results in the
multimodal domain using only fine-tuning for downstream tasks.

Moreover, to verify the system-generated response reasoning, we propose a modality-
specific response-driven moment localization network that can identify a temporal segment
of a given scene that is semantically similar to a given query and system-generated answer.
As described in Figure 1, it provides the user with a basis in the form of timestamps of video
fragments referenced by the model in the response generation process. This significantly
improves the interpretability of the reasoning process of the system. Each component of
the architecture is described in detail in the following subsections.
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3.1. Event Keyword-Driven Multimodal Integration Using a Language Model

The scene-aware conversations in this study mainly encompass events that appear
for the video and audio modalities. More specifically, the events refer to all information
such as the activities of objects, background sounds, and object relationships. Therefore,
the understanding of multimodal information is directly related to that of the events shown
in the scene. Inspired by this fact, we employed pretrained event detectors specialized
for each modality to extract various events that occur in the video and regard these to be
the information from each modality. Figure 1 shows the example of a woman sitting on a
chair with a book and playing with her shoelaces. The video does not contain any specific
audio information. In this case, the video event detector predicts event categories such as
“holding” and “sitting” with high probability. The top N video event categories correspond
to information estimated to have appeared in the scene with a high probability. Therefore,
we used these categories as the direct information obtained from the visual modality. This
approach has an advantage in terms of multimodal understanding in that it uses more
explicit natural language information than that in previous studies that applied feature
embedding for each modality. The AVSD data we addressed includes both audio and video.
Therefore, in this study, we used a pretrained transformer-based event classification model,
which is available to the public, to extract event information for each modality.

3.1.1. Audio Event Detector

In this paper, we adopted audio spectrogram transformer (AST) [40] as the backbone
for the audio event detector. AST is the first transformer-based model proposed for audio
event classification problems. It constructs an encoder model based on self-attention and
feed-forward layers. The input speech is converted into a sequence of 128-dimensional
log-mel spectrograms that are used as model inputs. Each spectrogram is divided into
patches of a fixed size. The model generates encoded results in units of patches as the
output. We regarded the output embedding of “[CLS],” which was the first input token of
the model, as the entire embedding information of the audio spectrogram. This embedding
was used as the input vector for the audio classification layer. The AVSD data used in this
study did not provide audio classification labels for the audio at the scene. This study
adopted an open-public AST model. It is a fine-tuned transformer-based encoder with an
audio set [41] comprising 527 audio event categories. However, the model did not perform
additional training on the model. Furthermore, the M-audio event category results with
high probability values for input speech were considered as events detected from speech.
In practice, four audio event categories are set as a pivot.

3.1.2. Video Event Detector

In this paper, we adopted a video swin transformer (VST) [42] as a backbone of the
video event keyword detector. It exhibits a high performance in video action recognition
tasks. This model consists of stacks of swin transformer blocks [43]. A VST utilizes large-
sized patches when passing through layers. Moreover, self-attention between multiple
patches is performed by altering the locations of the windows in each layer. Next, the
model can sufficiently learn the context of the entire image by performing self-attention
only between patches within a fixed-size window for each transformer block. We followed
the setting in Liu et al. [42] to fully utilize the capacity of the model. We sampled a clip of
32 frames from each full-length video by using a temporal stride of two and a spatial size of
224 × 224. This results in 16 × 56 × 56 input 3D tokens. Similar to an original transformer-
based encoder [44] in natural language processing, we considered the embedding of the
[CLS] token, i.e., the output embeddings from the VST, as a context for the entire video.
Then, it was applied as an input to the linear classification layer for action recognition. In
this study, we utilized the smallest VST model fine-tuned on kinetics-400 [45]. This is a
large-scale human action dataset for 400 human action categories. The AVSD data used
in this study contained no action labels for the scenes. Therefore, this study regarded the
400 predefined human-action categories in kinetics-400 as events that can occur in videos.
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In addition, the model accepts the N action categories with the highest probabilities in the
action recognition layer of the model for the input video as events detected in the video. In
practice, eight action categories are set as pivots.

