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Abstract: Brain tumors in Magnetic resonance image segmentation is challenging research. With the
advent of a new era and research into machine learning, tumor detection and segmentation generated
significant interest in the research world. This research presents an efficient tumor detection and
segmentation technique using an adaptive moving self-organizing map and Fuzzyk-mean clustering
(AMSOM-FKM). The proposed method mainly focused on tumor segmentation using extraction
of the tumor region. AMSOM is an artificial neural technique whose training is unsupervised.
This research utilized the online Kaggle Brats-18 brain tumor dataset. This dataset consisted of
1691 images. The dataset was partitioned into 70% training, 20% testing, and 10% validation. The
proposed model was based on various phases: (a) removal of noise, (b) selection of feature attributes,
(c) image classification, and (d) tumor segmentation. At first, the MR images were normalized using
the Wiener filtering method, and the Gray level co-occurrences matrix (GLCM) was used to extract
the relevant feature attributes. The tumor images were separated from non-tumor images using
the AMSOM classification approach. At last, the FKM was used to distinguish the tumor region
from the surrounding tissue. The proposed AMSOM-FKM technique and existing methods, i.e.,
Fuzzy-C-means and K-mean (FMFCM), hybrid self-organization mapping-FKM, were implemented
over MATLAB and compared based on comparison parameters, i.e., sensitivity, precision, accuracy,
and similarity index values. The proposed technique achieved more than 10% better results than
existing methods.

Keywords: brain tumor; adaptive self-organizing map; K-means; gray level co gray level co-occurrence
matrix; medical imaging
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1. Introduction

Medical significance dramatically influenced many researchers with the development
of image-processing technologies. Today’s imaging techniques include computerized
tomography scans, X-rays, positron emissions tomography (PET), and magnetic resonance
imaging (MRI). MRI is the most frequently used diagnosis of brain tumors [1]. The doctors
decide on therapy by assessing the present condition of the tumor based on the diagnostic
value reported. Doctors devise treatments depending on the significance stated in the
diagnosis process by analyzing the current situation of the tumor [2].

The tumor treatment depends on the tumor’s nature and size. However, both the
form and location are most important. It is necessary to recognize the tumor as benign or
non-benign. In the brain with irregular tissues, the tumor can cause uncontrollable growth.
The non-benign tumor can be appropriately removed without affecting any natural tissues
and redeveloped [3]. Non-benign tumors are sometimes considered malignant tumors that
control the role of the neighborhood cells of the brain. This happens primarily because of
the excessive development of irregular tissues. A benign tumor [4] is a distinctive array of
tissues in the brain. It does not depend on the age of humans and occurs in any malefic.
This task can be carried out with various methods, such as radiotherapy or chemotherapy.

The critical distinction is that benign cancers are homogenous, while malignant tumors
are homogenous. Their specific features vary because benign tumors [5] are chemother-
apy/radiation therapies that radiological operatively pulverize malignant tumors. The
MRI technique offers detailed brain knowledge for successfully treating brain tumors, so
any tumor region can be quickly identified in Figure 1. Trained experts utilize magnetic
resonance imaging (MRI) in qualitative and quantitative analysis that depends on human
vision. This is limited to eight bits of grey color as visual checks. The doctors assess brain
tumor prevalence in grades I, II, III, and IV.
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Figure 1. MRI acquisition for brain tumor detection.

In Figure 1, the three Tesla Siemens Magnetom Spectra MR system was used to collect
these test pictures. Then, the images were converted into MRI slices. The brain has a
complex body system closely linked to the skull. Segments of neurologists note that MRI
is carried out manually by slice selection. However, it is time intensive, distracting, and
leads to an incorrect diagnosis. The main goal of medical imaging is to obtain meaningful
and accurate information from these images with as little error as possible. Of the various
medical imaging methods available to us, MRI is the most reliable and safest. The body is
not exposed to any harmful radiation. The proposed work implements an energy-efficient
and hybrid segmentation approach to minimize this problem.

It uses a self-organizing adaptive map and k-means to execute [6]. Segmentation is
intended to distinguish between the brain tumor area from the pathological one and the
brain tumor from the normal one. The procedure uses the hybrid GLCM algorithm to
segment tumors efficiently. A modern technique is used to measure the amount of tumor
after segmentation. Traditional methods make identifying a brain tumor from an MRI
image challenging. The significant advancements for locating brain tumors are image
enhancement and identification. Different techniques include GLCM, statistical, texture,
region-based, and wavelet features [7].
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Additionally, various ways exist to remove the necessary elements from the picture.
Utilizing a wide variety of characteristics for classification acts as a strong deterrent. Gen-
erally, processing the images while segmenting the relevant region from the whole frame
is challenging. Image segmentation splits an entire image into many sets with similar
characteristics for different areas [8]. This method involves the amount of grey background
or colour, form, shape, contrast, rarity, and luminosity. This research presents brain tumor
segmentation using a hybrid model. The proposed hybrid model utilizes an adaptive
method that augments an ASOM with Fuzzy K-means cluster formation. The critical
contribution of this research is as follows:

• This research aims to suggest an automated workflow that can automatically accurately
identify and classify brain tumors. The proposed model’s initial training images were
compiled using the GLCM feature extraction method. One of the most well-known
feature extraction techniques is GLCM, which can determine the textural connection
among an image’s pixels;

• This research utilizes the online Kaggle brain tumor dataset;
• An FKM is used to distinguish the tumor region from the surrounding tissue;
• The proposed AMSOM-FKM technique and existing methods, i.e., Fuzzy-C-means and

K-mean (FMFCM), hybrid self-organization mapping-FKM, were implemented over
MATLAB and compared based on comparison parameters, i.e., sensitivity, precision,
accuracy, and similarity index values;

• The proposed model achieves better precision, accuracy, and sensitivity than
existing methods.

The complete research is organized as follows: Section 2 covers the related work, Section 3.1
covers the dataset details, Section 3.2 explains the proposed method, Section 4 covers the
experimental results and analysis, and Section 5 covers the conclusion and future works.

2. Related Work

An MRI scan automation system using ML was presented in research [1] for detecting
brain cancers. The suggested system went through three phases of implementation. The
first step involved determining if the MR scans showed any signs of malignancy (binary
approach). Second, using a multi-class method, MR scans were analyzed to identify four
distinct tumor types, i.e., normal, glioma, meningioma, and pituitary. Finally, CAMs of
each tumor kind were developed as a supplementary resource for the specialists’ tumor
identification efforts. The findings of the ResNet50, InceptionV3, and MobileNet designs
indicated a 100% overall accuracy for the binary technique. At the same time, for the VGG19
architecture, the figure was 99.71%. A brain tumor automation message was presented
in [2]. The main emphasis of this research was on detection, localization, and segmentation.
Using test data from 793 brain tumors, a 2-D superpixel segmentation method was used
to accurately segment the tumor, with an average dice index of 94 ± 2.6%. The suggested
approach was used to MRI images from the BraTS2018 Dataset to demonstrate its efficacy.
The proposed methodology’s strength and clinical relevance were shown by comparing its
performance assessment parameters to those of the gold standard approach.

An OHDNN (automatically optimized hybrid deep neural network)-based method
for detecting brain tumors was presented in [3]. The suggested method comprised two
parts. Once the data are assembled into pictures, they undergo pre-processing procedures,
including image enhancement and noise reduction. Next, the photos go through a catego-
rization procedure after being cleaned up. In this research, OHDNN was employed for the
classification procedure. In addition, the adaptive rider optimization (ARO) technique was
used to arbitrarily choose a parameter from among those available in the classifiers to boost
the Convolutional Neural Network- Long Short-Term Memory Networks (CNN-LSTM)
classifier’s performance. We used an MRI image dataset in our experiments.

Brain tumor segmentation using CT was presented in [4]. Traumatic brain injuries,
malignant tumors, and skull fractures can all be diagnosed using CT scans. We extracted
pictures from the brain tumor database as a test subject in this research project. Images were
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cleaned of noise and high-frequency artefacts in the pre-processing phase. Median filters are
special nonlinear digital filters that reduce unwanted background noise in digital images
and signals. The proposed method employed a genetic algorithm (GA) in conjunction
with centroid improvements such as grey wolf optimization (GWO) and social spider
optimization (SSO) to boost the precision of the FCM centroid. Compared to prior studies,
the one recommended here achieved the highest possible execution in a cancer picture
segmentation assessment. The results showed that when compared to using separate
algorithms, the hybrid approach (SSO-GA) yielded the best accuracy (99.24%). This study
used MATLAB 2014 to create a classification and segmentation method for brain tumors.

A lightweight implementation of U-Net was presented in [5]. The suggested architec-
ture provided real-time MRI image segmentation. It provided this without requiring much
data to train the proposed lightweight U-Net. Furthermore, no extra data augmentation
process was needed. As a bonus, this study illustrated how the three perspective planes
might be used in place. The ResNet50 network was used to identify brain tumors, as
presented in [6]. They analyzed the results using a variety of traditional data augmenta-
tion approaches. We also provided our main component analysis-based technique. The
ImageNet Dataset was used for training with a network learned from zero and transferred
learning. Through this study, we increased our F1 detection rate to 92.34%. Using the
recommended strategy and implementing learning transfer, we obtained this score using
the ResNet50 network. Additionally, it was also determined, using the Kruskal–Wallis test
statistic, that the suggested approach is distinct from the other traditional methods at the
0.05 level of significance.

Intracranial tumor segmentation (ICTS) data were constructed and presented in [7].
This data set was compiled from actual hospital radiosurgery procedures and shaped by
experienced neurosurgeons and radiation oncologists. It included T1-weighted pictures
with contrast added from 1500 patients and labelled which tumors needed to be removed.
Artificial intelligence (AI)-based categorization of brain cancers using convolution neural
network (CNN) methods was presented in [8] for use with publicly available datasets for
this purpose. It can identify (also known as categorize) tissue as a tumor or non-neoplastic.
Super-resolution approach and ResNet50 architecture detect an accuracy rate of 98.14%
inside the framework.

A contactless tumor removal system to remove phantom tumor tissue autonomously
was presented in [9]. When the size of the internal tumor varied from 7.5 to 12.5 mm, there
was no change in the system’s functioning. The categorization of brain tumor pictures
without human interaction was presented in [10], in which several standards and hybrid
ML models were constructed and evaluated in depth. These models were considered to
find the most effective model for using neural networks for brain tumor classification.
Finally, a stacked classifier was presented that used several distinct cutting-edge methods
to surpass the others. Their performance was 99.2%, 99.1%, and 99.2%, respectively.

A convolutional layer to execute a convolution operation for segmenting and recog-
nizing MRI brain tumors was presented in [11]. Several classification algorithms were used
to determine if an image was normal or pathological. After the data were classified, the
Fuzzy C-Means (FCM) clustering method and its related optimization approaches were
used to keep tabs on the aberrant photos and to choose which ones to segment. In [12],
models were used to compare their performance in detecting and categorizing two distinct
brain tumors. The characteristics needed for brain tumor classification were first retrieved
from several Inception modules. Using Inception-v3 and DensNet201 on test samples, the
suggested technique obtained the maximum performance in detecting brain tumors, with
testing accuracies of 99.34% and 99.51%, respectively, as demonstrated by the findings. This
work suggested strategy is based on the concatenation of features.

An approach for image compression using a deep wavelet autoencoder (DWA) was
presented in [13]. When used together, they dramatically reduced the feature set size that
needs to persist through a subsequent classification task using DNN. It was evaluated
on a dataset consisting of brain images. When comparing the DWA-DNN classifier’s
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performance criterion to those of other classifiers, it was found that the suggested technique
excelled. Using machine learning techniques was presented in [14]. It offered a noninvasive
automated diagnostic approach for gliomas. First, standard pictures were produced using
image standardization techniques such as size normalization and background removal;
next, low-contrast traditional brain images were improved via the modified dynamic
histogram equalization; last, skull removal via outlier identification was provided.

A multi-CNNs technique to identify brain cancers, combining multimodal information
fusion with convolution neural networks, was presented in [15]. First, this research utilized
multimodal 3D-CNNs, an extension of the 2D-CNNs, to produce brain lesions with varying
modal features over three dimensions. As a result, it could better extract the modal of the
differences in information and solve the problem of the comprehensive neighbourhood of
faults needed by 2D-CNNs for their raw input. Once the network’s convergence speeds are
optimized by adding a genuine normalization layer between the convolution layers and the
pooling layer, the overfitting issue may be addressed. The testing findings demonstrated
that the suggested approach for detecting brain tumors could accurately pinpoint tumor
lesions with improved correlation coefficient, sensitivity, and specificity outcomes. The
detection accuracy was much higher than it.

A Sobel edge operator using a closed-contour algorithm with an image-dependent
threshold method was presented in [16]. In another piece of research [17], using the
multi-threshold K-means algorithm, a CAD (computer-aided design) machine method was
used to detect the tumor area and shape. A study [18] reviewed numerous methods for
diagnosing neoplasm. It also developed a hybrid approach for classifying brain tumors
from MRI images. It introduced various techniques of classification. Research [19] reported
the automated morphological identification and differentiation of non-enhancing tumors
from stable brain tumors by localization processes. It implemented an automatic CNN
segmentation method that considered all local features, an input image, and global area
features—developed a fully automated brain tissue detection system using fluid-attenuated
investment recovery image MRI images.

A noise reduction technique [20] that could remove special Image features was used
in a study. A hybrid approach to discrete wavelet transformation was discussed in [21]
to differentiate ordinary or irregular photographs of MRI brain tumors. A revolutionary
strategy of classification that would take the possible vector quantization of normal brain
tissue segment-damaged segment was also discussed. A new, improved approach with
feature optimization for detecting brain tumors was used in [22]. Their scheme used a
threshold algorithm and the comparative brain identification test to increase accuracy
and decrease difficulty during medical image segmentation. The soft edge detection
operator performed the image boundary extraction. A robust, intelligent, creative algorithm
method that reduces the impact of image endorsing and blurring was discussed in [23].
This approach removed the threshold-based MRI brain tumor portion. Morphological
procedures were used to assess edge limits and remove brain skulls correctly. The previous
optimization methods were stuck with optimal local stages, but certain implementations
crashed, so PSO lacked certain features [24].

To solve this problem, [25] introduced SOM-FKM for segmentation and classification
on MRI images but faced the problem of area overlap. It also introduced KMFCM and
intensity adjustment by analyzing volume. The threshold in Alzheimer’s disease was used
by [26] to incorporate current and enhanced segmentation methods for MRI segmentation.
Nearly all of the methodologies mentioned earlier rely upon segmentation of the MR brain
image sequence, while the proposed approach promoted the clear distinction of the T1, T2,
and FLAIR image sequences [27]. Table 1 shows the summary of existing works below.
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Table 1. Related works summary.

References Model Dataset Feature
Validation Performance Remarks

[1]

ResNet50, VGG19,
InceptionV3,
MobileNetand Class
Activation Maps (CAMs)

3441 MRI images No

96.45% with ResNet50,
93.40% with VGG19,
85.03% with InceptionV3
and 89.34% with
MobileNet

[2] DarkNet model T1W-CE MRI dataset No 98.84% Accuracy

[3]
Convolution neural
network and long
short-term memory

1000 MRI images
dataset No 97.5% Accuracy

[4]
Adaptive Neuro-Fuzzy
Inference System and
Support Vector Machine

MRI images dataset No 85.74% Accuracy

[5] U-Net model BRATS dataset No 89% Accuracy

[6] ResNet50 network
Cancer Genome Atlas
Low-Grade Glioma
(TCGA-LGG) database

No 92.34% Accuracy

[7] nnU-Net ICTS dataset No 87.23% Accuracy

[8]
Discrete Cosine Transform
(D.C.T.), CNN, and
ResNet50

ToloharbourDataset No 98.14% Accuracy

[9]
Coupling real-time
intraoperative imaging
modalities

TumorID endogenous
fluorescence imaging
system

No 1.45 RMSE
(Root-Mean-Square Error)

[10] VGG Stacked Classifier
Network 253 MRI ImagesKaggle No 99.2% Accuracy

[11] Convolutional neural
network GBM data set No 98% Accuracy

[12] Inception-v3 and
DensNet201

3064, T1-weighted
contrast MR images No

99.34%, and 99.51% with
Inception-v3 and
DensNet201

[13] Deep neural networks
(DNN.)

RIDER (Reference
Image Database) No 0.93 ± 0.14 Accuracy

[14] Kernel support vector
machine (KSVM)

306 brain images by
Shengjing Hospital of
China Medical
University

No 97.83% Accuracy

[15] Convolution neural
network MICCAI BraTS 2018 No 0.995 sensitivity (SN) and

0.997 specificities (SE.)

[16] Template-based K means,
and Fuzzy C means MRI images No 97.5% Accuracy

Proposed Model AMSOM-FKM 1691 images from
BraTS 2018 dataset Yes

Higher precision, Recall.
Better training accuracy
and less
Validation loss.

3. Materials and Methods

In every clinical evaluation technique, the overall performance of the evolved analysis
device depends on the database taken into consideration based on the trouble to be solved.

3.1. Dataset

The proposed model utilized the online KaggleBraTS 2018 dataset [27]. A single
image session with visualization parameters of MRI scanners included (Siemens, Erlangen,
Germany): Repetition Time T.R. = 9.8 ms, Echo Time T.E. = 4.0 ms, Rotating angle = 10,
Inversion Recovery Time T.I. = 20 ms, Delay Time T.D. = 200 ms, 128 sagittal 1.25 mm
gapless slices, and 256: 256 (1 × 1 mm) pixel size in the image dataset [28]. The clinical
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tumor case between 21 and 37 was used with 1696 images, 12 in Figure 2. Brain imaging
samples of MR (magnetic resonance imaging) were classified as images of T1, T2, FLAIR
(fluid-attenuated reversal recovery), and MRS (magnetic resonance spectroscopy).
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Figure 2. Dataset Includes different types of image sequences 1–12 (T1, T2, and FLAIR) [22]. Figure 2. Dataset Includes different types of image sequences 1–12 (T1, T2, and FLAIR) [22].

T1 images represent white matter in white (internal tissue area) and grey matter
(external tissue area) in grey [28]. In the case of T2-weighted images, it is white for grey
matter and grey for white matter. FLAIR visualization allowed the radiologist to properly
visualize the brain tissue by removing the brain’s fluid material (water and brain fluid)
through sagittal, coronal, and transverse MRI scan tranches. Figure 3 shows tumor image
categories in a dataset. The training in set included 70% of the total images, the validation
set contained 20%, and the testing set included 10%. The picture sequences T1, T2, and
FLAIR were used for the proposed function.
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3.2. Proposed Method

This research presents an efficient tumor detection and segmentation technique using
an adaptive moving self-organizing map and Fuzzy K-mean clustering (AMSOM-FKM).
The proposed approach mainly focused on segmenting tumors using extraction of the
tumor region. The proposed method was implemented over MATLAB. The following
phases were utilized. Pre-processing and development, function extraction, AMSOM
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segments, and K-means were achieved with efficient programming, as seen in Figure 4.
Based on the algorithm, the image of the MRI was classified as usual and abnormal.
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3.2.1. Pre-Processing

The MRI image was pre-processed first and was then used for different processes. The
input images were revamped to 256 × 256 pixels resolution during pre-processing without
missing any image data. The essential tasks are to remove excessive image noise and remove
patients’ names, ages, sex, place, address of residence, and skull. The representation of the
RGB colour was then converted by 256 (0–255) into grey type. It was helpful to imagine the
image quality and to achieve an ideal signal-to-noise level. Following the pre-processing
steps, image enhancement was carried out [29].

3.2.2. Image Enhancement

Numerous image processing methods were developed to increase image quality.
Histogram equalization (EH) is one of the popular global image processes. That is the
method of distributing the degree of prominence of the image over the full spectrum
of histograms [30]. The suggested hybrid segmentation method was implemented from
brightness to improve image quality during the next phase [31]. Suppose mbi and mbo are
the mean brightness of the input image and the image function f obtained after equalization.
In that case, grey pixel information is g-function obtained.

g(l, m) =
mbi

mb0
f(l, m) (1)
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3.2.3. Clustering

Adaptive moving self-organizing (AMSOM) is a unique clustering technique used
by [32], which was used in this work for the segmentation of MRI. The first step begins
with voxel intensities initially evaluated and modelled using SOM (self-organizing map)
prototypes. It is unsupervised learning and groups the same form of characteristics into
two or more dimensional lattices. At the same time, in the output space, different ones
appear. The position vectors were initially determined in the same way as the positions
of the neurons in the hexagonal grid structure, where the voxel intensities were initially
evaluated and modelled using SOM prototypes. The input data were set at the input vector,
and then RєI, rєR so r(t). It was the input vector at time t and s(t)1

i is the raw vector at each
input i. When the unit was closer to the winning neuron, it was defined as the best-winning
neuron. It is calculated at each iterative step using [33].

ws(t) = argmin
{
‖r(t)− s(t)i

1‖
}

(2)

The prototype was updated sequentially. The incremental process used the exponential
decay learning factor and was the neighbourhood function.

si(t + 1) = si(t) + lr(t)·hWi(t)·[r(t)− si(t)
1] (3)

Both factors are inversely proportional to time, so it decreases over time. The incre-
mental process reduces as the neighbourhood weight factor falls, which is a few units. Here,
it indicates the position of the exit space and ‖nu− ni‖ is the distance between the winning
unit and the space. The Euclidean distance is computed as ‖r(t)− s(t)i

2‖. However, after
the initial process, the orthogonal and symmetric matrices T and P of the same size, where
T (p, q) means 0 for no relation, 1 is a connected neuron, and P (p, q) indicates the boundary
age of the neurons [21]. The neurons are nearest neighbours in the present era, meaning
there is 0. Yet, another value means neurons are the closest neighbours. The MTr threshold
is a function of the data dimension (D) given by the MTr threshold [34–36].

MTr = − ln(−D)× ln(F) (4)

In adaptive learning, the neurons’ weight is approximated by an algorithm of the
SO’M array, where wi (t + 1) is used as

wi(t + 1) =
∑i=1

i nj(t)× exp
(
− ‖rj−ri‖2

2σ(t)2

)
× xej(t)

∑
j=1
i nj(t)× exp

(
− ‖rj−ri‖2

2σ(t)2

) (5)

where nj(t) is an integer, hji(t) is the neighborhood function, xej(t) is the average vector of
x, and xej(t) is an adaptive feature. The distances between the neuronal vectors (wi) are
determined at each point and after modifying the neuronal weight vectors. These distances
measure neuronal similarity in the input region [34].

ri(t + 1) = ri(t) + (0.01)
∑i=1

j nj(t).δji(t).(rj(t)− ri(t)

∑i=1
j nj(t).δji(t)

(6)

Value 0.01 explains δji(t) is a distinct feature, µ is a neighbourhood function, γ controls
the diminishing district as a fraction. Since learning is complete, no neurons are added or
deleted. However, at a lower rate, weight and location adaptation vectors are continued [37].
With the following equation, the cluster is produced:

cluster =
k

∑
i=0

n

∑
i=0

uij × exp

(
−‖wj−wi‖2

γ× σ(t)2

)
(7)
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Here, the membership element is. “uij”. The number of AMSOM clusters is “k”, and
the number of input pixels is identified as “n”.

3.2.4. Feature Extraction

In this function, the clusters generated were considered for the extraction feature. The
matrix was constructed at a distance of d = 1 and angles (θ) of degrees (0, 45, 90, 135). It
is calculated at different angles. Grey-level co-occurrence matrix (GLCM) is a textured
character. This profile refers to the touch, i.e., smooth, silky, rough, etc [38–43].

The order of statics was as follows: first-order texture steps were statistics reported
from the original image values, such as variance, and pixel neighbour relationships were
not implemented. Second-order measures describe the relationship between groups of
two (usually adjacent) pixels in the original image. GLCM is the feature extraction tool
used to analyze the textures considered for examining feature analysis [44]. Figure 5 shows
how the grey-level co-occurrence matrix features differentiated the surface of an image by
measuring how often pixel pairs of different values and in a given spatial (θ) relationship
occurred in a photo [45], generating a matrix and then extracting the statistical measures
described in Figure 6.
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3.3. Classification

FKM assigned each object to its group and calculated the distances between all the
groups based on the chosen linking criteria to merge the two closest until only one cluster
remained. The estimated distance was produced using [46] Equation (8).

Yk =
M

∑
p=1

N

∑
q=1

[d
1

m−1
pq

k

∑
i=1

1
dpq

1
m−1

]−1dpq (8)

where k is no. of iteration, N is the data points or pixels present in the input image, M is the
number of clusters formed by FKM, m is the fuzziness coefficient, dpq is Squared Euclidean
distance between pixel xi calculated as ‖R

(
p− cj

)
‖ the co-efficiently obtained due to the

overlapping of clusters.

Clc =
∑N

p=1 ∪m
p,qI(p)

∑N
p=1 ∪m

p,q
(9)

3.4. Volume Estimation

It was evaluated using connected region calculation on segmented images by assessing
the number of pixels covered over the total number of pixels in mm3.

3.5. Performance Parameters

The significant quality parameters that determine the precision and efficiency of the
proposed algorithm are presented as statistical measures, such as the mean square error,
and others were evaluated using Equations (10)–(19). These statistical measures were
briefly defined in [47–53].

MeanSquareError =
1
m

m=1

∑
i=0

n=1

∑
j=0

[R(i, j)− S(i, j)] (10)

PSNR = 10 log
256× 256

MeanSquareError
dB (11)

Computational time =Pre-Processing In Segmentation process+ Classification Process

Computational time
= Pre− Processing_In_Segmentation_process
+ Classi f ication Process

(12)

TanimotoCoefficient =
s(R∩ S)
s(R∪ S)

(13)

DiceCoefficientIndex =
(2× TanimotoCoefficient)
(1 + TanimotoCoefficient)

(14)

SimilarityIndex =
1

1 + FP+FN
2×TP

(15)

OverlapFraction =
1

1 + FN
TP
× 100% (16)

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
× 100% (17)

Sensitivity =
(TN)

(TP + FN)
× 100 (18)

VolumeEstimation = Pixelsize× Extracted_region (19)
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where R is a raw image, S is segmented, TP is a true positive, TN is a true negative, FP is a
false positive, and FN is a false negative [53].

3.6. Proposed AMSOM-FKM Algorithm

The steps of the proposed Algorithm 1 are as follows.

Algorithm 1 Proposed AMSOM-FKM Algorithm

Input: MRI image dataset
Output: Tumor and non-tumor images

Step 1. Convert the colour image to grayscale and resize it to 256 × 256-pixel data.
Step 2. Compute pre-processing of data using histogram equalization. It modifies the brightness

of images to improve contrast.
Step 3. Compute image segmentation and extraction of the region of interest using adaptive

moving self-organizing and decide on the AMSOM’s starting grid layout and size.
Step 4. Initialize the structure and size of a rectangular grid with several neurons N and initialize

vector position.
Step 5. Calculate the moving threshold by the dimension of the data generated using the GLCM

matrix and find the winning neurons.
Step 6. Compute the centroid points for the following using the Euclidean Distance metric.
Step 7. Centroid points are fed to cluster the data and produce K-means clustering
Step 8. Compute the size of the tumor in MR Image. With the help of the size of the tumor, it

classifies tumor and non-tumor images.

4. Result and Analysis

The work was carried out on a laptop with an Intel (R) Core (TM) i5-5005U CPU @
2.00 GHz with 8 GB of RAM using the MATLAB software version (R2018b). The results of
our proposed algorithm were obtained from 42 real data sets of MRI images of different age
groups and genders that predict the tumor’s type, position, and area. The pre-processing
was performed with the removal of the skull and image enhancement followed by clus-
tering, whose Voronoi output is shown in Figure 7. The images were pooled for image
segmentation and comparing the algorithm shown in Figure 8. This table calculated the val-
idation parameters that offer a low mean square value concerning the previous algorithm,
such as KMFCM and SOM-FKM.

Figure 8 shows all abnormal images. Figure 8(1) is the axial flair image with meningioma;
Figure 8(2) is T1-Sagittal obtained from the 35-year-old patient suffering from PNET (primitive
neuroectodermal tumor); Figure 8(3) is T1 Coronary with Contrast Enhancement, Figure 8(4)
and Figure 8(5) show unclear identification of the Tumor region and portions of edema.

Figure 8(6) is a standard brain image. The lateral ventricular system GM and WM were
not identified using the SOM-FKM in Figure 8(1a,1b) KMFKM algorithm. However, perfect
tissue separation and tumor identification was performed with the proposed methodol-
ogy AMSOM-FKM in Figure 8(1c). The result produced with SOM-FKM cannot identify
the Tumor, so AMSOM placed a transparent Tumor region Figure 8(4a,5a) show unclear
identification of the Tumor region portions edema with SOM-FKM, KMFCM.

However, the proposed algorithm produced a clear and good tissue group with a
separate area of tumors and edema shown in Figure 8(4c) in the result with AMSOM-FKM
was distinguished are available and seen in result Figure 8(1c). Peak signal noise ratio
(PSNR) and mean square error (MSE) compare the squared error between the original and
the reconstructed image. There is an inverse relationship between PSNR and MSE so, so a
higher PSNR value indicates a higher image quality (better). The groups produced and
the validation parameters show that MSE and PSNR were 0.03 and 62.91 dB, satisfying the
algorithm’s efficiency.
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Figure 8. Image segmentation of T1, T2, and FLAIR image sequences.

The images of different clusters formed during the clustering extraction of the tumor
region are clearly illustrated in Figure 9. Perfect tumor identification and tissue segmenta-
tion with other sets for size estimation are shown in Figure 9. Output Image 1 produced
five clusters with an exact tumor in cluster 5 with positions X = 75 mm and Y = 183 mm.
Output Image 2 had five clusters with positions X = 176 mm and Y = 37 mm. Output Image
3 with position X = 94 mm, Y = 26 mm. Output Image 4 had five clusters with positions
X = 99 mm and Y = 133 mm.

There was a high variation in tumor size, directly correlating with the disease status
and medical approach. If such minute-size tumors can be identified, it will reduce misdi-
agnosis and enhance early diagnosis. Based on the datasets, machine learning algorithms
were finalized for the model. Underfitting and overfitting are the two main conditions
that can affect accuracy. Underfitting occurs when data are less, and overfitting occurs
when data are extensive. So, an excellent fit algorithm must be used for better performance.
Table 2 shows the experimental results of the proposed AMSOM-FKM and existing meth-
ods, i.e., KMFCM, SOM-FKM, and AMSOM [54].
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Figure 9. Tumor size and location using Output segmented images. Output Image 1 produces
5 clusters with the exact Tumor in cluster 5 with positions X = 75 mm, Y = 183 mm. Output Image 2
has 5 clusters with positions X = 176 mm and Y = 37 mm. Output Image 3 with position X = 94 mm,
Y = 26 mm. Output Image 4 produces 5 clusters with positions X = 99 mm and Y = 133 mm.

Table 2. Experimental results (Proposed vs. Existing Method).

Algorithm MSE PSNR DOI TC

KMFCM 0.07 59.45 0.3 0.24
SOM-FKM 0.07 59.70 0.33 0.22
AMSOM 0.1 58.14 0.34 0.2
AMSOM-FKM (Proposed) 0.03 62.91 0.39 0.24
KMFCM 0.08 58.84 0.5 0.34
SOM-FKM 0.09 58.35 0.33 0.22
AMSOM 0.1 55.42 0.38 0.23
AMSOM-FKM (Proposed) 0.02 63.42 0.53 0.36
KMFCM 0.1 57.6 0.50 0.33
SOM-FKM 0.13 67.16 0.62 0.45
AMSOM 0.09 58.66 0.34 0.20
AMSOM-FKM (Proposed) 0.04 61.93 0.47 0.31
KMFCM 0.08 59.12 0.50 0.36
SOM-FKM 0.1 66.92 0.40 0.22
AMSOM 0.08 58.2 0.33 0.20
AMSOM-FKM (Proposed) 0.02 63.68 0.53 0.36
KMFCM 0.07 59.35 0.48 0.32
SOM-FKM 0.66 54.8 0.38 0.23
AMSOM 0.07 59.88 0.33 0.20
AMSOM-FKM (Proposed) 0.03 63.25 0.48 0.32
KMFCM 0.12 57.24 0.67 0.45
SOM-FKM 0.05 59.48 0.85 0.43
AMSOM 0.17 40.48 0.01 0.201
AMSOM-FKM (Proposed) 0.037 60.48 0.401 0.3014
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Table 2 illustrates the size of extracted tumor and edema region. The comparative
analysis with methodology perceptive and accuracy evaluated was compared and is shown
in Table 3. The 22 features with AMSOM-FKM used by the proposed algorithm were the
overcoming factor for all other techniques. The average accuracy of KMFCM [20] was 98%,
SOM-FKM [19] was 94%, and the proposed was high at 99.8%.

Table 3. Estimation of tumor size.

Estimated Size Actual Volume Difference % Error

Tumor region = 302, pixel size = 1 mm,
Tumor size = 302 mm3 219 mm3 83 mm3 1.4

Tumor region = 288, pixel size = 1 mm,
Tumor size = 288 mm3 284 mm3 4 mm3 1.0

Tumor region = 387, pixel size = 1 mm,
Tumor size = 387 mm3 322 mm3 65 mm3 1.2

Tumor region = 615, pixel size = 1 mm,
Tumor size = 615 mm3, Edema region = 3522,

Edema size = 3522 mm3
601 mm3 14 mm3 1.1

The MRI images of different data compared with different algorithms implemented by
researchers formed in one tumor region are clearly illustrated in Table 4. Tumor identifica-
tion and tissue segmentation with other methods enhanced efficiency and accuracy as the
OTSU method had a high accuracy of 97.3%. In contrast, the hybrid-clustering technique
had 97.69% accuracy. Table 4 clearly states that the accuracy was improved as the features
increased, so the proposed method considered 22 features.

Table 4. Accuracy analysis with various techniques.

Techniques Filters Features Segmentation Classification Accuracy
(Average) (%)

SOM–FKM [18] Median 4 features SOM-FKM - 94

AMSOM [19] Median 3 features AMSOM - 96

KMFCM [20] BCDHE AGLCM
9 features KMFCM SVM 98

CNN [24] Median Intensity Learning without
Forgetting (LwF)

Bayesian
Optimization 84.52

Hybrid clustering [23] Genetic Median
Filter

GLCM and
Gabor feature

Hierarchical Fuzzy
clustering

Lion Optimization
BSVM 97.69

CNN [38] SLIC Momentum LeakyReLU Bayesian
Optimization 98.3

AMSOM-FKM
(Proposed) BCDHE GLCM

22 features AMSOM FKM 99.8

As is clear from Figure 10, the different validating parameter is represented on the
figure’s x-axis, and corresponding values are present on the y-axis, which has no unit.
Accuracy, DOI, Tanimoto index, similarity criteria, overlap fraction and extra fraction, and
sensitivity were the parameters compared. As the accuracy was high, the algorithm was
efficient. As the sensitivity was high, the algorithm was sensitive to variation or noise. This
method showed that the proposed algorithm had better accuracy than existing techniques.

The proposed algorithm allowed neurons to change positions during training, pro-
viding better visualization and faster training time, as shown in Figure 11. Therefore,
cluster numbers were adequate and accurate cluster points that adequately segmented
tissue regions. The proposed algorithm also ranked higher in producing better DOI and TC
values. The average DOI and TC values produced by the AMSOM-FKM algorithm were
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0.435105 and 0.282381. The accuracy shown in Table 4 revealed that the proposed algorithm
produced satisfactory results with 99.8% accuracy. Table 5 demonstrates the performance
evaluation regarding the Dice score and Jaccard index below.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 21 
 

 

Table 4. Accuracy analysis with various techniques. 

Techniques Filters Features Segmentation Classification 
Accuracy 

(Average) (%) 

SOM–FKM [18] Median 4 features SOM-FKM - 94 

AMSOM [19] Median 3 features AMSOM - 96 

KMFCM [20] BCDHE 
AGLCM  

9 features 
KMFCM SVM 98 

CNN [24] Median Intensity 
Learning without  

Forgetting (LwF) 

Bayesian  

Optimization 
84.52 

Hybrid clustering [23] 
Genetic Median  

Filter 

GLCM and  

Gabor feature 

Hierarchical Fuzzy  

clustering 

Lion Optimization  

BSVM 
97.69 

CNN [38] SLIC Momentum LeakyReLU 
Bayesian  

Optimization 
98.3 

AMSOM-FKM  

(Proposed) 
BCDHE 

GLCM  

22 features 
AMSOM FKM 99.8 

As is clear from Figure 10, the different validating parameter is represented on the 

figure’s x-axis, and corresponding values are present on the y-axis, which has no unit. 

Accuracy, DOI, Tanimoto index, similarity criteria, overlap fraction and extra fraction, 

and sensitivity were the parameters compared. As the accuracy was high, the algorithm 

was efficient. As the sensitivity was high, the algorithm was sensitive to variation or 

noise. This method showed that the proposed algorithm had better accuracy than exist-

ing techniques. 

 

Figure 10. Comparative analysis of various algorithms over validation parameters. 

The proposed algorithm allowed neurons to change positions during training, 

providing better visualization and faster training time, as shown in Figure 11. Therefore, 

cluster numbers were adequate and accurate cluster points that adequately segmented 

tissue regions. The proposed algorithm also ranked higher in producing better DOI and 

TC values. The average DOI and TC values produced by the AMSOM-FKM algorithm 

were 0.435105 and 0.282381. The accuracy shown in Table 4 revealed that the proposed 

algorithm produced satisfactory results with 99.8% accuracy. Table 5 demonstrates the 

performance evaluation regarding the Dice score and Jaccard index below. 

Figure 10. Comparative analysis of various algorithms over validation parameters.

Sensors 2023, 23, x FOR PEER REVIEW 18 of 21 
 

 

 

Figure 11. Comparative analysis of various algorithms for time consumption. 

Table 5. Dice score and Jaccard Index analysis with various techniques. 

S. No. Authors Dice Score Jaccard Index 

1 CNN [24] 0.717 72.56 

2 Hybrid Clustering [23] 0.791 89.14 

3 KMFCM [20] 0.896 68.14 

4 CNN [38] 0.918 95.31 

5 AMSOM-FKM (Proposed) 0.956 98.25 

Similarly, Figure 12 shows the outcomes of the proposed model in terms of epoch 

and accuracy/loss results. The proposed model had better training accuracy and valida-

tion for more epochs. Additionally, we observed that training and validation loss were 

more elevated once the number of epochs was less. However, when the number of epochs 

increased, the training and validation loss was less. 

 

Figure 12. Proposed model accuracy and loss results. 

5. