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Abstract: This study introduces a prototype end-to-end Simulator software tool for simulating two-
dimensional satellite multispectral imagery for a variety of satellite instrument models in aquatic
environments. Using case studies, the impact of variable sensor configurations on the performance
of value-added products for challenging applications, such as coral reefs and cyanobacterial algal
blooms, is assessed. This demonstrates how decisions regarding satellite sensor design, driven by cost
constraints, directly influence the quality of value-added remote sensing products. Furthermore, the
Simulator is used to identify situations where retrieval algorithms require further parameterization
before application to unsimulated satellite data, where error sources cannot always be identified or
isolated. The application of the Simulator can verify whether a given instrument design meets the
performance requirements of end-users before build and launch, critically allowing for the justification
of the cost and specifications for planned and future sensors. It is hoped that the Simulator will
enable engineers and scientists to understand important design trade-offs in phase 0/A studies easily,
quickly, reliably, and accurately in future Earth observation satellites and systems.

Keywords: end-to-end simulator; optical sensors; design; remote sensing; optics; satellite; SmallSat;
CubeSat; coral reefs; cyanobacterial blooms; bathymetry

1. Introduction

AquaWatch Australia is a mission of the Commonwealth Science and Industrial
Research Organisation (CSIRO, Australia’s national science agency) to build an integrated,
operational system combining in situ and Earth observation data for monitoring and
managing Australia’s inland and coastal water bodies. The AquaWatch Concurrent Design
Facility study [1] identified the need for an end-to-end simulator that could assess trade-offs
in satellite instrument design in early phase 0/A studies. This led to the present study called
the “AquaWatch Pathfinders: Earth Observation (EO) Sensor Design Simulator Testbed
(End-to-End Simulator)”. A virtual testbed in the form of an end-to-end simulation tool is
an essential component of the design process of any new Earth imaging system [2–6]. The
development of new optical satellite sensors requires multiple trade-offs between cost and
sensor specifications, including the ground sampling distance (GSD); the number, width,
and position of spectral bands; swath width and the instantaneous field of view; temporal
resolution (revisit time); and radiometric sensitivity. New sensors must demonstrate that
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they meet or exceed the minimum requirements for a given application, and the impact
of any sensor design trade-off on the quality of the final value-added product should be
clearly demonstrated to assess the benefits of costly design decisions. Having a tool that
can simulate how sensor design trade-offs impact the final product quality will enhance
the efficient and cost-effective design of future sensors. Sensor design trade-offs are usually
assessed by using airborne or in situ remote sensing data [7], which are processed using
an instrument model or from highly specialized end-to-end simulators [8–12]. Having a
sensor-agnostic or sensor-flexible simulator tool minimizes the need to collect airborne data
and allows for greater flexibility in exploring various applications.

An end-to-end simulator must capture the entire process of satellite observation, in-
cluding the forward (observation using the sensor) and inverse (producing value-added
products from the sensor) components (Figure 1). Briefly, the forward component incor-
porates the simulation of water-leaving radiance, propagation through the atmosphere,
and the sampling of a scene using a sensor model to produce sensor images of raw un-
calibrated radiance. The sensor model sampling the scene (across the track and along
the track) incorporates the spatial, spectral, and radiometric characteristics of the sensor.
The inverse problem includes the calibration of at-sensor radiances (so-called Level 1 pro-
cessing), georeferencing, atmospheric correction to produce remote sensing reflectance
(Rrs) (see Appendix A for definition) values, and the application of algorithms to produce
quantitative geophysical value-added products (Level 2 processing).
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This study presents the initial results from a modular prototype end-to-end sim-
ulator (the Simulator) similar to the models in [5,8,12], which have been designed for
and applied to water applications. As aquatic applications have more demanding instru-
ment requirements than typical vegetation applications (e.g., higher signal-to-noise ratio,
narrow spectral bands) [13,14], design decisions have greater consequences for product
quality [2,5,12]. The Simulator can simulate two-dimensional images for various satellite
instrument model configurations using simulated input radiance data from synthetically
constructed scenes to investigate the impact on value-added products. Using the output
from in-water simulations as input data to the Simulator, the effect of sensor configuration
on value-added products (e.g., chlorophyll-a (chl-a); water depth (bathymetry); and sub-
strate type, which refers to the type of material on the bottom of the lake or ocean floor
such as sand, coral, or seagrass) can be directly assessed. Similarly, differences in water
quality information products due to the application of a range of retrieval algorithms can
also be determined. Several case studies are presented, along with a simplified trade-off
study, to demonstrate the utility of the prototype Simulator as an instrument design tool for
examining trade-offs in instrument specification and instrument performance for a variety
of water-related applications. This study explores the resulting differences in product
quality for CubeSat versus SmallSat class instruments (e.g., [15–17]), thereby enabling a
quantitative assessment of the impact of design decisions on downstream applications.