3.2. Response Generation

Each modality has a set of event labels in natural language in a given audio-visual
scene. This enables the integration of multimodal information by encoding the information
from each modality directly into the language model. We sequentially encoded the M audio
event labels, N video event labels obtained previously, conversation history, and last user
query in a language model. In this study, we utilized it as a language model. GPT2 [37]
exhibits good performance in various generative tasks. Specifically, the input configuration
of the model is as follows:

F = ([AUD], AE, [VID], VE, D) (1)

where AE is a sequence of M audio event labels, VD is a sequence of N video event labels,
[AUD] and [VID] refer to the special separator tokens for audio and video event labels,
respectively, and D is a sequence of words in the dialog history. In particular, we add two
special separator tokens [Q:] and [A:] to the beginning of every question and answer.

Now, we propose multi-task learning for robust response generation using a summary
generation task as an auxiliary task. It contributes to a better understanding of event-
keyword-based multimodal information. As shown in Figure 2, the summary generation
task works to generate a summary of a given audiovisual scene. Specifically, the model
sequentially accepts a set of keywords as an input from an audio event detector and a video
event detector, and generates an appropriate summary in an autoregressive manner until
the end of summary symbols ([EOS]). The response generation task generates a response
conditioned by a set of event keywords, a model-generated summary (S), and dialog history
(D). The model can be generated autoregressively until the end of the response symbol
([EOA]) is generated.

Figure 2. An illustration of response generation based on event keywords, dialog history, and last
user query.

In a multitask learning setting, the training objective is to optimize the parameters of
the language model, θ, by maximizing the weighted sum of the losses for each task:

L = α · Lsummary + β · Lresponse (2)

where α and β are hyper-parameters, and, in this work, values are set as 1. Each loss function
is defined as a log-likelihood of generated sequences for each task. More specifically, as
for the summary generation task, every token is generated with the highest probability for
a given a set of audio event keywords (AE), video event keywords (VE), and previously
generated tokens (s), which can be formulated in Equation (3). Similarly, as for the response
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generation task, each token is chosen with highest probability for given a set of audio event
keywords (AE), video event keywords (VE), model-generated summary (S), and dialogue
history (D), which can be formulated in Equation (4).

Lsummary = −
K

∑
i=1

log P(si | AE, VE, s<i; θ) (3)

Lresponse = −
L

∑
j=1

log P(rj | AE, VE, S, D, r<j; θ) (4)

where AE, VE, S, D refer to audio event keywords, video event keywords, summary, and
dialog history, respectively.

3.3. Response-Driven Temporal Moment Localization for System-Generated Response Verification

This section describes a response-driven moment localization network that can identify
the timestamp of a scene semantically similar to a given query and system-generated answer.
A system-generated response should refer to scene segments near an occurrence event
related to user queries. More specifically, the system identifies a modality from which an
indication of the event can be obtained, analyzes the features of the modality, and uses
these to generate an answer to a query. For example, in Figure 3, the user asks whether the
woman in the video is talking. In this case, the system requires the voice information of the
woman in the video. That is, the system should detect the temporal segment in which the
woman is talking using an auditory modality.

Figure 3. An illustration of a response-driven modality-specific temporal moment localization
network. In this case, audio-modality is only used due to the modality detector. This figure is a
variant of the one in Zhang et al. [46].

Motivated by this observation, this paper proposes a response-driven moment local-
ization network that can identify a temporal segment of a given scene that is semantically
similar to a given query and system-generated answer. As shown in Figure 3, the network
consists of two parts: a modality detector and modality-specific temporal localization. The
first part aims to increase the accuracy of localization by heuristically analyzing whether a
user query focuses only on the visual or auditory information in a scene. The second part is
used to predict the temporal moment by measuring the similarity between the embedding
of each temporal segment from either video or audio, and the embedding of the user query
and system response. Each component is described in detail below.

3.3.1. Modality Detection

To enhance the accurate moment localization, we added a query analysis to heuris-
tically identify a specific modality that is highly likely to contain the evidence for the
user query. We observed that it was occasionally unnecessary for a system to generate
an answer using all the information from different modalities. Rather, it is favorable to
use information from a single modality for user queries. As shown in Figure 3, if the
system focuses only on information from the auditory modality, it can obtain supporting
evidence for a more accurate answer. As a result, we address queries that can be answered
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with a single modality, and we heuristically determine keywords that frequently appear in
queries that can be answered only using information from the auditory modality. Detailed
keywords are described in Table 1. In the actual temporal moment localization phase, we
use only auditory information for the queries containing the aforementioned keywords.
Otherwise, the video stream on the scene is used.

