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Abstract: Industrial automation systems are undergoing a revolutionary change with the use of
Internet-connected operating equipment and the adoption of cutting-edge advanced technology such
as AI, IoT, cloud computing, and deep learning within business organizations. These innovative
and additional solutions are facilitating Industry 4.0. However, the emergence of these technological
advances and the quality solutions that they enable will also introduce unique security challenges
whose consequence needs to be identified. This research presents a hybrid intrusion detection model
(HIDM) that uses OCNN-LSTM and transfer learning (TL) for Industry 4.0. The proposed model
utilizes an optimized CNN by using enhanced parameters of the CNN via the grey wolf optimizer
(GWO) method, which fine-tunes the CNN parameters and helps to improve the model’s prediction
accuracy. The transfer learning model helps to train the model, and it transfers the knowledge to
the OCNN-LSTM model. The TL method enhances the training process, acquiring the necessary
knowledge from the OCNN-LSTM model and utilizing it in each next cycle, which helps to improve
detection accuracy. To measure the performance of the proposed model, we conducted a multi-
class classification analysis on various online industrial IDS datasets, i.e., ToN-IoT and UNW-NB15.
We have conducted two experiments for these two datasets, and various performance-measuring
parameters, i.e., precision, F-measure, recall, accuracy, and detection rate, were calculated for the
OCNN-LSTM model with and without TL and also for the CNN and LSTM models. For the ToN-IoT
dataset, the OCNN-LSTM with TL model achieved a precision of 92.7%; for the UNW-NB15 dataset,
the precision was 94.25%, which is higher than OCNN-LSTM without TL.

Keywords: Industry 4.0; cyber security; deep learning; optimized CNN; LSTM; transfer
learning; GWO

1. Introduction

Industry 4.0 promotes digitizing conventional industrial production and working
practices through intelligent technologies that facilitate machine-to-machine connectivity.
In industrial automation, all of the production, job processing, and operation mechanisms
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are automated using advanced IoT strategies and instruments [1]. An IoT technique
in industrial automation is called “IIoT” (Industrial Internet of Things). This industrial
automation principle also takes on machine-to-machine (M-M) and human-to-machine
(H-M) communications.

Recently, IoT technology has been increasingly accepted by numerous industrial sec-
tors, which include medical services, the energy sector, healthcare, the manufacturing
and supply chain, and home appliance makers [2]. In IR 4.0 architectures, the key tech-
niques that are widely used are virtualization, automation, ML and DL methods, artificial
intelligence techniques, and IoT. In IR 4.0, these latest advancements are blended into
various sectors of smart manufacturing and communication. In all of these sectors, data are
available on cloud servers or remote platforms, which may cause intrusion attacks; thus,
information security is always demanding in IR 4.0. IR 4.0 utilizes devices and networks for
communication and data transmission, which increases the security risk. Any smart device
connected to a public communication network can offer an easy entrance for intruders and
cybercriminals to accomplish malicious activities, which can lead to huge data losses for an
organization and can financially affect them.

The rapid utilization of IoT in industrial assignments has enhanced industry working
processes and workers’ livelihoods. With the help of cutting-edge innovations such as data
transmission techniques, software solutions, remote monitoring, networking, sensors, and
embedded technology, IoT technology transforms a primary standard physical object into
an intelligent entity.

In the IR 4.0 environment, the data flow among private and public networks for
various purposes, increasing the demand for secure IoT network communications [3].
Figure 1 presents the significant components of IIoT under Industry 4.0;it mainly includes
the Internet of Things (IoT), Internet of Data (IoD), Internet of People (IoP), and Internet of
Services (IoS) technologies.

Sensors 2023, 23, x FOR PEER REVIEW 2 of 19 
 

 

1. Introduction 
Industry 4.0 promotes digitizing conventional industrial production and working 

practices through intelligent technologies that facilitate machine-to-machine connectivity. 
In industrial automation, all of the production, job processing, and operation mechanisms 
are automated using advanced IoT strategies and instruments [1]. An IoT technique in 
industrial automation is called “IIoT” (Industrial Internet of Things). This industrial auto-
mation principle also takes on machine-to-machine (M-M) and human-to-machine (H-M) 
communications. 

Recently, IoT technology has been increasingly accepted by numerous industrial sec-
tors, which include medical services, the energy sector, healthcare, the manufacturing and 
supply chain, and home appliance makers [2]. In IR 4.0 architectures, the key techniques 
that are widely used are virtualization, automation, ML and DL methods, artificial intel-
ligence techniques, and IoT.In IR 4.0, these latest advancements are blended into various 
sectors of smart manufacturing and communication. In all of these sectors, data are avail-
able on cloud servers or remote platforms, which may cause intrusion attacks;thus, infor-
mation security is always demanding in IR 4.0. IR 4.0 utilizes devices and networks for 
communication and data transmission, which increases the security risk. Any smart de-
vice connected to a public communication network can offer an easy entrance for intrud-
ers and cybercriminals to accomplish malicious activities, which can lead to huge data 
losses for an organization and can financially affect them. 

The rapid utilization of IoT in industrial assignments has enhanced industry working 
processes and workers’ livelihoods. With the help of cutting-edge innovations such as 
data transmission techniques, software solutions, remote monitoring, networking, sen-
sors, and embedded technology, IoT technology transforms a primary standard physical 
object into an intelligent entity. 

In the IR 4.0 environment, the data flow among private and public networks for var-
ious purposes, increasing the demand for secure IoT network communications [3]. Figure 
1 presents the significant components of IIoT under Industry 4.0;it mainly includes the 
Internet of Things (IoT), Internet of Data (IoD), Internet of People (IoP), and Internet of 
Services (IoS) technologies. 

 
Figure 1. IIoT key components under the IR 4.0 environment. 

In IIoT communication, many appliances can directly accept and process any com-
munication data in the IIoT network without checking for the security. These issues make 

Figure 1. IIoT key components under the IR 4.0 environment.



Sensors 2023, 23, 7856 3 of 19

In IIoT communication, many appliances can directly accept and process any commu-
nication data in the IIoT network without checking for the security. These issues make the
devices more sensitive to confidentiality and security risks and may endanger their IIoT
solutions and automation implementations [4].

Due to the rapid evolution of IIoT, several security issues have arisen; to deal with
these issues in the existing research, various conventional AI methods have beenutilized,
which have been unable to resolve them properly. In the existing research, deep learning
methods were found to be accurate and had numerous benefits that could be implemented
to handle Industry IoT cyber threats [5]. These attacks have significant safety-related
repercussions and adversely influence the system’s functions. Therefore, intrusion attacks
are one of the most crucial challenges in Industry 4.0. In the IR 4.0 ecosystem, every
day, various cyberattacks occur, which may result in monetary and non-monetary losses.
Therefore, it is critical to recognize these threats and enhance and maintain IR 4.0 network
security [6].

This research uses deep learning algorithms to develop a security model for detecting
intrusions in IIoT networks under Industry 4.0 environments. The motivation and critical
contribution of this study includes the following:

• This research presents a hybrid intrusion detection model using an optimized CNN
and transfer learning for cyber threat detection in Industry 4.0.

• In the proposed model, the parameters of the CNN model were optimized using
the GWO method, which fine-tunes the CNN parameters, i.e., pooling size, kernel
size, number of filters, number of epochs, and batch size, which helps to enhance the
model’s prediction accuracy.

• Using multi-class classification, the proposed hybrid model, existing OCNN-LSTM [1],
and the CNN and LSTM model were tested on two popular IIoT datasets, ToN-IoT
and UNW-NB15.

• An experimental analysis was performed using various performance-measuring pa-
rameters, i.e., precision, F-measure, recall, accuracy, and detection rate; a comparison
analysis was performed betweenthe existing OCNN-LSTM model and the proposed
HIDM model.

• In the experimental results, the proposed HIDM model achieved a precision of 92.7%
for the ToN-IoT dataset and 94.25% for the UNW-NB15 dataset.

The complete article is divided into several sections, which are organized as follows.
Section 2 covers the literature review of the existing research and cybersecurity risk factors
in Industry 4.0. Section 3 covers the materials and methods related to the present study, the
processes of the proposed HIDM architecture, and the dataset description. Section 4 covers
the experimental results and discussion. Section 5 covers the conclusion and future work.

2. Related Work

This section analyzes deep and machinelearning-based research for ID detection in
IR 4.0. Furthermore, it covers existing methods and IDS design patterns for identifying
security breaches in IIoT networks.

The principle of IIoT has popped up due to the application of IoT in the production
industry for unique and memorable activities predicated on emerging technology advances.
An IIoT system comprises an actuator, sensor, control system communication channels,
integration interface, cutting-edge surveillance systems, automotive communications net-
works, and intelligent appliances [7]. Everything in IIoT can be monitored via anonline
platform. Using Industry 4.0 in several industries has enhanced the capabilities of many
sectors, including equipment performance standards, consumer safety, monitoring solu-
tions, and supply chain systems, and its use has substantially increased labor production
efficiency. Moreover, the IIoT network enables a network area to become fully interactive
by authorizing various applications, transmission modules, and quality assurance [8].

A framework for preventing cyberattacks on IIoT equipment using CNN was dis-
cussed in [9]. An auto-encoder cleaned up the statistics in the two models, ensuring a
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decent projection. A deep convolutional neural network was used to empower intrusion
detection and classification. The suggested model was evaluated using the dataset, ISOT,
and X-IIoTID. Another research that used the X-IIoTID data source introduced a highly
reliable approach fordata communication;the presented system relies on deep learning.
Deep neural networks were used to put the developed framework into the experiment.
Based on the findings, a maximum accuracy value was accomplished [10].

A new approach for limiting and maintaining security streams to organizational and
outsourced production line equipment, in addition to perimeter protection, is a necessary
first step in securing industrial production as it adopts Industry 4.0 practices [11]. In
research using UNSW-NB15 and KDD99 datasets, a comparative procedure was performe-
dusing different strategies, including CNN and ANN. The research analyzed the data using
performance measures such as false alarm frequency and precision value [12].

In the KDD-99 dataset, anticipation maximization had a precision of 792.6% and a
false alarm percentage of 22.9%. An ID for IIoTwas suggested in another research study.
A genetic algorithm (GA) was used to specify characteristics throughout the proposed
model. The GA fitness value was accomplished using the random forest method [13]. A
classification process achieved an under-the-curve area of 0.91 and a validation accuracy
of 86.69% when using a UNSW-NB15 industry IDS dataset [14]. The GA-RM model
that produced these outcomes had 16 characteristics. An IoT-based ID system utilizing
deep learning for industry IoT networks was addressed in [13]. The feature extraction
throughout this proposed model was conductedusing an optimization technique. The
support vector machine (SVM) model was chosen for the intrusion classifier. The particle
swarm optimization (PSO) method used in this study was predicated on a “Light Gradient
Boosting” (Light-GB) technique [15].

Ref. [16] proposed a variation of a long short-term memory-based system for IIoTtech-
nology in the manufacturing industry. The attributes were rebuilt throughout the proposed
IDS. After that, a selection criterion was operated among all of the completely new at-
tributes. The features were determined using an auto-encoder method;this method extracts
features from massive, complicated sample data [17]. Throughout this application, the
investigators have used UNSW-NB15 samples. Another research developed an ensemble
learning-based IDS for Industry 4.0 networks [18]. A principal responsive function was
used for feature reduction in this method. The attributes of the responsive correlation
coefficients that were decided upon were addressed to the transfer learning for categoriza-
tion. The proposed framework was tested throughout the NSL-KDD and UNSW-NB15
datasets [19].

Furthermore, the multi-class classifiers method was carried out across both samples.
A deep learning-based IDS system for IIoT was discussed in [20]. The suggested IDS was
tested using samples from the X-IIoT-ID and ToN-IoT industrial datasets. The precision, F1-
score, and accuracy were measured for the proposed model and compared with the existing
ANN model [21]. Table 1 presents a comparative analysis of the existing IDS research.

Table 1. Comparative analysis of the existing IDS research.

Reference Model Used Dataset Outcome

[7] Machine and deep learning algorithms X-IIoTID Deep learning methods achieved
higher accuracy.

[8] Federated learning and edge devices X-IIoTID Binary classification achieved
97.89% accuracy.

[9] Deep neural network ISOT, NSL-KDD, and
X-IIoTID DNN achieves high accuracy.

[10] Clustering algorithm, expectation max,
and ANN UNSW-NB15 and KDD99 Expectation max achieves an

accuracy of 81.25%.



Sensors 2023, 23, 7856 5 of 19

Table 1. Cont.

Reference Model Used Dataset Outcome

[11] GA-LR (Genetic algorithm with
Logistic Regression) UNSW-NB15 Accuracy of 89.87%.

[12] Light gradient boosting machine UNSW-NB15 Accuracy of 87.48%.

[13] Variation of long short-term memory
(VLSTM) UNSW-NB15, ToN-IoT Precision 98.58%.

[14] Extreme learning machine
(ELM)-based IDS NSL-KDD and UNSW-NB15 Accuracy 91.87%.

[15] Deep neural networks
UNSW-NB15, Kyoto,
KDD-Cup99, CICIDS,

NSL-KDD, and WSN-DS
The precision of 94.81%.

[16] ANN for binary classification UNSW-NB15 Accuracy 87.29%.

[17] Two-stage TABU search
(TS-TS) algorithm UNSW-NB15 Precision 84.23%.

[18] Xgboost with linear regression UNSW-NB15 and ToN-IoT Accuracy 79.59%.

[19] LTSM with RNN UNSW-NB15 Accuracy 88.31%.

[20] Deep auto-encoder with LSTM UNSW-NB15 Accuracy 91.81%.

[21] Machine learning ToN-IoT and X-IIoTID Precision 87.84%.

Hybrid Model Optimized CNN with transfer learning UNW-NB15 and ToN-IoT 92.7%precision for ToN-IoT and
94.2% for the UNW-NB15 dataset.

3. Materials and Methods

This section presents the materials and methods related to the research.

3.1. Dataset Details

This research utilized the UNW-NB15 and ToN-IoT industrial datasets. The detailed
descriptions of these datasets are as follows.

3.1.1. UNW-NB15

This dataset was released in 2015 by the Central Australian Core for Cyber Lab and is
widely used by academic researchers. The researchers utilized raw data packets created by
the IXIA perfect combination system for the UNSW-NB15 time series. This dataset is ideal
for IIoT attack analyses [22]. Table 2 presents the description of the UNW-NB15 dataset,
and Table 3 presents the complete details of the UNW-NB15 dataset. The dataset is divided
into an 80:20 ratio for training and testing.

Table 2. UNW-NB15 dataset descriptions.

Data Based on Events Total Records

Normal 38,500

Back-door 950

Worms 174

Reconnaissance 978

Fuzzers 7500

DoS 4800

Shellcode 978

Exploits 12,440

Generic 18,554
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Table 3. ToN-IoT dataset descriptions.

Data Based on Events Total Records

Normal 79,638

Denial of service (DoS) 33,753

Back-door 50,811

Distributed denialofservice (DDoS) 61,650

MITM 105

Injections 45,265

Ransomware 7280

Scanning 71,401

Cross-site scripting (XSS) 21,089

Password 17,185

The UNB dataset contains normal, back-door, worms, reconnaissance, fuzzers, DoS,
shell code, exploits, and generic data attributes [23]. The dataset includes 38,500 nor-
mal records, 950 back-doors, 174 worms, 978 reconnaissance, 7500 fuzzers, 4800 DoS,
978 shellcode, 12,440 exploits, and 18,554 generic. The detailed description of UNW-NB15
is represented in Figures 2 and 3. Figure 2 presents the training and testing dataset, and
Figure 3 presents the visual representation of the training and testing dataset.
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3.1.2. ToN-IoT

This dataset is designed to accumulate and examine mashed datasets from the Indus-
trial IoT, including diversified data, such as sensor data from the IoT, system logs, and
network traffic details. A feasible network creates the IoT for industry [24]. The ToN-IoT
dataset connects several virtual servers, cloud nodes, and physical devices. It includes
assessing the precision and effectiveness of numerous machine intelligence information
security implementations.

This dataset contains industrial cyber attacks. The tests used various aspects, includ-
ing Win-7, Win-10, network samples, transmission detail, and IoT training models and
their respective attacks. TheToN-IoT dataset contains normal, denialofservice, back-door,
distributed denialofservice, MITM, injections, ransomware, scanning, cross-site scripting,
and password records [25].

The ToN-IoT dataset contains attack classes and the numbers of instances for each
class, wherethe details are as follows: normal, 79,638; denialofservice, 33,753; back-door,
50,811; distributed denialofservice, 61,650; MITM, 105; injections, 45,265; ransomware, 7280;
scanning, 71,401; cross-site scripting, 21,089; and password, 17,185. Table 3 presents a
detailed description of the ToN-IoT dataset.

3.2. Proposed HIDM

This research presents a hybrid intrusion detection model for an IIoT network for I4.0.
The proposed model utilizes an optimized CNN with transfer learning. The proposed
model uses the quality of transfer learning in the training and operates it in the CNN.
A TL algorithm takes a framework trained on a massive volume of data and applies its
expertise to a relatively small database. We freeze the network’s initial CNN architec-
ture for classification tasks and only train the final few layers that help to make a final
prediction [26].

Figure 4 presents the architecture of the proposed HIDM model. The complete ar-
chitecture is divided into three sections: optimized CNN, LSTM, and transfer learning.
To enhance the CNN performance, we utilize fine-tuned parameters, i.e., learning rate,
epoch, and weight; these all help optimize the CNN. The increased number of epochs in
CNN helps to enhance the accuracy. The proposed model utilizes a GWO method [27] to
optimize CNN hyperparameters.
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3.2.1. Optimized CNN usingthe GWO Method

In the proposed model, the existing CNN method is optimized by using the GWO
method (Algorithm 1). GWO is used to tune the hyperparameters of the CNN method.
Hyperparameters heavily influence the precision and efficiency of CNN. The selection
of the network’s hyperparameters seems critical and is determined by the activity where
the CNN is utilized. The hyperparameter for the CNN learning model includes “Batch
size, Number of epochs, Pooling size, Number of Filters, and Kernel size.” The learning
algorithm controls the gradient descent method’s performance, and the speed determines
how much updating the earlier weights affects the updating of subsequent weights [28].

A frequency of epochs controls how frequently the learning algorithm updates the
connection weights following the training sample. The overfitting problem in the connec-
tion is resolved via the regularization process as discussed in Algorithm 1. To handle all
of these variables, adjusting these hyperparameters is essential to assist the network in
producing the most detailed findings [29].

Algorithm 1: GWO method for hyperparameter optimization for CNN

Input: input population, Batch size Bc, Agents Ag, dimension Dn, Hyper-parameters H1, H2, H3,
and H4, n is the number of iterations, Hyperparameter function Hfd,
Initialization of population P1, P2 and P3
Output: Optimized hyper-parameter

Select a data sample for training from batch input
For the number of optimization, n

For search desire agent
Determine the optimized fitness function
Select the best search agents A1, A2, and A3.
Update the position of each agent by

(Pos_i)n =
n

∑
k=0

(
n
k

)
A1kaAnn−k (1)

where n is the number of iterations and k position change
end for
Update P1, P2 and P3

End
Sigmoid function (H1, H2, H3,H4, Hfd)

End

3.2.2. OCNN-LSTM with Transfer Learning

An OCNN-LSTM blended module was used in this proposed HIDM model. After the
pre-processing, the CNN needed information from various sources, i.e., the local patterns
in data again. Because the convolution kernels proceed in a fixed direction to dynamically
extract the unobserved characteristics in the flow directions, the one-dimensional CNN
performs very well in time-series network traffic workloads.

The CNN-LSTM framework includes CNN layers for extracting features on training
datasets with long short-term memory for sequence learning. CNN-LSTMs are created to
solve IDS prediction of Industry 4.0intrusiondetectionproblems and to generate explana-
tions from observation sequences in IIoT datasets. We perform the CNN architecture with
each input and send the outcome to the LSTM in a continuous sampling interval.

Transfer learning, as applied to the proposed HIDS, is just moving the weights of the
CNN-LSTM model that have been trained over the IDS dataset to some other. Several
data processing activities have benefited from the TL approach. This happens because the
feature sequences that are primarily obtained by the bottom levels of the CNN architectures
usually generate heavy features that can be applied to various applications, whereas only
the top layers learn vital characteristics for a given dataset. As a result, the bottom levels of
convolutional networks can be immediately applied to a broad variety activity. Fine-tuning
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can be employed in the TL procedure of learning algorithms to enhance the efficiency of
TL [30–36].

3.3. Performance-Measuring Parameters

We utilize five broadly utilized specifications analyzing the model’s performance:
precision (PC), accuracy (AC), true positive rate (TPR), false positive rate (FPR), and
F1-score [30,31].

AC =
(TP + TN)

(TP + TN + FP + FN)
∗ 100 (2)

TPR =
TP

(TP + FN)
∗ 100 (3)

FPR =
FP

(FP + TN)
∗ 100 (4)

Precision =
TP

(TP + FP)
∗ 100 (5)

Recall =
TP

(TP + FN)
∗ 100 (6)

F1 = 2 ∗ (Precision ∗ Recall)
(Precision + Recall)

∗ 100 (7)

4. Experimental Results

This section covers the experimental scenario, setup, parameters, and result comparisons.

4.1. Dataset and Data Pre-Processing

This research utilizedthe popular ToN-IoT and UNW-NB15 Industrial IoT datasets.
These data samples include numerous problems, such as missing values, excessive features,
redundancy, and behavioral duplicates, whichdegrade model performance. We used
class weights to counterbalance the data and improve the classifier performance. From
each attack subclass category and its general behavior and vulnerability condition, a
ranked column is incorporated within the ToN-IoT samples. The dataset was presented
in the CSV file format. This dataset mainly contains nine key attack classes. The attack
samples in UNSWB-15 were separated among nine classes in a CSV format called “normal
class” and “attack class.” We identified and eliminated records with incomplete data, i.e.,
the NaNclass.

Categorical data in the dataset must be transformed into numerical values because DL
techniques only work on numeric data. The Label Encoder class from the sklearn package
was utilized for this conversion. Each attribute value was assigned a numerical value.
The dataset contains properties measured at different levels in the specimen. The sample
data must be expressed in a consistent specific metric to accurately assess these specimens
employing DL techniques. With this aim, by using the Standard Scaler class within the
sklearn public library, the results of the observations in the dataset were normalized well
with the Z-Score normalization technique with just a mean average of zero as well as a
normal deviation of one.

Additionally, we added regular vectors towards the “NaNclass,” changed the “NaN-
class” variables to zero, and eliminated fixed attributes that served no purpose (e.g., dsport,
srcip, dstip, and sport). When applying a feature-based strategy, independent of the du-
ration of the attack, it is critical to “know” the properties of all previous windows. Each
window is transmitted in a single packet to detect whether previous transmissions triggered
an attack more on the current datagram.
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4.2. Experimental Details

The proposed HIDS model and existing OCNN-LSTM model [1], CNN, and LSTM
models were implemented using Python programming and tested on two popular online
datasets, ToN-IoT and UNW-NB15. The performance of the proposed method was tested
in two experiments. The first experiment was performed on the ToN-IoT dataset, and the
second was performed on the UNW-NB15 dataset.

4.2.1. Experiment1 for TON-IoT Dataset

The ToN-IoT dataset discussed in Section 3 includes diverse statistics collectedfrom
various platforms utilized in Industrial IoT; it includesWin-7, Win-10, network samples,
transmission details, andIoT.

In this experiment, the proposed HIDM model (OCNN-LSTM with transfer learning)
and the existing OCNN-LSTM [1] model were used in a multi-class context to measure
their effectiveness. The dataset was divided into 70:30 ratios for training and testing. The
tests used various aspects, includingWin-7, Win-10, network samples, transmission detail,
andIoT training models. The results were calculated for epoch 50 and epoch 100. Table 4
presents the outcome of the proposed model for the TON-IoT dataset.

Table 4. The outcome of the proposed model for the TON-IoT dataset.

Model Type Parameters
Source Type

Win-7 Win-10 Win-10 Network Network type

OCNN-LSTM [1]

Training 23,789 29,878 98,9145 1,854,791

Testing 6897 8178 325,147 5,478,985

Epoch 50 30 47 4 2

OCNN-LSTM with
Transfer Learning

Training 23,789 29,878 989,145 1,854,791

Testing 6897 8178 325,147 5,478,985

Epoch 50 34 45 6 3

The first experiment calculates various simulation results for OCNN-LSTM [1] and the
proposed OCNN-LSTM with transfer learning. Figures 5–8 present the simulation results
for Experiment 1 of the proposed model for the ToN-IoT dataset. Figure 5 presents the
simulation results of the confusion matrix for the proposed HIDM model. Figure 6 presents
the results for the ROC Curve (TPR vs. FPR), Figure 7 presents the simulation results of
the training and validation accuracy, and Figure 8 presents the simulation results of the
training and validation loss of the proposed model for the ToN-IoT dataset.

Table 5 presents the simulation results of the experiment of the proposed model and
the existing CNN-LSTM, simple CNN and LSTM models for the ToN-IoT dataset. The
existing CNN-LSTM [1] model achieved a precision of 89.1%, recall of 49.6%, accuracy of
87.3%, and F1-score of 48.6%. The existing CNN model acquired a precision of 81.1%, recall
of 48.1%, accuracy of 73.1%, and F1-score of 42.1%, and the similar existing LSTM model
achieved a precision of 85.1%, recall of 47.1%, accuracy of 78.1%, and F1-score of 44.1%.
The existing CNN and LSTM models have less accuracy.

We applied the transfer learning method with an optimized CNN and LSTM in the
proposed model. The optimized CNN fine-tuned the hyperparameters, and the TL method
enhanced the prediction accuracy by using knowledge transformation. The proposed
model achieved a precision of 92.7%, recall of 52.39%, accuracy of 94.4%, and F1-score
of 56.6%. This experimental analysis has proven that after applying the TL method, the
performance of the CNN-LSTM model is slightly increased. The proposed model presents
better results.
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Table 5. The outcome of the proposed model for the ToN-IoT dataset.

Model Type Parameters
Class Type

Normal DoS DDoS Back-Door MITM Injections Ransomware Scanning Password XSS Average

Existing
OCNN-LSTM [1]

Precision 1 0.78 0.86 0.89 0.89 0.89 0.89 0.88 0.92 0.91 0.891

Recall 1 0.08 0.07 0.06 0.91 0.61 0.45 0.78 0.35 0.65 0.496

Accuracy 1 0.85 0.87 0.71 0.91 0.81 0.89 0.88 0.94 0.87 0.873

F1-Score 1 0.08 0.07 0.06 0.91 0.61 0.45 0.78 0.25 0.65 0.486

Existing CNN

Precision 1 0.71 0.79 0.85 0.81 0.812 0.82 0.802 0.812 0.80 0.81

Recall 1 0.06 0.05 0.05 0.8 0.55 0.40 0.70 0.32 0.60 0.48

Accuracy 1 0.81 0.76 0.63 0.81 0.71 0.79 0.78 0.74 0.77 0.73

F1-Score 1 0.07 0.06 0.05 0.81 0.54 0.41 0.71 0.21 0.61 0.42

Existing LSTM

Precision 1 0.73 0.81 0.86 0.84 0.85 0.86 0.85 0.87 0.85 0.85

Recall 1 0.07 0.06 0.06 0.85 0.59 0.41 0.70 0.31 0.62 0.47

Accuracy 1 0.82 0.77 0.66 0.85 0.76 0.81 0.82 0.79 0.79 0.78

F1-Score 1 0.071 0.062 0.050 0.82 0.52 0.40 0.71 0.21 0.60 0.44

Proposed
OCNN-LSTM with
Transfer Learning

Precision 1 0.91 0.9 0.925 0.932 0.918 0.91 0.89 0.93 0.95 0.927

Recall 1 0.081 0.074 0.065 0.94 0.689 0.51 0.79 0.41 0.68 0.5239

Accuracy 1 0.97 0.98 0.91 0.93 0.96 0.94 0.89 0.95 0.91 0.944

F1-Score 1 0.091 0.087 0.098 0.94 0.78 0.56 0.87 0.45 0.78 0.566

4.2.2. Experiment2 for UNW-NB15 Dataset

The UNW-NB-15 dataset discussed in the sub-sections of Section 3 includes diverse
statistics collected from various platforms that are utilized in Industrial IoT. The dataset
contains ten classes of multiple attacks and forty-three features.

In this experiment, the proposed HIDM model (OCNN-LSTM with transfer learning)
and existing OCNN-LSTM [1] model were used in a multi-class context to measure its
effectiveness. The dataset was divided into 80:20 ratios for training and testing. The results
were calculated for epoch 50 and epoch 100. Table 5 presents the outcome of the proposed
model for the UNW-NB-15 dataset.

The second experiment calculates different simulation results for OCNN-LSTM [1] and
OCNN-LSTM with transfer learning (proposed model). Figures 9–14 present the simulation
results for Experiment 2 of the proposed model for the ToN-IoT dataset. Figure 9 presents
the simulation results for the confusion matrix of the proposed model, Figure 10 presents
the loss function evolution during training, Figure 11 presents the accuracy evolution
during training, Figure 12 presents the precision evolution during training, and Figure 13
presents the recall curve for training of the proposed model for UNW-NB15. Figure 14
presents the ROC curve for TPR vs. FPR in the proposed model for UNW-NB15.
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Table 6 presents the simulation results of the experiment of the proposed model and
the existing OCNN-LSTM, CNN, and LSTM models for the UNW-NB15 dataset. The
existing CNN-LSTM [1] model achieved a precision of 90.91%, recall of 51.66%, accuracy
of 91.02%, and F1-score of 46.31%. We applied the transfer learning method with an
optimized CNN and LSTM in the proposed model. The optimized CNN fine-tuned the
hyperparameters, and the TL method enhanced the prediction accuracy by using the
knowledge transformation.
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Table 6. The outcome of the existing and proposed models for the UNW-NB15dataset.

Model Type Parameters
Class Type

Normal Back-Door Worms Reconnaissance Fuzzers DoS ShellCode Exploits Generic Average

Existing
OCNN-LSTM [1]

Precision 1 0.87 0.89 0.91 0.92 0.91 0.901 0.867 0.914 0.909

Recall 1 0.078 0.089 0.078 0.95 0.78 0.55 0.67 0.45 0.516

Accuracy 1 0.89 0.87 0.91 0.9 0.87 0.914 0.89 0.95 0.910

F1-Score 1 0.66 0.45 0.55 0.087 0.074 0.056 0.84 0.45 0.463

OCNN-LSTM with
Transfer Learning

Precision 1 0.91 0.94 0.93 0.94 0.93 0.95 0.93 0.95 0.942

Recall 1 0.085 0.0901 0.0845 0.96 0.812 0.65 0.712 0.556 0.550

Accuracy 1 0.91 0.86 0.92 0.93 0.914 0.923 0.923 0.96 0.927

F1-Score 1 0.067 0.54 0.65 0.086 0.087 0.066 0.89 0.67 0.451

Existing CNN

Precision 1 0.81 0.82 0.82 0.82 0.81 0.801 0.827 0.814 0.809

Recall 1 0.068 0.079 0.068 0.85 0.68 0.45 0.57 0.41 0.456

Accuracy 1 0.809 0.807 0.801 0.81 0.81 0.814 0.809 0.82 0.810

F1-Score 1 0.566 0.40 0.45 0.077 0.070 0.046 0.74 0.35 0.413

Existing LSTM

Precision 1 0.84 0.83 0.84 0.83 0.83 0.821 0.847 0.824 0.829

Recall 1 0.071 0.075 0.071 0.88 0.72 0.52 0.59 0.46 0.48

Accuracy 1 0.829 0.827 0.831 0.831 0.841 0.854 0.839 0.852 0.850

F1-Score 1 0.596 0.46 0.465 0.087 0.080 0.056 0.84 0.45 0.483

The proposed model achieves a precision of 94.2%, recall of 55.01%, accuracy of 92.71%,
and F1-score of 45.12%. This experimental analysis has proven that, after applying the TL
method, the performance of the CNN-LSTM model is slightly increased. The proposed
model presents better results for the UNW-NB-15 dataset.

5. Discussion and Conclusions

This research presented a hybrid intrusion detection model using OCNN-LSTM with
transfer learning for IIoT networks in Industry 4.0. This research utilizes the popular IIoT
datasets ToN-IoT and UNW-NB15. The proposed HIDM and existing CNN models were
implemented on these two datasets. The proposed model uses transfer learning, which
helps to enhance the prediction accuracy. The TL method transfers the training model
knowledge into the OCNN-LSTM model, which allows for this model to more efficiently
and precisely predict the attack classes from datasets. We applied the transfer learning
method with an optimized CNN and LSTM in the proposed model. The optimized CNN
fine-tuned the hyperparameters, and the TL method enhanced the prediction accuracy by
using the knowledge transformation. The proposed HIDM model achieved a precision of
92.7% for the ToN-IoT dataset and a precision of 94.25%for the UNW-NB15 dataset, which
proves the proposed model’s strength.

Memory and processing time are the two critical issues experienced when conducting
this research, so we utilized class weights in place of scores, wherein the proposed HIDM
was constrained by CPU capabilities such as storage, exaction memory, and testing and
training time. We will overcome the training and validation loss in a future work. We will
implement the proposed model in a real-time I4.0 environment to monitor and detect live
data and will also try to compare it with more profound learning models.
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Abbreviations
The following abbreviations are utilized in this research.

Abbreviation Details
DL Deep learning
TL Transfer learning
IDS Intrusion detection system
CNN Convolution neural network
LSTM Long short-term memory
DoS Denial of service attack
DDoS Distributed denial of service attack
IoT Internet of Things
IIoT Industrial Internet of Things
OCNN Optimized CNN
GWO Grey wolf optimizer
HIDM Hybrid intrusion detection model
H-M Human-to-machine
M-M Machine-to-machine
ML Machine learning
ANN Artificial neural network
GA Genetic algorithm
SVM Support vector machine
PSO Particle swarm optimization
Light-GB Light gradient boosting
IoD Internet of Data
IoP Internet of People
IoS Internet of Services
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