
Citation: Li, H.; Xiao, Y.; Cheng, C.;

Song, X. SFPFusion: An Improved

Vision Transformer Combining Super

Feature Attention and

Wavelet-Guided Pooling for Infrared

and Visible Images Fusion. Sensors

2023, 23, 7870. https://doi.org/

10.3390/s23187870

Academic Editors: Guanqiu Qi,

Yu Liu, Zhiqin Zhu and Huafeng Li

Received: 10 August 2023

Revised: 8 September 2023

Accepted: 11 September 2023

Published: 13 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

SFPFusion: An Improved Vision Transformer Combining Super
Feature Attention and Wavelet-Guided Pooling for Infrared and
Visible Images Fusion
Hui Li *,†, Yongbiao Xiao † , Chunyang Cheng and Xiaoning Song

International Joint Laboratory on Artificial Intelligence of Jiangsu Province, School of Artificial Intelligence and
Computer Science, Jiangnan University, Wuxi 214122, China; yongbiao_xiao_jnu@163.com (Y.X.);
chunyang_cheng@163.com (C.C.); x.song@jiangnan.edu.cn (X.S.)
* Correspondence: lihui.cv@jiangnan.edu.cn
† These authors contributed equally to this work and should be considered co-first authors.

Abstract: The infrared and visible image fusion task aims to generate a single image that preserves
complementary features and reduces redundant information from different modalities. Although
convolutional neural networks (CNNs) can effectively extract local features and obtain better fusion
performance, the size of the receptive field limits its feature extraction ability. Thus, the Trans-
former architecture has gradually become mainstream to extract global features. However, current
Transformer-based fusion methods ignore the enhancement of details, which is important to im-
age fusion tasks and other downstream vision tasks. To this end, a new super feature attention
mechanism and the wavelet-guided pooling operation are applied to the fusion network to form
a novel fusion network, termed SFPFusion. Specifically, super feature attention is able to establish
long-range dependencies of images and to fully extract global features. The extracted global fea-
tures are processed by wavelet-guided pooling to fully extract multi-scale base information and to
enhance the detail features. With the powerful representation ability, only simple fusion strategies are
utilized to achieve better fusion performance. The superiority of our method compared with other
state-of-the-art methods is demonstrated in qualitative and quantitative experiments on multiple
image fusion benchmarks.

Keywords: image fusion; Transformer; wavelet-guided pooling; global features; detail features

1. Introduction

Image fusion is the combination of multiple source images carrying complementary
information to generate a high-quality fused image, which is used to make up for the
limitation of incomplete image information obtained by a single type of sensor. As a task
in the field of image processing, image fusion is applicable to various downstream tasks,
including target detection [1,2], object tracking [3,4], and semantic segmentation [5].

Infrared image and visible image are two typical data sources studied in image fusion.
Infrared image contains salient thermal infrared features, which are not affected by external
conditions such as bad weather and poor illumination, but usually lack texture details [6].
Visible image contains more texture details and is suitable for human visual perception
but very sensitive to illumination and weather conditions [7]. Therefore, infrared and
visible image fusion methods are utilized to generate one image that contains both salient
features and rich texture details.

In general, the key to infrared and visible image fusion is how to extract and fuse
complementary features while reducing redundant information. In recent years, a large
number of fusion algorithms are proposed, which can be roughly divided into non-deep
learning and deep learning-based methods. Non-deep learning methods are mainly based
on signal processing operations [8,9]. For example, multi-scale transform (MST) [10,11]
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can decompose the original image into components of different scales and extract multi-
scale features. Then, an effective fusion strategy is designed to fuse the features. Finally,
the image is reconstructed using the inverse transformation of feature extraction. In addition,
the methods of non-deep learning also include sparse representation (SR) [12–15]-based
methods, subspace [16,17]-based methods, and low-rank representation (LRR) [18–21]-based
methods. Although the non-deep learning methods can synthesize satisfactory results, they
still have some drawbacks: (1) manually designed fusion strategies cannot adapt to complex
image fusion conditions and have poor generalization ability; (2) manual feature extraction
has limitations in comprehensively capturing multi-modal images, which introduces noise
and causes image distortion.

With the rise of deep learning, a lot of fusion methods based on deep learning are pro-
posed to solve the above shortcomings [22]. Existing deep learning-based fusion methods
can be divided into four categories: (1) convolutional neural network (CNN) [7,23]-based
methods; (2) auto-encoder (AE) [24,25]-based methods; (3) generative adversarial network
(GAN) [26,27]-based methods; and (4) Transformer [28,29]-based methods.

The CNN-based methods have excellent feature extraction capabilities, but the simple
use of CNN cannot extract the deep and global features of source images. Therefore,
in order to extract more deep features, the AE-based training strategy was introduced to
image fusion task, which has strong generalization ability and can obtain richer image
features. However, this kind of fusion method still needs complex fusion strategies to be
manually designed. Moreover, given the powerful ability of GAN to estimate probability
distributions in an unsupervised manner, they are well suited for unsupervised tasks
such as image fusion. The GAN-based methods establish an adversarial game between
the generator and the discriminator and continuously improve the performance of the
fused image. Unfortunately, these methods are extremely unstable and prone to image
distortion. In addition, with the development of Transformer and the mining of its powerful
global feature extraction ability, scholars have begun to study whether Transformer-based
methods are suitable for image fusion. However, for methods fully adapted to infrared and
visible image fusion tasks, it is necessary to enhance multi-scale base information and detail
textures while extracting global features, which the vast majority of algorithms combining
Vision Transformer and CNN cannot do. In addition, the convolution kernel of CNN also
has certain limitations for extracting image detail features and salient features.

Through the above description of the problem, we can find that most of the existing
deep learning-based methods except Transformer-based one rely on the convolution op-
eration. Although CNN has good local feature extraction ability, its small receptive field
makes it difficult to model the long-range dependence, and thus, it is difficult to obtain
the global features of the source images. In addition, most fusion networks introducing a
pooling operation can extract rich image features using scale transformation, but it also
brings a lot of information loss and artifacts.