Table 1. A dictionary with 23 audio keywords.

audio, audible, noise, sound, hear anything, can you hear, do you hear, speak, talk, talking,
conversation, say anything, saying, dialogue, bark, meow, crying, laughing, singing, cough,

sneeze, knock, music, song

3.3.2. Modality-Specific Temporal Moment Localization Network

We introduce a modality-specific moment localization network that can identify the
temporal moment of a scene that is semantically similar to a given user query and the
system-generated answers. Specifically, we utilized a variant of the 2D temporal adjacent
network (2D-TAN) [46]. The two networks were trained independently according to
each visual and auditory modality. An audio-based 2D-TAN is used to identify temporal
segments on the audio signal that is semantically similar to the given query and answer
when it is determined in the query analysis step. Here, the query can be solved using only
audio information. Otherwise, a video-based 2D TAN is adopted to identify the temporal
video moments in a video stream.

The audio-based 2D-TAN consists of three steps: natural language encoding, audio
signal encoding, and temporal moment prediction. First, we employ BERT to obtain
semantic information of the user query and the system-generated answer. In this study,
we concatenated these into a sentence and encoded these using BERT. In particular, the
output embedding of the [CLS] token of BERT is used as semantic information on the
entire sentence. For audio processing each audio signal, we first segmented these into
16 non-overlapping clips. The feature representation for each clip can be obtained by
average pooling the audio features of the frames included in the clips extracted from the
VGGish model provided by the organizer. Then, similar to [46], the audio signal is encoded
in the form of a two-dimensional temporal feature map designed to represent key features
appearing across a specific time span by max-pooling features for consecutive clips. Now,
the auditory and language information can be combined using the Hadamard product.
Moreover, the relevance score between the auditory and natural language sentence can be
calculated using a temporal adjacent network with the multiple convolution operations on
the combined 2D temporal feature map. Finally, the semantic similarity score between the
given query and system-generated utterances and each temporal moment can be obtained
in the form of a two-dimensional score matrix. We utilize this instant using the highest
value in the score map as the final output.

This process is applied identically to video-based 2D-TAN. The difference is that video
features, which are I3D features provided by the organizer, are used. To train two networks
independently during the query analysis step, we split samples that can be answered
only by the auditory modality from the training data and used these only to train the
audio-based 2D-TAN. The other samples were used to train the video-based 2D-TAN. The
training process is based on the [46], and we train two networks from scratch using the
DSTC10 reasoning data provided by the organizer. Following [46], the training objectives
of both models are based on a scaled IoU value as the supervision.
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4. Experiment

This section addresses the experimental setup and experimental result for the perfor-
mance of the proposed architecture.

4.1. Experimental Setup
4.1.1. Dataset

This work adopts the Audio Visual Scene-aware Dialog (AVSD) dataset [18], provided
by the organizers in the tenth dialog system technology challenge (DSTC10, available online:
https://github.com/dialogtekgeek/AVSD-DSTC10_Official, accessed on 10 August 2021).
During the AVSD data collection, two humans (a questioner and an answerer) conversed
regarding the events in a video. Having watched the video, the answerer answered the
questions posed by the questioner. The participants were not permitted to watch the video.
Rather, they were given three static images (first, middle, and final frames) to establish a
basic understanding of the scene. After ten rounds of the question and answering process,
the questioner wrote a summary of the video events. This study used a split version of
the official validation set for the Charade challenge in half, and used these halves for the
validation (1787 videos) and testing sets (1804 videos).

4.1.2. Implementation Details

All the experiments were conducted on a Linux server with Ubuntu 18.04 and 2-GPUs
of Nvidia-3090. This work exploited medium-sized GPT2 [37] (355M parameters) as a
language model. It was fined-tuned on AVSD datasets with a batch size of 4 for 20 epochs.
The training processes were stopped early when there was no progress on the BLEU-4 score
of the validation set for the five consecutive epochs. In more detail, we set the learning rate
as 2× 10−5 with the adamW optimizer and cosine-annealing scheduler. We take 8 video
event keywords and 3 audio event keywords as inputs to the language model. We also
adopt beam-search as a decoding strategy with a beam size of 3.

As the video event extractor, this work adopted a small-sized video-swin trans-
former [42] (50 M parameters). For keyword extraction, each video is uniformly sampled
in the temporal dimension as 4 clips, and, for each clip, the shorter spatial side is scaled
to 224 pixels, which is the same setting as in [42]. As the audio event extractor, this work
adopted a small-sized audio-spectrogram transformer [40]. For keyword extraction, each
audio is split into separate audio clips with 10 s to match the model’s capacity. The rest of
the setting is the same as in [40].

4.2. Evaluation Metrics

To compare the quality of the generated responses, we adopted four automatic eval-
uation metrics widely used in most generation tasks such as BLEU [47], ROUGE [48],
METEOR [49], and CIDEr [50]. For the response verification, the automatic evaluation
metric was the intersection over union (IoU). It indicates the ratio of overlap between the
predicted and human-annotated timestamp. Presumably, a higher score is better. Owing to
multiple valid temporal segments for each response, we adopted two types of IoU: IoU-1
and IoU-2. IoU-1 can be measured by an average IoU computed between each ground
truth and the predicted timestamps. This provides the highest IoU for the ground truth.
IoU-2 can be measured by computing frame-level matching among all the predicted and
ground-truth temporal segments for each response.

The result also contained the human evaluation performed by the DSTC10 organizers.
They collected human ratings for system responses using a five-point Likert scale. Here,
humans rated the system responses given a dialog context as follows: 5: good; 4: good;
3: acceptable; 2: poor; and 1: very poor. They asked the human raters to consider the
correctness of the answers as well as the naturalness, informativeness, and appropriateness
of the response according to the given context.

https://github.com/dialogtekgeek/AVSD-DSTC10_Official
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4.3. Experimental Result

We describe the experiment results in three settings, text + visual, text + visual + audio,
text + visual + audio + summary, as shown in Table 2. Based on the BLEU-4 value, the
performance in the text + visual + audio + summary setting was the highest.

Table 2. Experimental results for answer generation task on the test set provided by the organizers in
the DSTC10-AVSD challenge (T: text; V: visual; A: audio; S: summary).

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROGUE-L CIDEr Human Rating

Baseline 0.5716 0.4223 0.3196 0.2469 0.1909 0.4386 0.5657 2.851
Our model

T + V 0.6409 0.4897 0.3764 0.2946 0.2274 0.5022 0.7891 -
T + V + A 0.6406 0.4885 0.3786 0.2984 0.2251 0.5016 0.8039 -

T + V + A + S 0.6455 0.4889 0.3796 0.2986 0.2253 0.4991 0.7868 3.300
MED-CAT [51] 0.6730 0.5450 0.4480 0.3720 0.2430 0.5300 0.9120 3.569

We first conducted the experiment using only text (question–answer pair) and visual
information. As can be seen in Table 2, our model exhibited a high performance in all the
metrics compared with the baseline model. It displayed improvements of 0.0477 in BLEU-4
and 0.2234 in CIDEr. In the text + visual + audio setting, the model used audio information
as well as the visual information in the video to generate an answer. Our model showed
a higher performance than the baseline model in all the metrics in this setting as well. It
displayed improvements of 0.0515 in BLEU-4 and 0.2382 in CIDEr. Compared with the
text + visual task without audio information, it displayed an improvement of 0.0038 in
BLEU-4 and a decrease of 0.0148 in CIDER. Finally, in the text + visual + audio + summary
setting, we observed the effectiveness of the multi-task learning method. Specifically,
our model showed performance improvements of 0.0517 in BLEU-4 and 0.2211 in CIDER
compared with the baseline model. The CIDEr value was marginally lower than that for
the text + visual + audio task without summaries. However, the BLEU-4 value was higher.

Meanwhile, MED-CAT showed marginally better results than our proposed model.
The evaluation result for BLEU-4 verified that our proposed model was approximately
0.0734 lower. Additionally, in the qualitative evaluation, the proposed model was ap-
proximately 0.2 points lower. This was because the capacity of MED-CAT is significantly
larger than that of our model. MED-CAT is based on a pretrained model with highly
advanced video language understanding tasks called UniVL [52]. Our proposed model
also uses a pre-trained event-detection model for video recognition tasks. However, we
used only small-sized models because of these limitations in the learning environment.
In addition, UniVL is a pre-trained model for videos and language convergence tasks.
This is more directly related to the dataset used in our study. Nevertheless, this result is
sufficiently significant in that our proposed model showed a performance comparable to
that of MED-CAT regardless of the size of the model.

Moreover, as shown in Table 3, for both IoU-1 and IoU-2, performance in the
text + visual + audio + summary setting (Table 2) was the highest. In particular, we
achieved state-of-the-art performance compared with the reported results in the DSTC10
challenge. More specifically, we conducted the response verification experiment using the
response generated by the model with the “T + V + A + S” setting mentioned in Table 2. As
shown in Table 3, compared with the baseline models, our model displayed better scores,
with large margins of 0.1543 and 0.1645 for IoU-1 and IoU-2, respectively. These comprise
the highest IoU-1 and IoU-2 results among all the submissions of DSTC10. More impor-
tantly, our result outperformed the MED-CAT model, which has shown better performance
on the response generation task.
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Table 3. Experimental results for temporal localization task on the test set provided by the organizers
in the DSTC10-AVSD challenge. The proposed model is trained on multi-task learning with auditory
information mentioned by T + V + A + S in Table 2.

Models IoU-1 IoU-2

baseline 0.3614 0.3798

MED-CAT [51] 0.4850 0.5100

Proposed Model 0.5157 0.5443

5. Discussion

To analyze the performance of this work from various perspectives, we conducted
extensive experiments, such as an investigation of the accuracy of keyword extraction and
its effect on response generation.

5.1. The Performance of Modality-Specific Event Keyword Extraction

This study utilizes event keywords observed in videos and audios as multimodal
information. Therefore, the accurate event keyword prediction directly influenced the
system response generation. However, if a discrepancy exists between the video domain of
the video event prediction model and the actual video domain, this method has a caveat.
Meanwhile, if the video domain is not completely independent, event prediction for new
videos should be addressed. In the initial stages of the study, we verified a certain degree
of consistency between the video domain used in the training phase and the domains of
the videos used for the actual evaluation. A video-domain-independent method of event
prediction model will be addressed in future work.

Therefore, it is essential to analyze the accuracy of the event prediction model. The
evaluation metrics used in this experiment are average precision@N (P@N), average re-
call@N (R@N), and average F1 Score (F1). P@N calculates the ratio of actual events observed
among the top-K event keywords predicted from the videos. R@N calculates the ratio of
actual events observed among all the ground-truth events. F1 measures the harmonic mean
of precision and recall. For this evaluation, 50 videos from the evaluation dataset were
randomly selected. Since the dataset does not have actual event labels, we have assigned
event labels to the videos manually. Similarly, the evaluation for audio was conducted in
the same manner.

The prediction of event keywords for videos indicated that the range of the desired
predicted keywords increased. Larger numbers of actual answer keywords were included.
As shown in Table 4, the F1-Score was highest when N = 10. The precision did not
vary significantly. However, the recall increased as the prediction range widened. This
phenomenon occurred because as the prediction range expanded, the correct answer
keywords were likely to be included. More importantly, this result provides strong evidence
for determining the range of video keyword counts to be used in the process of multimodal
integration. In contrast to video, audio event prediction showed relatively opposite results.
As shown in Table 5, the F1-Score generally increased when the range of desired predicted
keywords was narrower. The results indicate that the highest performance in the case
was evaluated using three predictions (N = 3). This result was obtained owing to the bias
in the perceptible results from the audio. In reality, the correctly predicted cases were
mostly limited to a small number of labels such as “man talking” and “background noise”.
The majority of the other cases had a lower accuracy. These observations can serve as
significant evidence for determining the number of audio events used in the multimodal
integration process.



Sensors 2023, 23, 7875 12 of 16

Table 4. The performance of the video event detector on 50 videos randomly sampled from the
validation set.

Top N Precision@N
(P@N)

Recall@N
(R@N)

F1-Score
(F1)

N = 5 0.333 0.219 0.264

N = 6 0.367 0.291 0.324

N = 7 0.348 0.322 0.334

N = 8 0.358 0.381 0.370

N = 9 0.363 0.439 0.398

N = 10 0.367 0.492 0.420

Table 5. The performance of the audio event detector on 50 videos randomly sampled from the
validation set.

Top N Precision@N
(P@N)

Recall@N
(R@N)

F1-Score
(F1)

N = 1 0.30 0.120 0.171

N = 2 0.28 0.223 0.248

N = 3 0.253 0.313 0.280

N = 4 0.22 0.353 0.271

N = 5 0.208 0.409 0.276

5.2. The Effects of the Number of Event Keywords

The previous experiment analyzed the optimal number of events, determined through
precision, for the event prediction model to obtain results that include actual events.
However, the most important aspect is to analyze how the quality of the generated system
responses varies with the variation in event keyword counts. Therefore, this experiment
demonstrated the quality of system-generated responses based on the number of predicted
event keywords in videos and audio clips. Specifically, the first experiment evaluated the
system-generated responses by varying the number of video keywords while maintaining
the number of audio keywords constant at three. As shown in Table 6, video event keywords
generally exhibit the most robust performance when there are eight keywords. This is
because these achieve the highest scores in widely used evaluation metrics for generation
research, such as BLEU-4, METEOR, and ROUGE. It can be observed that the response
generation capability decreases marginally in the vicinity of eight keywords, except for
certain metrics.

Table 6. The performance of response generation with respect to the number of video event keywords.
The number of audio event keywords is fixed as 3.

# of Keywords
(K)

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

K = 3 0.601 0.451 0.347 0.282 0.225 0.499 0.607

K = 5 0.624 0.475 0.366 0.286 0.225 0.502 0.7970

K = 8 0.6455 0.4889 0.3796 0.2986 0.2253 0.503 0.7868

K = 10 0.646 0.489 0.366 0.287 0.231 0.502 0.786

As shown in Table 7, audio event keywords generally exhibit the most robust perfor-
mance when there are four keywords. This is because these achieve the highest scores in
the representative evaluation metrics for generation research, such as BLEU-4, ROUGE,
and CIDEr. When the number of keywords is at most four, it can be considered that similar
response generation results are obtained. However, it is generally observed that as the
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number of keywords increases, the response generation capability decreases marginally.
This observation is supported by qualitative analysis. It indicates that audio requires only
structured information such as the protagonist’s voice and the presence of surrounding
voices. Therefore, it is conjectured that an unnecessarily large number of audio events may
function as noise during the response generation process.

Table 7. The performance of response generation with respect to the number of audio event keywords.
The number of video event keywords is fixed as 8.

# of Keywords
(K)

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

K = 1 0.611 0.4781 0.3511 0.292 0.2254 0.5013 0.717

K = 2 0.657 0.4875 0.3694 0.2911 0.2251 0.502 0.7810

K = 4 0.6455 0.4889 0.3796 0.2986 0.2253 0.503 0.7868

K = 5 0.611 0.4854 0.3610 0.2878 0.219 0.5021 0.694

5.3. Ablation Study for Response Verification

As shown in Table 8, we conducted an ablation experiment to analyze the effect of the
modality detector and the type of modality information. The threshold model was trained
using all the modalities, including audio with multi-task learning. When the summaries
were not included, the IoU-1 and 2 scores decreased by 0.0096 and 0.0105, respectively.
When auditory information was additionally excluded, in the IoU-1, two scores decreased
by 0.0013 and 0.0009, respectively. Most importantly, the modality detector had an impact
on the performance reductions of 0.0134 (2.60%) and 0.0139 (2.55%), respectively.

Table 8. Ablation studies for evaluating each component and each modality. The proposed model is
trained on multi-task learning with auditory information mentioned by T + V + A + S at Table 2.

Models IoU-1 IoU-2

Proposed Model 0.5157 0.5443

-S 0.5061 0.5338

-S -A 0.5048 0.5329

-Modality Detector 0.5023 0.5304

6. Conclusions

In this paper, we propose a novel audio-visual scene-aware dialog system that can in-
tegrate all the information by iteratively encoding the event keywords (which are extracted
from modality-specific event extractors) into a pre-trained language model. In addition,
inspired by the fact that previous works depended significantly on a scene summary, the
proposed system was trained on multi-task learning with summary generation as an auxil-
iary task. We also propose a response-driven temporal moment localization network by
providing evidence that can be used in the response generation process. It can provide users
with the reasoning process regarding how the system produces the response by generating
the timestamp that the system has utilized before. By integrating this method into the
audio-visual scene-aware dialog, the user can interpret the reasoning system process, which
is regarded as a “black box.” This contributes to enhancing trustworthy AI systems. In
future work, we aim to integrate the proposed system with external symbolic knowledge
to develop a more interpretable and robust system.
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