2. Materials and Methods
2.1. Simulator Description
2.1.1. Architecture and Scene Construction

The prototype Simulator supports a set of instrument types, each with a suite of
instrument parameters that may be set by the user. This is the basis for exploring various
satellite instrument designs. The instrument samples the radiance field at the top of the
atmosphere as it transits a region of Earth’s surface and generates the corresponding Level-0
data (uncalibrated digital numbers). The radiance across the region is constructed from 2D
geospatial maps and 1D hemispherical radiance fields. This leverages 1D radiative transfer
simulations to provide a pseudo-3D description of spatially varying TOA radiance over
large regions. The instrument samples this region on demand, based on the position and
orientation of the instrument as it orbits Earth. The pseudo-3D structure is defined as a
“scene”. It is a flexible model that can describe spatially varying spectral radiance over large
areas with a very small quantity of input data, but the inherent flexibility demands complex
structures to define the input.

The goal of the scene is to allow the user to construct models that represent realistic
scenarios that an actual satellite-borne instrument would observe. A library of 1D radiative
transfer simulations provides a multidimensional parametric space for reflectance (Figure 2).
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Spatial maps describe the variation in reflectance at Earth’s surface. A scene descrip-
tion file merges all of this information into a structure that allows the spectral radiance
in any direction at any location to be extracted. With this scene description language, the
user can construct a model of the reflectance with a variation that is applicable to that
environment (e.g., Figure 3). The Simulator translates this human-readable description into
a software object representing the entire scene and allows the instrument to sample the
scene on demand. The spatial units in scene construction and sampling are arbitrary and
therefore may not represent feature sizes in nature. The relative motion of the satellite and
the optical configuration determine precisely where the scene is sampled and the direction
of the radiance incident on the sensor elements within the instrument.
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Figure 3. Scene construction for a synthetic coral reef: (a) water depth in meters; (b) fractional cover
of seagrass in percent; (c) fractional coverage of rock in percent; (d) fractional coverage of sand in
percent. Scene units are arbitrary.

2.1.2. Instrument Models and Calibration

The Simulator has instrument models for different types of instruments implemented
in the code. These software models translate spectral radiance at the entrance pupil of the
instrument through to the raw digital sample of the imaging array sensor. The instrument
models are parametric, allowing a wealth of physical properties to be specified, and the
Simulator extracts them from text values in a user-supplied input file. This allows the effects
of instrument design changes to be explored. Properties common to many instruments
include optical aperture size, sensor pixel size, sensor read noise, sensor pixel well depth,
sensor gain, optical spectral transmission efficiency functions, sensor quantum efficiency
function, analog to digital converter bits-per-pixel, and amplifier bias level. One of the
instrument models is based on a long-slit spectrograph with an internal dispersive optical
element, such as a prism or diffraction grating, analogous to the pathfinder “Compact
Hyperspectral Imager for the Coastal Ocean” or “CHICO” (Australian National University).
Another is based on direct imaging with a gradient index filter, similar to the pathfinder
“CyanoSat” (CSIRO) [18]. In each case, the software models the overall effect of the optical
train, not the individual optical elements.