In order to solve the above problems, the wavelet-guided pooling is applied into super
feature attention (SFA) to form a novel Transformer architecture, which will be introduced
in next section. The SFA mechanism can learn an efficient global representation, especially
for shallow features. The number of image primitives for subsequent processing is reduced
in a token space. The multi-scale features and detail information can be simultaneously
extracted using wavelet-guided pooling. In the feature extraction stage, three convolu-
tional layers are utilized to expand the channel number of the features and to enlarge the
receptive field.

To be specific, the SFA attention aggregates tokens into local features by learning
sparse relationships between tokens and local regions, and then, we use a self-attention
machine to fully mine the local and global dependencies of the source images to capture
complementary features. After that, the local features are mapped to the original space
to extract global features. Finally, the deep information are extracted using embedded
wavelet-guided pooling, where the multi-scale base component is transmitted to the next
encoding layer and the detail components are skipped to the corresponding decoding layer
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after using the l1-norm and softmax-like fusion strategy for inverse wavelet-guided pooling.
As shown in Figure 1, compared with SwinFuse [29] (base on the Swin Transformer [30]),
our method can extract global features while enhancing the detail textures, as shown in
the green box; the reflection of the tree is clearly displayed. SwinFuse is less capable of
processing multimodal images than we are, resulting in generated images darker and
affecting visual senses. Our method combines the efficient global representation ability of
Transformer with the detail enhancement of wavelet-guided pooling, which can extract
more fine-grained features and reconstruct better-quality fused images.

(a) Infrared (b) Visible (d) Ours(c) SwinFuse

Figure 1. Visualization results of different Transformer-based methods. From left to right: infrared
image, visible image, Swin Transformer-based fusion model (SwinFuse), and the proposed SFPFusion.

The main contributions of this paper are summarized as follows:

• An improved Transformer architecture combined with wavelet-guided pooling and
attention mechanism (super feature) is proposed, which preserves global features
while enhancing detail information.

• A simple yet efficient fusion network is proposed, which only employs a simple
l1-norm and the softmax-like fusion strategy to achieve better fusion performance.

• The qualitative and quantitative experiments on several public image fusion datasets
demonstrate the superiority of the proposed fusion method.

The rest of this paper is organized as follows: Section 2 discusses related work on
image fusion. In Section 3, we present the details of the proposed fusion method. Section 4
shows the experimental results and compares it with some state-of-the-art methods. Finally,
we present the conclusions in Section 5.

2. Related Work
2.1. Deep Learning Model for Image Fusion

Due to the high efficiency and feature representation ability of deep learning, it is
widely used in the field of image fusion. In IFCNN [31], convolutional layers are first used
to extract salient image features from multiple input images. Then, the convolutional fea-
tures of multiple input images are fused using appropriate fusion rules. Finally, the fusion
features were reconstructed using two convolutional layers to generate an information-rich
fused image. The representative auto-encoder-based method is DenseFuse [24]. The en-
coder network composed of cascaded networks is used to extract the features of the
source images; then, a manually designed fusion strategy is conducted on these features;
and finally, image features are reconstructed through the decoder network. In addition,
NestFuse [25] similarly adopt the above three basic steps to fuse features. In the end-to-
end model termed LRRNet [32], Li et al. propose a learnable low-rank representation
(LRR) approach to the fusion task, which can preserve the image details and enhance the
salient features of the source images. With the rise of generative adversarial network,
Ma et al. [26] first applied the GAN [33] algorithm to image fusion. However, GAN-related
networks are extremely unstable, so Ma et al. proposed DDcGAN [27], which contains two
discriminators to force the generator to fuse useful information from original images.

However, these methods ignore the importance of global dependencies and cannot
be well enhanced for details. Therefore, our proposed method combining super feature
attention and wavelet-guided pooling extracts the global information of the image while
enhancing the detail texture, so as to improve the global dependence of the images.
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2.2. Transformer for Image Fusion

The Transformer structure was proposed by Vaswani et al. [34], which was applied to
machine translation. Subsequently, Dosovitskiy et al. [35] proposed the Vision Transformer
(ViT) to solve the image classification problem. In recent years, many Transformer-based
infrared and visible image fusion models have been proposed. The Transformer architecture
also was introduced into the image fusion task [36]; the original authors proposed a two-
stage training approach to extract features and developed a Transformer-based multi-scale
fusion strategy that attends to both local and long-range information.

With the proposal of Swin Transformer [30], some scholars have applied it to the
field of image fusion. The Swin Transformer employs window-based local attention to
restrict attention to non-overlapping local windows. Despite being able to reduce the
redundancy in local regions, the features of local windows still exists in shallow layers
and global features cannot be fully obtained. SwinFusion [28] adopts a hybrid structure
of CNN and Swin Transformer. The intra-domain fusion module extracts features of the
source images through the attention mechanism and then exchanges features via the inter-
domain fusion modules. The small kernel convolution layer is used to fuse the global
features. Finally, the image is reconstructed with the reconstruction unit. However, it
lacks long-term dependence on feature fusion, and it is not sufficient for deep global
detail feature extraction. SwinFuse [29] designs a fusion network based on the residual
Swin Transformer, where the fusion result is obtained through global feature extraction,
fusion layer, and feature reconstruction. DATFuse [6] designs a dual-attention residual
module for feature extraction and a Swin Transformer module for global complementary
information preservation. However, they do not change the Swin Transformer feature
extraction module, so they are also equally limited when integrating complementary
features and global interactions.

Recently, THFuse [37] introduced the Transformer into the CNN-based fusion network
to focus on both global and local information. In this work, they extracted the shallow
features using the dual-branch CNN module, and the vision Transformer module was used
to obtain the global channel and spatial relationship in the features. In TCCFusion [38], they
designed the local feature extraction branch to retain local complementary information and
the global feature extraction branch composed of three Transformer blocks to maintain long-
range dependencies. These two modules are sufficient to capture local and global useful
information. Yi et al. [39] proposed the fusion network (TCPMFNet), which is based on the
auto-encoder structure and designed the Transformer–convolutional parallel mixed fusion
strategy to achieve outstanding feature fusion performance. DGLT-Fusion [40] decouples
global–local information learning into Transformer and CNN modules, which enables the
network to extract better global–local information. TGFuse [41] was proposed as a fusion
algorithm that combines Transformer and GAN. The Transformer module is simply used to
learn the global fusion relationship. In contrast, we combine the Super Feature Transformer
module and wavelet-guided pooling to preserve more detail texture information while
learning global features. Wave-ViT [42] was proposed as a framework using wavelet
transforms and self-attention learning, which is suitable for image recognition, object
detection, and instance segmentation. However, that Transformer module is less capable
of extracting global features than our super feature Transformer, and our method can
achieve excellent results using a simple Haar wavelet pooling compared to their complex
DWT-Convolution-IDWT. Our pooling operation is able to capture multi-scale features
while extracting vertical, horizontal, and diagonal detail textures. Compared with our
method, they only use 3× 3 convolution to extract local features and do not fully extract
multi-scale information and detail textures. In addition, image fusion requires more texture
details of visible images, and our method can better meet the requirements of the field of
image fusion, but Wave-ViT does not.

Although the above Transformer-based methods can achieve good results, they rely
too much on convolutional layers when extracting local features and fail to enhance certain
meaningful features. In general, the improved Vision Transformer proposed by our SFPFu-
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sion well combines the attention mechanism and Haar wavelet-guided pooling operation
to extract global features while preserving texture details, which are ignored by most Vision
Transformers applied in the field of image fusion.

3. Proposed Fusion Method

In this section, the proposed fusion method will be presented. Firstly, we give the
details of the framework and model architecture. Then, the details of training phase will
be given.

3.1. Overall Framework

As shown in Figure 2, our network framework mainly contains three main parts:
feature extraction, feature fusion, and feature reconstruction. Our proposed method aims
to generate a fused image by fusing local and global complementary features from source
images. The following will be the details of the framework.

[Ivi , Iir]
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Figure 2. The proposed module combining super feature attention and wavelet-guided pooling. L
represents the number of times attention extracts features. The features FSF extracted with super
feature attention are passed to the embedded pooling layer to extract deep multi-scale features (FLL)
and detail textures (FVD, FHD, and FDD). In the reconstruction, the components are aggregated by
the wavelet-guided unpooling.

3.1.1. Feature Extraction

The Convolutional Block: Given a pair of already registered testing infrared
Iir ∈ RC×H×W and visible image Ivi ∈ RC×H×W (where C, H, and W represent the channel
number of input images, height, and width, respectively). The first stage consists of two
modules, CB1 and WaP1. The shallow features of the images Fir and Fvi are extracted with
a convolutional block (CB1), which can be expressed as follows:{

Fir, Fvi
}
=
{

HCB1(Iir), HCB1(Ivi)
}

(1)

where HCB1(·) represents the first convolutional block.
The convolutional block consists of multiple convolutional layers, which provides

an effective way to extract local information. The CB1 contains three convolutional layers
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using ReLU activation function, whose convolution kernel is 3 and stride is 1. The other
main function of CB1 is to transform the input channel number to 64, which will facilitate
the subsequent extraction of deeper features by expanding the number of channel.

Wavelet-guided Pooling: After that, we extract multi-scale base information (FLL) and
detail features (FVD, FHD, FDD) using the first wavelet-guided pooling operation (WaP1),
which can be formulated as follows:

{Fω
LL, Fω

VD, Fω
HD, Fω

DD} = WaP1(Fω), ω ∈ {ir, vi} (2)

Compared with the ordinary pooling operation, wavelet-guided pooling has four kernels:

LL =

[
1 1
1 1

]
VD =

[
−1 1
−1 1

]
(3)

HD =

[
1 1
−1 −1

]
DD =

[
1 −1
−1 1

]
(4)

The multi-scale component LL obtains the global multi-scale base information, while
the detail components VD, HD, and DD extract the vertical, horizontal, and diagonal
detail textures.

The traditional pooling operation has some limitations. For max-pooling, significant
features are lost in the pooling operation and images cannot be reconstructed accurately.
Average pooling, on the other hand, dilutes meaningful features. Inspired by [43], we use
Haar wavelet-guided pooling in the Super Feature Pooling Transformer module. Haar
wavelet is one of the classic wavelet transforms. Compared with the traditional pooling
operation, Haar wavelet-guided pooling decomposes the original image into different
component channels, so as to extract multi-scale information and texture details. Moreover,
it has minimal information loss and can reconstruct images completely without any post-
processing step.

For our framework, only the multi-scale base information FLL passes to the encoding
layer and the detail features (FVD, FHD, FDD) are skipped to the corresponding unpooling
layer after feature fusion. Our unpooling operation is based on the inverse transform of
wavelet-guided pooling, which can reconstruct the image accurately and minimize the
information loss.

Super Feature Pooling Transformer: However, in [43], they only use convolutional
layers to extract image features, which has certain limitations. Given that the inherent
small receptive field of CNN cannot effectively extract global information of source image,
the Super Token Transformer [44] is introduced. It can obtain efficient global representation
and enhance detail information simultaneously. Specifically, we improve it and embed
wavelet-guided pooling into the Transformer architecture, termed as Super Feature Pooling
Transformer, so that the global features can be augmented to obtain richer features (multi-
scale features and detail information).

To be specific, our Super Feature Pooling Transformer is mainly composed of four
modules: position encoding (PE), super feature attention (SFA), embedded pooling layer
(EPL), and patch merging module (PM).

As shown in Figure 2, the multi-scale features F1
LL extracted by WaP1 are used as the

input of the Super Feature Pooling Transformer. For convenience of expression, we replace
F1

LL with Fin.
Given the input features Fin ∈ RC×H×W , we firstly add position information to all the

tokens by using position encoding (PE). PE containing a 3× 3 depth-wise convolution can
learn the local representation better than absolute position encoding (APE) [34] and relative
position encoding (RPE) [30,45]. The formula is defined as follows:

T = Hpos(Fin) (5)
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where Hpos(·) represents the positional encoding, which is used to add position information
into all the tokens. T ∈ RC×H×W are the visual tokens we obtain.

After extracting the position information, we next employ super feature attention to
extract global features:

FSF = SFA(LN(T)) + T (6)

where SFA(·) represents the super feature attention mechanism and LN(·) denotes Layer-
Norm operation. In the following, we will describe the process of super feature attention
in detail.

Given the visual tokens T ∈ RC×H×W , we first compute the initial super features
S ∈ RC×m×n using average pooling in regular grid regions, where the grid size is h× w,
m = H

h , and n = W
w . The number of super features is m× n. In order to better extract

complementary features and global features, it is necessary to calculate the mapping
associations Q ∈ Rmn×hw×9 between T and S. The details of SFA operation, please refer to
our Supplementary Materials.

Following the super feature attention module, an embedded pooling layer is deployed
to augment multi-scale features and detail information, which can be defined as follows:

{FLL, FVD, FHD, FDD} = Pooling(FSF) (7)

where Pooling(·) represents the embedded wavelet-guided pooling operation.
Our embedded pooling layer has the same structure as the above wavelet-guided pool-

ing, as shown in Figure 2. The extracted multi-scale base information is passed to the next
layer, and the detail features are given in the unpooling operation for image reconstruction.

As shown in Figure 3a, we can observe that the super feature attention mechanism
well builds long-range dependencies and extracts the global salient features. In addi-
tion, the multi-scale base information (b) and detail information (c)–(e) obtained by the
embedded pooling layer are well enhanced, which helps to reconstruct the image with
fine features.

Figure 3. Visualization results of feature maps within the SFP1. FSF represents the global features
extracted by the attention mechanism. Then, the global multi-scale information is obtained by the
multi-scale kernels LL, VD, HD, and DD to capture vertical, horizontal, and diagonal texture details.

Finally, the extracted multi-scale base features FLL go through the patch merging
module to increase the number of output channels. With super feature attention, we can
make full use of long-range dependencies to extract enhanced global features FGF.

FGF = HPM(FLL) (8)

where HPM(·) represents the patch merging module.
In summary, with the combination of PE, SFA, and EPL, the fusion network is able to

fully implement local information extraction and global information integration.
After extracting enhanced global information and detail textures from SFP1 in the

second stage, we put the output features into the third stage SFP2 with the same structure



Sensors 2023, 23, 7870 8 of 20

to extract deeper features again, as shown in Figure 2. In the fourth stage, when the global
features and complementary features of the three stages are extracted, they are passed to
the convolution block (CB2) to obtain local semantic information and are mapped into the
high-order feature space. The network architecture of the specific feature extraction stages
is shown in Table 1.

Table 1. Network architecture of feature extraction. Input and Output denote the number of channels
in the corresponding feature maps.

Stage Block Layer
Name Kernel Input Output Size Activation

Extraction

Stage1 CB1

Layer1 1× 1 1 3 224× 224 ReLU
Layer2 3× 3 3 64 224× 224 ReLU
Layer3 3× 3 64 64 224× 224 ReLU

WaP1 Pooling 2× 2 64 64 112× 112

Stage2 SFP1

CPE


3× 3, 64, 64
grid 8, heads 1

2× 2, 64, 64
3× 3, 64, 128

× 3

112× 112
SFA 112× 112
Pooling 56× 56
PM 56× 56

Stage3 SFP2

CPE


3× 3, 128, 128
grid 4, heads 2

2× 2, 128, 128
3× 3, 128, 320

× 5

56× 56
SFA 56× 56
Pooling 28× 28
PM 28× 28

Stage4 CB2 Layer1 3× 3 320 512 28× 28 ReLU

3.1.2. Fusion Strategy

Global Features Fusion Strategy: It is well known that choosing an appropriate
fusion strategy is very important for image fusion. In this work, we use the fusion strategy
based on l1-norm and softmax-like. The l1-norm represents the sum of the absolute values
of the elements in the vector.

Given the extracted infrared Fir
out ∈ RC×H×W and visible Fvi

out ∈ RC×H×W features, we
first sum the vectors in each channel using the l1-norm operation and then the weight-
ing maps are generated using the softmax-like operation, which can be calculated with
the following:

Wω(x, y) =
‖Fω

out(x, y)‖1

∑
i∈{ir,vi}

‖Fi
out(x, y)‖1

, ω ∈ {ir, vi} (9)

where ‖ · ‖1 denotes the l1-norm. (x, y) indicates the corresponding position in deep
features (Fir

out and Fvi
out) and weighting maps (Wir and Wvi ).

Finally, the extracted features in each channel are multiplied by the weighting maps to
obtain the fused feature maps Ff . The specific process of the fusion strategy is shown in
Algorithm 1.

Detail Features Fusion Strategy: For the pooling layer, the detail information pre-
served by wavelet-guided pooling are sparse but also very significant. Therefore, it can
achieve good results without complex operations. Moreover, it is very important to pre-
serve as much texture details as possible in the field of image fusion. In this work, we sum
the saved infrared and visible detail information corresponding to the scale, which can be
formulated as follows:

F f
det = Fir

det + Fvi
det, det ∈ {VD, HD, DD} (10)

where Fir
det and Fvi

det represent the texture details of infrared and visible images in the vertical,

horizontal, and diagonal directions, respectively. F f
det represents the fused features of the

corresponding scale detail parts.
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Algorithm 1 Procedure for fusion strategy.

Require:
the extracted infrared Fir

out ∈ RC×H×W and visible Fvi
out ∈ RC×H×W features

Ensure:
fused feature maps Ff ;

1: Take the absolute value of each pixel value;
2: Make the sum of pixel values within each channel;
3: Calculate the weighting maps by softmax-like operation according to Equation (9);
4: for each i ∈ [1, C] do
5: Multiplying features within i-th channel and weighting maps, which can be expressed

as follows:
Fi

f = ∑
ω∈{ir,vi}

Wω(x, y)× Fω
out−i(x, y) (11)

6: end for
7: Concatenate the channel of Fi

f , and the number of channel is restored to C;
8: return Ff ;

3.1.3. Feature Reconstruction

In this phase, the fused features are used to reconstruct the image through four con-
volutional blocks and three wavelet-guided unpoolings. Specifically, our wavelet-guided
unpooling is the inverse operation of wavelet-guided pooling. The detail information
extracted in the feature extractor adopts an addition strategy to the corresponding scale
and is used to reconstruct the image together with the fused global feature, as shown
in Figure 2.

In addition, our image reconstruction stage can fully recover the image features
without any post-processing operations, so as to achieve the effect of minimum information
loss. The specific details of the image reconstructor are shown in Table 2.

Table 2. Network architecture of feature reconstruction. Input and Output denote the number of
channels in the corresponding feature maps.

Blocks Layers Kernel Input Output Activation

Reconstruction

CB3 Layer1 3× 3 512 256 ReLU

CB4

Layer1 3× 3 256 256 ReLU
Layer2 3× 3 256 256 ReLU
Layer3 3× 3 256 256 ReLU
Layer4 3× 3 256 128 ReLU

CB5
Layer1 3× 3 128 128 ReLU
Layer2 3× 3 128 64 ReLU

CB6
Layer1 3× 3 64 64 ReLU
Layer2 3× 3 64 1 Sigmoid

3.2. Training Phase

Our fusion network is based on an auto-encoder and the fusion strategy needs to be
discarded during the training phase. In the training phase, the trained feature extractor
can better extract global features and detail information about source images, and the
trained feature reconstructor can recover image features well and reduce information loss,
as shown in Figure 4.
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Feature Extraction

Feature Reconstruction

Figure 4. The framework of training process. In this process, we train an auto-encoder network
without fusion strategy.

In order to reconstruct the input image more accurately, the loss function is composed
of a pixel loss function Lpixel and a structural similarity loss function Lssim, which can be
formulated as follows:

Ltoal = Lpixel + λLssim (12)

where λ denotes the tradeoff value between Lpixel and Lssim.
Specifically, Lpixel is mean square error, which is used to make sure that the recon-

structed image is more similar to the input image at the pixel level, as calculated in the
following equation:

Lpixel = ‖O− I‖2
F (13)

where O and I indicate the output and input images, respectively. ‖ · ‖2
F is the l2-norm.

In addition, the SSIM loss Lssim is formulated as follows:

Lssim = 1− SSIM(O, I) (14)

where SSIM(·) denotes the structural similarity between the output image and input
image [46].

4. Experimental Results and Analysis
4.1. Experimental Settings

In the training phase, we randomly selected 40,000 images from MS-COCO [47] to
train our auto-encoder network, where all images are resized to 224× 224. The batch size,
epochs, and learning rate are set to 4, 4, and 1× 10−4, respectively. The hyperparameter λ in
Equation (12) is set as 10, and we use the same tradeoff value in all experiments. Moreover,
our iterations are i = 1. All the involved experiments are conducted on an NVIDIA RTX
3090Ti GPU (NVIDIA, Santa Clara, CA, USA) and Intel Core i7-10700 CPU (Intel, Santa
Clara, CA, USA). In the test phase, for RGB images, we first convert the visible image to
YCbCr color space, and then, take the Y channel of the visible images into our proposed
network together with the infrared images for fusion. Finally, the fused image is converted
back to the RGB color space by concatenating the Cb and Cr channels of the visible images.

To comprehensively evaluate the proposed method, we perform qualitative and quan-
titative experiments on the MSRS dataset [7] with 361 image pairs, the LLVIP dataset [48]
with randomly selected 389 image pairs, and the TNO dataset [49] with randomly selected
16 image pairs. We compare our method with eight state-of-the-art (SOTA) approaches,
including DenseFuse [24], FusionGAN [26], SwinFuse [29], U2Fusion [50], AUIF [51],
CUFD [23], MUFusion [52], and AEFusion [53]. The implementations of these approaches
are publicly available and the initial parameters of the compared methods remain the same.

Five quality metrics are selected for the fair and quantitative comparison between
our fusion method and other SOTA methods, including standard deviation (SD) [54],
visual information fidelity (VIF) [55], average gradient (AG) [56], entropy (EN) [57], and
Qab f [58]. SD reflects the distribution and contrast of the fused image, which is consistent
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with the visual perception. VIF is the metric based on natural scene statistics and the
conception of image information extracted by the human visual system. AG quantifies the
gradient information of the fused image and represents its detail textures. EN is used to
represent the amount of information contained in image. Qab f measures the amount of
edge information. Moreover, a fusion algorithm with larger SD, VIF, AG, EN, and Qab f
indicates better fusion performance.

4.2. Comparative Experiments

In this section, our method will be compared with eight SOTA methods both qualita-
tively and quantitatively to show the superiority of our algorithm on MSRS, LLVIP, and
TNO datasets. For more experiments, please refer to our Supplementary Materials.

4.2.1. Fusion Results on MSRS Dataset

One set of source image pairs of the MSRS dataset and their corresponding fused im-
ages obtained using different methods are demonstrated in Figure 5. In daytime scenarios,
thermal radiation information from infrared images should be used as complementary
information to visible images. As a whole, although FusionGAN enhances the thermal
radiation information, it causes serious spectral contamination and affects the overall visual
sense. SwinFuse and AUIF extract too much background features of infrared images, mak-
ing the whole scene submerged in darkness, which are completely not suitable for daytime
scenes. Moreover, as shown in the green and red boxes, DenseFuse and U2Fusion weaken
infrared targets and also fail to retain detail information of visible images. Although AEFu-
sion preserves more texture details, it similarly weakens salient features. In addtion, CUFD
and MUFusion are able to synthesize the texture details of visible images and the salient
features of infrared images. Unfortunately, a large number of artifacts are introduced into
fused results, resulting in poor visual perception. Only our method enhances the thermal
radiation information while preserving the texture information and provides a pleasing
visual effect.

(c) DenseFuse(a) Infrared (b) Visible

(d) FusionGAN (e) SwinFuse (f) U2Fusion (g) AUIF

(h) CUFD (i) MUFusion (j) AEFusion (k) Ours

Figure 5. Qualitative comparison of our method with 8 state-of-the-art methods on the MSRS dataset.

In order to better evaluate the quality of the generated images, we conduct qualitative
comparisons on 361 image pairs from MSRS datasets to verify the effectiveness of our
algorithm, as shown in Table 3. It is worth noting that our method exhibits excellent
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superiority in all five metrics. The best SD metric indicates that our fused images have
richer contrast information, which achieves a good visual effect. The best result in VIF
metric indicates that our results have better visual perceptual performance, which is
consistent with human visual perceptions. For the AG and Qab f metrics, they achieve the
best results, meaning that our results have richer texture details and more edge information,
benefiting from our proposed wavelet-guided pooling. Moreover, the best EN metric shows
that our fused images contains more scene information.

Table 3. Quantitative results on 361 image pairs from the MSRS dataset. (Bold: best, red: second best,
blue: third best).

Methods SD VIF AG Qab f EN

DenseFuse [24] 7.4237 0.6999 2.0873 0.3572 5.9340

FusionGAN [26] 7.1758 0.8692 3.1193 0.2110 5.9937

SwinFuse [29] 4.9246 0.4102 1.9673 0.1720 4.4521

U2Fusion [50] 6.8217 0.5863 2.0694 0.2972 5.5515

AUIF [51] 5.2622 0.3981 1.8238 0.1970 4.6460

CUFD [23] 7.6384 0.6488 2.9003 0.4397 6.0652

MUFusion [52] 6.9233 0.6086 3.1474 0.4110 5.9682

AEFusion [53] 8.2104 0.8548 2.6968 0.4239 6.5374

Ours 8.2650 0.9214 3.8950 0.5361 6.5636

4.2.2. Fusion Results on LLVIP Dataset

We further randomly select 389 image pairs of nighttime scenes on the LLVIP dataset
to demonstrate the effectiveness of our method. In the dark scenes, the infrared images
contain a lot of thermal radiation information and detail textures, which will complement
the visible images containing limited detail information. As shown in Figure 6, FusionGAN
fails to preserve texture details and the background suffers from severe contamination,
causing visual conflicts. For SwinFuse and AUIF, the infrared features are weakened.
These too dark images lead to the retention of little detail information, making people
obtain less useful information. As shown in the red box, U2Fusion and DenseFuse do not
retain more texture details, mainly due to inadequate feature extraction of infrared images.
Although CUFD and AEFusion retain more thermal radiation information, they blur edge
information and produce extensive artifacts at the same time, resulting in overall image
blur. In addition, MUFusion introduces additional information into the fused images in
some cases, which can be seen from the ground in a green box. It is worth noting that,
as shown in the green box, our algorithm can very clearly show the reflection of branches in
the dark, which has a great advantage compared with the algorithms that blur the targets.

The quantitative results of five metrics on image pairs from the LLVIP dataset are
presented in Table 4. It can be observed that our method ranks first in three metrics. Our
method achieves the highest AG metric, indicating that our fused images possess more
detailed textures. Moreover, the best metric Qab f implies that more edge information is
preserved in fused results. For the best EN metric, it demonstrates that our method has good
superiority in containing valid information. In addition, our method still has a pleasing
performance on the VIF metric, only following FusionGAN. It shows that our fused images
can still achieve good visual effects. On the SD metric, the proposed method follows
FusionGAN and AEFusion by a narrow margin. And, with the help of the visualization
results, we can see that FusionGAN and AEFusion blur a lot of detail information.
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(c) DenseFuse(a) Infrared (b) Visible

(d) FusionGAN (e) SwinFuse (f) U2Fusion (g) AUIF

(h) CUFD (i) MUFusion (j) AEFusion (k) Ours

Figure 6. Qualitative comparison of our method with 8 state-of-the-art methods on the LLVIP dataset.

Table 4. Quantitative results on 389 image pairs from the LLVIP dataset. (Bold: best, red: second
best, blue: third best).

Methods SD VIF AG Qab f EN

DenseFuse 9.2963 0.7503 2.6714 0.3458 6.8287

FusionGAN 10.0823 1.0263 2.1706 0.2765 7.1741

SwinFuse 7.5469 0.6290 2.9580 0.3392 6.0825

U2Fusion 9.4256 0.7212 2.3685 0.3425 6.7588

AUIF 7.5433 0.5877 2.8790 0.3348 6.1555

CUFD 9.1701 0.7187 2.5198 0.3264 6.8448

MUFusion 8.7452 0.7875 3.5412 0.4128 6.9242

AEFusion 9.8400 0.6302 2.0397 0.1477 7.2764

Ours 9.8103 0.9671 4.7353 0.6088 7.3006

4.2.3. Fusion Results on TNO Dataset

For grayscale images of infrared and visible image fusion, we select 16 image pairs
on the TNO dataset for comparison. As shown in Figure 7, DenseFuse, U2Fusion, and
AEFusion weaken the thermal radiation information, and the part of sky introduces plenty
of artifacts. Moreover, DenseFuse and AEFusion also blur the edge information, which can
be seen from red box. For MUFusion, it introduces too much extra information, causing
conflicts in human perception. FusionGAN retains too much of the infrared features,
causing loss of details and background contamination. In contrast, SwinFuse, AUIF, and
CUFD preserve the salient features well and can achieve good results. However, it also
causes the loss of details. As shown in the red box, they all do not preserve the detail
information of branches and fences well. In general, our method preserves the salient
features and texture details well, which is attributed to our proposed method of wavelet-
guided pooling combined with super feature attention.
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(c) DenseFuse

(i) MUFusion

(g) AUIF(f) U2Fusion

(k) Ours(j) AEFusion

(e) SwinFuse

(h) CUFD

(b) Visible(a) Infrared

(d) FusionGAN

Figure 7. Qualitative comparison of our method with 8 state-of-the-art methods on the TNO dataset.

The comparative subjective results of different methods on the TNO dataset are shown
in Table 5. Our method achieves the best results on AG and Qab f metrics, which indicates
that our fused results contain richer gradient textures and more edge information. On the
VIF metric, our method has a small gap compared with CUFD, indicating that our method
can still achieve good visual results. However, in terms of SD and EN metrics, our method
does not achieve as good results as the other two datasets. This is justified. Compared with
the previous two datasets (all RGB images), TNO as the dataset of grayscale images mainly
contains salient features. The visible images in TNO dataset do not contain more obvious
texture details as visible images in RGB. From our fusion network, it can be seen that our
method combines wavelet-guided pooling and super feature attention, which prefers to
preserve the intensity information and global features of the source images. Therefore, it
is understandable that our method performs worse on the TNO dataset than the first two
datasets. Even so, the results of the two metrics can still be kept within the top three.

Table 5. Quantitative results on 16 image pairs from the TNO dataset. (Bold: best, red: second best,
blue: third best).

Methods SD VIF AG Qab f EN

DenseFuse 9.2203 0.7349 3.8804 0.4465 6.8256

FusionGAN 8.1234 0.6197 2.8120 0.2260 6.4629

SwinFuse 9.2633 0.7982 5.5986 0.4542 6.9484

U2Fusion 9.3869 0.7200 5.4456 0.4653 6.9395

AUIF 9.2805 0.7482 5.2820 0.4513 7.0402

CUFD 9.4136 0.8781 4.5178 0.3782 7.0743

MUFusion 9.5379 0.7851 5.5756 0.3818 7.3032

AEFusion 9.4655 0.7803 3.4114 0.3074 7.0716

Ours 9.4400 0.8021 6.2300 0.4802 7.1578

In general, the visualization results show that our method has obvious advantages in
preserving global features and maintaining detail information, while achieving satisfied
visual effects. The objective evaluation metrics also confirm that our method can achieve
better fusion performance.
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4.3. Comparison of the Efficiency

We also conduct comparison experiments about the average running time of dif-
ferent fusion methods. We use 361 pairs of infrared and visible images with the same
size (640× 480) to test the operational efficiency of these methods. As shown in Table 6,
U2Fusion achieves relatively better performance on efficiency comparison. For our SFP-
Fusion, due to the improvement in the Transformer and combined with wavelet pooling
operation guidance, this is somewhat slower than methods with fewer parameters. How-
ever, our method is able to achieve better results than SwinFuse, which is based on Swin
Transformer. In addition, our SFPFusion still obtains a comparable result on the efficiency,
with an average time of less than 0.1 s per image.

Table 6. The average inference time (unit: second) on 361 pairs of images from MSRS dataset.
(Bold: best).

Method DenseFuse FusionGAN SwinFuse U2Fusion AUIF CUFD MUFusion AEFusion Ours

Inference time 0.1813 0.0677 0.2592 0.0342 0.1158 72.6157 0.7045 0.2244 0.0739

4.4. Ablation Studies
4.4.1. Analysis of Transformer

Since our network introduces the super feature attention mechanism combined with
wavelet-guided pooling, making it better adapted to infrared and visible image fusion, we
use the original Super Token Transformer [44] in ablation experiments to demonstrate the
advantages of our embedded wavelet-guided pooling. As shown in Figure 8d, although the
Super Token Transformer without pooling preserves the features of visible images better, it
weakens the salient features from infrared images and the detail part is not enhanced com-
pared with our method. Moreover, the sky also forms an over-exposed scene. In addition,
it can also be seen from the evaluation metrics (Table 7) that our fusion results are better
than the original framework without pooling as a whole.

(c) Ours

(d) Original-STT (e) Original-ViT (f) CNN-Pooling (g) W/O 𝑊𝑎𝑃1

(i) GF-Add (j) GF-Avg (k) Detail-Avg(h) One-STP

(b) Visible(a) Infrared

Figure 8. Visualized results of ablation studies. From (c) to (k): fused results of our method, fused
results of using original Super Token Transformer, fused results of using original Vision Transformer,
fused results of using CNN with pooling, without WaP1, global features using average strategy, global
features using addition strategy and detail features with different directions using average strategy.
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Table 7. The average values of the five objective metrics obtained with different ablation studies on
TNO dataset. (Bold: best, red: second best).

Strategies SD VIF AG Qab f EN

Ours 9.4400 0.8021 6.2300 0.4802 7.1578

Original-SFT 9.4101 0.8451 6.1572 0.4696 7.0922

Original-ViT 8.9065 0.6971 5.6691 0.4040 6.6331

CNN-Pooling 8.9091 0.7100 5.8372 0.4652 6.7445

W/O WaP1 9.3070 0.7713 5.9607 0.4712 6.9916

One-SFP 9.3145 0.7935 6.0023 0.4697 7.0172

GF-Add 10.1152 0.7116 4.4128 0.3714 6.7826

GF-Avg 9.1915 0.7884 6.5182 0.4772 7.0576

Detail-Avg 9.1556 0.6812 3.3329 0.3809 6.9184

In addition, we conduct Vision Transformer ablation experiments to confirm that our
improved Transformer is better than the original ViT. We introduce the original ViT [35]
structure, which does not have embedded pooling, and thus, the unpooling operations
of WaUP2 and WaUP3 are not included in the framework of the ablation experiments.
As shown in Figure 8e, compared with it, our fusion result can preserve more sufficient
texture details and global features and can accurately reconstruct the image without in-
troducing noise. The quantitative evaluation in Table 7 also shows that the quality of our
generated images are all better than using ViT.

4.4.2. Analysis of CNN

As we stated in Section 1, the size of convolution kernel of CNN determines how many
features it can extract from its receptive field, which is its limitation. Therefore, we conduct
ablation experiments combining CNN with pooling to confirm that our super feature
attention mechanism can better capture long-range dependencies, perform effectively
global representation, and obtain global features of the source images. When training the
auto-encoder and the hyperparameter λ in Equation (12) is set as 10, the auto-encoder
cannot reconstruct the image. In the ablation experiment, the hyperparameter λ is set to
100 to reconstruct the image well. As shown in Figure 8f, the fusion results using CNN
weaken the salient features and fail to model the long-range dependence of the image,
resulting in a very poor visual perception. Moreover, it also introduces a lot of artifacts in
the sky. In contrast, our method is superior to the fusion results using CNN in both visual
results and quantitative metrics (Table 7).

4.4.3. Analysis of Structure

In our framework, after the first convolutional block (CB1), we utilize wavelet-guided
pooling to extract the first multi-scale features and detail information. In the ablation
experiments, we discarded the first layer pooling (WaP1). As shown in Figure 8g, artifacts
still appear in the sky despite sufficient features extracted from the generated image.
And, as shown in Table 7, the evaluation metrics are all significantly lower than our method.
This also indicates that WaP1 is also important in extracting the information of the first layer.

In addition, we perform ablation experiments on the number of Super Feature Pooling
Transformers. We use a SFP module and the visualization result is shown in Figure 8h.
Although it preserves good salient features, the enhancement of the detail part is not as good
as our two SFP modules, and the sky also forms overexposure. The superiority of our use
of two SFP modules can also be seen in Table 7. Moreover, we try to use three SFP modules
to extract features but unfortunately fail when training the auto-encoder. The reason for the
failure is that the last layer of the reconstructed network uses a Sigmoid activation function,
which causes the gradient to disappear in the network with deep superposition.
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4.4.4. Analysis of Global Features Fusion Strategy

For the global feature fusion strategy, we use the simple l1-norm and softmax-like
function-based strategy, which can also achieve good fusion results. Thus, in the ablation
experiments, the addition strategy and the average strategy are performed. As shown in
Figure 8i,j, the addition fusion strategy excessively enhances the salient features, resulting
in over-exposure of the image. However, using the average strategy weakens the infrared
intensity, resulting in the overall dark image, and also introduces a lot of noise in the sky.
In addition, from the evaluation of metrics (Table 7), it can also be found that our method is
generally better than the other two strategies, which confirms that our fusion strategy is
simple and efficient.

4.4.5. Analysis of Detail Features Fusion Strategy

As mentioned in Section 3.1.2, the extracted detail information is sparse and clear,
which can lead to better fusion performance without complicated operations. As shown in
Figures 3 and 9, the generated feature maps (F2

VD, F2
HD, and F2

DD) clearly show the detail
textures. The detail features extracted with our method are very prominent, so they can be
fused well using only a simple addition strategy. In the ablation experiments, we use the
average strategy for the fusion strategy of detailed features. As shown in Figure 8k, using
the average strategy weakens the detail intensity, which results in the overall blurring of
the images. Moreover, it can be seen from the quantitative results (Table 7) that all the
metrics are significantly lower than those of our method. Therefore, the addition fusion
strategy is very effective for detail feature fusion.

Figure 9. Visualization results of feature maps within the SFP1.

4.4.6. Analysis of Different λ

In Equation (12), our hyperparameter λ is set to 10 and the same value is used in
all experiments. Therefore, it is necessary to compare the metrics of fused images with
different λ. As shown in Table 8, the best experimental results can be achieved when λ = 10.

Table 8. The average values of the five objective metrics obtained with different λ on TNO dataset.
(Bold: best, red: second best).

λ SD VIF AG Qab f EN

Ours (λ = 10) 9.4400 0.8021 6.2300 0.4802 7.1578

λ = 1 9.5901 0.7964 6.2220 0.4768 7.2029

λ = 100 9.4001 0.7999 6.1762 0.4820 7.1582

λ = 1000 9.4644 0.7907 6.0682 0.4800 7.1623

λ = 10,000 9.5537 0.8010 6.1070 0.4763 7.1716
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5. Conclusions

In this work, we propose a novel Vision Transformer-based fusion network (SFPFusion)
which combines wavelet-guided pooling and the super feature attention mechanism to
obtain effective global features while enhancing detail information. Specifically, the super
feature attention mechanism decomposes ordinary global attention into the product of
sparse correlation maps and low-dimensional attention, which can capture more long-range
dependencies. Moreover, combined with the embedded wavelet-guided pooling layer,
multi-scale base information and detail textures are well enhanced after extracting global
features. We pass the preserved detail features (vertical, horizontal, and diagonal detail
textures) to the unpooling layer, which can accurately recover the structure and texture
information of the images. In addition, the proposed fusion network is also simple yet
efficient by adopting the simple l1-norm and softmax-like fusion strategy. The experiments
on three public available datasets demonstrate the effectiveness of our proposed method in
terms of qualitative results and quantitative evaluation. Ablation experiments also confirm
the role of different components in our fusion network. In the future, texture and color
information will play an important role in image content recognition. As a result, infrared
and visible image fusion can be widely used in the pretreatment of the image retrieval
system [59], etc.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/s23187870/s1, Section S1. Super Feature Attention; Section S2.
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methods on the MSRS dataset; Figure S2: Qualitative comparison of our method with 8 state-of-the-art
methods on the TNO dataset.
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