The Simulator incorporates two idealized instrument models: one long-slit spectro-
graph that functions as an ideal radiometer in every sensor pixel, and a second multispectral
instrument with user-defined band-pass filters. This allows for comparisons with the spec-
tral band configurations of other satellite sensors, such as the Sentinel-2 Multispectral
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Imager [19] and the Sentinel-3 Ocean and Land Color Instrument (OLCI) [20]. However,
the configuration is not necessarily something that could be physically realized. Modeling
the characteristics of imaging sensors is common to most of these specification instruments.
The Simulator is designed for extension, by software development in an object-oriented
paradigm, to include more instrument models. It is anticipated that as an instrument design
matures, a more elaborate software model will be developed. One of the existing instru-
ment models would likely provide the starting point. Although a ray-tracing approach
would be possible, it is not what is intended. Decomposing the transformation into a series
of steps and incorporating additional models of the physical processes at the intermediate
steps is more appropriate.

The objective of the Simulator is to provide realistic raw data so that the consequences
of design decisions can be explored. The calibration of raw data is a critical part of
this assessment. The Simulator essentially generates Level-0 data products (uncalibrated
digital numbers). It can also be used to produce the auxiliary data needed to calibrate the
instrument. A utility program was developed to preprocess calibration data and transform
Level-0 products to Level-1 products (calibrated radiances). This transformation results
in a measure of the TOA radiance (LTOA), incorporating the effects of instrument noise
in the raw data and calibration data. It allows the consequences of both random and
systematic errors in calibrating the instrument to be explored (see Appendix A for details
on calibration).

2.2. Demonstration of the Simulator
2.2.1. Case Studies

Input datasets were generated for four applications: the surveillance of cyanobacterial
blooms in small freshwater reservoirs; the mapping of shallow coral reefs; monitoring
turbidity in aquaculture operations in shallow coastal waters; and monitoring chl-a and
CDOM in reservoirs for drinking water supply. Here, we present two of these case studies.
The first case study is of a hypothetical cyanobacterial bloom representative of Lake Hume,
a large drinking and agricultural water reservoir located in southeastern Australia [21]. The
IOPs and Rrs at Lake Hume have been characterized by previous field measurements [22].
Here, we demonstrate the retrieval of chl-a pigment. This case study was also used to
assess the trade-off between the SmallSat and CubeSat class instruments. The second case
study represents idealized shallow-water seagrass mapping at Heron Island based on a
spectral library of substratum reflectance features from seagrass and corals that have been
measured at the site [23]. For this case, the signal from the water column was removed as
noise to determine the fractional composition of the substrate (ocean floor), as well as chl-a
and water depth.

2.2.2. Input Datasets and Scene Generation

Forward radiative transfer models capable of modeling the light field are required
to generate the input data required by the Simulator to construct a hypothetical scene
that is sampled using a given instrument model. The radiative transfer code selected for
this study was the open source Ocean Successive Orders with Atmosphere—Advanced
(OSOAA) [24]. Coupled water–atmosphere radiative transfer simulations with OSOAA
were used to determine LTOA, path radiances (Lpath), upward atmospheric transmittance
(Tup), and surface irradiances (Ed0) for a range of water and atmosphere conditions for the
relevant wavelengths and geometries.

The Heron Island scene was modeled as optically shallow with a single set of SIOPs,
while the water depth varied between one and seven meters with three bottom types: coral,
sand, and seagrass. Bottom reflectance data and SIOPs collected from Heron Island in 2018
were used [23]. The hypothetical Lake Hume scene was constructed from LTOA modeled
using a single set of SIOPs with variable chl-a concentrations (1 to 100 µg/L). In both cases,
an aerosol model was selected for the atmosphere (maritime model for Heron Island and
continental for Lake Hume) [25]. An aerosol optical thickness of 0.1 at 550 nm was chosen.
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A Gaussian random field generator [26] was used to represent the distribution of chl-a
concentrations in a 3000 × 2000 array. For further details, see Appendix B.

2.2.3. Hypothetical Satellite Instruments

A generic multispectral sensor was specified with a nominal aperture size of 120 mm
and spectral bands based on OLCI. OLCI bands were used because they are ideally po-
sitioned for water applications and readily allow for the application of existing algo-
rithms [20]. For this simplified design trade-off study, we considered two additional
hypothetical instrument configurations:

1. A “CubeSat” class instrument with a 60 mm, f#-2.75 telescope utilizing a small-pixel
focal-plane array;

2. A “SmallSat” class instrument with a 240 mm f#-1.80 telescope utilizing a large-pixel
focal-plane array with an increased full-well capacity and gain.

A full list of instrument design parameters is given in Table 1. To avoid adding unnec-
essary complexity to the results, the spectral band configuration and response functions
of OLCI were used. To avoid complexity, the sampling resolution and spectral configura-
tion were held constant, and only differences in instrument noise resulting from different
aperture configurations were explored.

Table 1. Configurations of hypothetical sensor instruments.

Feature Nominal CubeSat SmallSat

Instrument geometry
Altitude (km) 560 560 560

Orbital heading azimuth 0.0 0.0 0.0

Instrument Design

Polarimeter None None None

Aperture size 120 mm 60 mm 240 mm

Pixel size 5.5 µm 5.86 µm 15.5 µm

Focal length 165 mm 165 mm 432 mm

Number of sensors 1024 1024 1024

Exposure time 0.0015 s 0.0015 s 0.0015 s

Number of exposures 1536 2000 2000

Forward tilt angle 0 0 0

Read noise 15.0 e 15.0 e 15.0 e

Pixel well depth 80,000 e 80,000 e 640,000 e

Gain 3.0 e/ADU 3.0 e/ADU 10 e/ADU

Bias 10.4 10.4 10.4

Bits 16 16 16

Optical transmission 0.885 0.885 0.885

Number of bands 19 19 19

Centre wavelengths (nm)
400, 411.8, 442.9, 490.5, 510.5, 560.5, 620.4,
665.3, 674, 681.6, 709.1, 754.2, 761.7,
764.8, 767.9, 779.2, 865.4, 884.3, 897.4

Sampling resolution 20

Spectral response function Sentinel 3A OLCI

2.2.4. Inversion and Validation

TOA radiances obtained as output from the calibration of the instrument model were
atmospherically corrected to determine Rrs using ancillary data products generated from
the radiative transfer simulations used as input to the instrument model (see Appendix A
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for details). The aim of this exact atmospheric correction was not to test the performance of
any specific algorithm but rather to assess the differences in product quality introduced
solely from variable instrument design configurations. For the Heron Island case, the SAM-
BUCA (semi-analytical model for bathymetry, unmixing, and concentration assessment)
algorithm [27] was used to estimate water depth, as well as the bottom type from the
atmospherically corrected scenes. SAMBUCA simultaneously retrieves the concentration
of chl-a and non-algal particles (NAPs), the absorption by colored dissolved organic matter
(aCDOM), the percent substratum (bottom) cover, and uncertainty estimates via a substrate
detectability index. SAMBUCA was parameterized using the same dataset used to produce
the input dataset, including SIOPs and benthic spectra for Acropora sp. coal, coralline sand,
and turf algae commonly found at Heron Island. The advanced linear matrix inversion
(aLMI) [28] was used to estimate chl-a, NAPs, and acdom from the Rrs scenes for the Lake
Hume case. Then, aLMI was parameterized with the same data used to produce the input
datasets and provided with a set of eight averaged SIOP sets that capture the range of
variability in NAPs and CDOM based on in situ measurements at Lake Hume. Again, the
aim was not to assess the performance of different algorithms but rather to examine how
variable instrument design and algorithm retrieval affected product quality. Performance
of value-added product

Retrievals using SAMBUCA and aLMI were evaluated with mean absolute error
(MAE) and bias calculated in log space after [29]:

MAE = 10̂
(

∑n
i=1 |log10(Mi−log10(Oi)|

n )
(1)

bias = 10̂
(

∑n
i=1 log10(Mi−log10(Oi)

n )
(2)

where M, O, and n are the modeled, observed value, and the sample size, respectively.

3. Results
3.1. Water Depth and Chl-a Retrieval Applications

The inputs and outputs for water depth and chl-a value-added products for the
hypothetical Heron Island and Lake Hume and scenes for a generic multispectral satellite
instrument are shown in Figure 4. The output scenes show the introduction of noise from the
instrument model, as well as uncertainties introduced through the applications of retrieval
algorithms. This demonstrates the process of observing a target using a satellite sensor,
which inherently introduces random noise that affects the overall quality of parameter
retrievals. This is especially evident in the depth map retrieved using SAMBUCA, which
shows patches of deep water retrieved using the model that are not present in the input
data. These erroneous depths were highly correlated with incorrect Acropora sp. coral
substrate identifications, which correlated to the location of seagrass in the input scenes. It
is evident that the substrate type selected for algorithm parameterization contributed to
erroneous depth estimations. This demonstrates how the Simulator can be used to identify
cases where algorithms require further training or more representative parameterization
before they are applied to unsimulated satellite data, where error sources cannot always be
identified or constrained.

A comparison of pixel-for-pixel chl-a and depth retrievals (Figure 5) validates the
parameter retrievals from the algorithms against the original simulated inputs. This
quantitatively demonstrates how the noise introduced through instrument sampling and
inversion process affects parameter retrieval performance. For complex water cases (such
as the Heron Island case explored here) and complex products (such as substrate type),
there will always be some discrepancy between inputs and outputs. In this case, the
Simulator provides engineers and scientists with quantitative (best) performance estimates
that arise solely from instrument noise and retrieval algorithms, enabling the quantification
of these effects before satellites are built or launched. Based on the satellite algorithm
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configurations presented here, the best-case MAE for chl-a and water depth estimates over
complex cyanobacterial bloom and reef systems was 14% and 87%, respectively. While over-
and underestimations were evenly balanced for chl-a, depth was strongly overestimated
in regions dominated by seagrass. This highlights how the Simulator can be used to
assess trade-offs in instrument design that lead to better or worse product outcomes, as
demonstrated in the next section.
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Sensors 2023, 23, 7824 9 of 14

3.2. CubeSat versus SmallSat Trade-Off Demonstration

The effect of instrument aperture size (60 vs. 240 mm, CubeSat versus SmallSat) on the
retrieval quality of chl-a concentration for the synthetic Lake Hume cyanobacterial bloom
case is shown in Figures 6 and 7. The results show the quantitative differences in product
performance that can be expected between a CubeSat and SmallSat satellite instrument. The
smaller aperture size results in increased image speckling and over- and underestimation
for chl-a (visible in Figure 6 but more clearly seen in Figure 7). The imager with the
larger aperture resulted in a value-added product with significantly higher definition, less
speckling, and smaller errors than the smaller CubeSat configuration. Figure 7 indicates
the significant influence that instrument design had on inversion performance and product
accuracy—the only difference in this case being from the instrument aperture size as the
algorithms were identical. aLMI retrievals from the CubeSat imager required a greater
number of SIOP sets to find a solution (all eight sets were used) than the retrievals using
the simulated SmallSat image (only three SIOP sets were required for the SmallSat image).
Given that a single SIOP set was used in scene creation, this indicates that the poorer
optical performance of the CubeSat imager led to inappropriate SIOP selection, which
contributed to poor inversion performance. Furthermore, 12,748 fewer pixels were returned
by aLMI using the CubeSat imager. This lower return rate indicates that some pixels could
not be accurately evaluated using the model and were therefore discarded. The aLMI
retrievals from the larger aperture SmallSat imager had lower MAE for chl-a (11%) and
narrower retrieval distributions for NAP concentration. In both cases, the retrieval of
CDOM absorption was poor; however, this was expected in the case of the simulated
high-biomass cyanobacterial bloom.
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chl-a; (b) CubeSat NAP; (c) CubeSat CDOM; (d) SmallSat chl-a; (e) SmallSat NAP; (f) SmallSat CDOM.

4. Discussion

This study demonstrates a prototype end-to-end simulator for informing satellite
instrument design for aquatic applications. This includes water and atmosphere forward
models to generate input data, software that enables hypothetical scene creation and sam-
pling using an instrument model, and the inversion process used to create and validate
value-added products from raw data from the top of the atmosphere. This simplified
design trade-off study demonstrates how design decisions, directly driven by cost-related
constraints, directly influence product resolution and quality. Thus, the Simulator is a suit-
able tool for investigating return on investment and user requirements in terms of product
performance without requiring the collection of airborne datasets [5]. The consequences of
design decisions can be thoroughly assessed before instruments are built and launched. In
addition, the Simulator identified specific cases where algorithm retrieval was inaccurate,
enabling algorithms to be fine-tuned and parameterized to improve performance before
application on unsimulated satellite data, where error sources cannot always be identified
or constrained [10]. The simple instrument trade-off example demonstrates the differences
that can be expected in end-user product quality resulting from instrument design decisions
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that are usually driven by cost. It shows how the Simulator can be used to directly verify
whether a given instrument design or configuration meets the accuracy or performance
requirements of end-users before build and launch. The modular nature of the Simulator
enables a quick examination of spectral, spatial, and radiometric trade-offs without requir-
ing highly complex simulators that are only applicable to a particular mission (see below).
The comparison between the SmallSat and CubeSat instruments provides quantitative
performance metrics to support the use of larger, more expensive satellite instruments for
the end-user-driven application under consideration. This is a critical outcome in justifying
mission specifications and costs for future and planned satellite missions.

Similar software tools, already described above, are inadequate in that they are limited
to a specific sensor, to the extent that they can no longer be used to effectively assess design
trade-offs from multiple configurations early in the design process [5,7–10]. Such simulators
include those for missions such as EnMAP [8,11], the Fluorescence Explorer (FLEX) [9],
the Far-Infrared Outgoing Radiation Understanding and Monitoring (FORUM) [10] and
Sentinel-3 [12]. The Selex Galileo is a commercial simulator similar to that described
here, which is designed for early phase 0/A missions to enable the rapid dimensioning
of new optical instruments and to trace the link to user requirements [5]. There are also
several other commercially available simulators with various degrees of sophistication (see
references in [5]). As the Simulator described here is a prototype, a detailed comparison
with existing alternatives is likely premature. Rather, this paper demonstrates tangible
outcomes related to sensor design affecting aquatic applications.

The prototype Simulator should be improved and developed further as a tool for both
instrument design trade-off studies and for research and development applications. For
aquatic applications, functionality implementing realistic adjacency effects (stray light from
bright targets surrounding water) and sun glint on water surfaces should be prioritized,
as in [12], which have been neglected in the cases shown here. The Simulator does not
account for the impact of cloudy conditions (e.g., [10]). The implementation of advanced 3D
radiative transfer models that simulate landscapes (e.g., [30,31]) not currently implemented
in the prototype Simulator, has the potential to provide even more realistic simulations in
the future [4]. Several improvements in the graphical user interface would facilitate easier
use by engineers and scientists, similar to [32]. Further additional development of the
prototype Simulator for applications related to terrestrial environments is envisaged that
would include terrain geometries and bio-optical models for vegetation and land surface
types as forward modeling components [6]. With further development, the prototype Sim-
ulator could be made available either commercially or open source [30,32] as a generalized,
stable, complete, and user-friendly tool to support a broader range of EO applications,
including ground sensing. This would help users understand important design trade-offs
easily, quickly, reliably, and accurately in EO satellites and systems.
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Appendix A

The Simulator natively outputs data in photon units. These data require calibration
to be converted to LTOA. The calibration process involves obtaining a reference radiance
spectrum of a theoretical exposure of the instrument to a Lambertian surface illuminated
through extra-terrestrial solar irradiance. One hundred (100) exposures were obtained
at the nominal exposure time used in the scene (assuming a Lambertian response) and a
zero-second exposure time (to account for bias or instrument noise). These data products
were then used to generate across-swath calibration coefficients that were applied to obtain
LTOA as observed with the instrument.

The following methodology was used to perform a theoretical atmospheric correction:

1. Twenty points in the scene were randomly sampled to obtain the sensor view angle
(θ) and the sun-sensor azimuth difference (Φ).

2. These values were then used to select the direction index and obtain water-leaving
radiance (Lw), surface irradiance (Ed(0+)), LTOA, and upward atmospheric transmit-
tance (Tup). Note: LTOA obtained at this stage are the values that are input to the
instrument model and are distinct from those output from the model.

3. The path radiance (Lpath) is then calculated as follows:

Lpath = LTOA −
(
Tup × Lw

)
(A1)

4. The above equation is then rearranged to solve for Lw (denoted LwAC) and applied to
the instrument model TOA radiance (LTOA(M)):

LwAC =
LTOA(M)− Lpath

Tup
(A2)

5. The remote sensing reflectance (Rrs), based on the water-leaving radiance normalized
to the downwelling irradiance just above the water surface (Ed(0+)), is then calculated
as follows:

Rrs =
LwAC

Ed(0+)
(A3)

Appendix B

A four-component bio-optical model was used to model the inherent optical properties
of water, which included water, phytoplankton, NAPs, and CDOM. The SIOPs for NAPs
and acdom were generated from average values of 55 measurements at Lake Hume [22].
The chl-a-specific SIOPs for the cyanobacterium Microcystis aeruginosa were used [33]. For
details of atmospheric and in-water parameters used for the hypothetical Lake Hume case,

https://www.smartsatcrc.com/
https://github.com/CNES/RadiativeTransferCode-OSOAA
https://github.com/CNES/RadiativeTransferCode-OSOAA
https://github.com/stevesagar/sambuca
https://github.com/stevesagar/sambuca
https://doi.org/10.25919/rtd7-j815
https://github.com/GeoscienceAustralia/DEA-Water-Quality
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see Table A1. For the synthetic Heron Island scene, the chl-a concentration was 0.15 µg/L,
absorption using CDOM at 440 nm was 0.003 m−1, and the concentration of NAPs was 1
mg/L. A solar zenith angle of 20◦ was used.

Table A1. Parameter definitions for hypothetical cyanobacterial bloom at Lake Hume for coupled
water–atmosphere forward modeling.

Chl-a 1, 30, 10, 30, 50, 100 µg/L Horizontal visibility 14 km
Non-algal particles 10 mg/L Relative humidity 70%
aCDOM(440) 1.0 m−1 Cloud cover 0%
Phytoplankton type Cyanobacteria Altitude 0 m above sea level

NAP type Generic Gaseous absorption Gas free atmosphere
(not added)

Bathymetry Optically deep Date 21 June
Vertical distribution Homogeneous Time 11:00 a.m.
Phase function Fournier-Forand Sun zenith angle 60◦

Climatology Cloud-free winter day Spatial resolution 1 pixel
Aerosol profile Continental Spectral resolution 10 nm
Aerosol vertical profile Standard profile Polarization Yes
Aerosol optical thickness at 550 nm Measured mean Angular resolution 5◦

Pressure 1012 mb
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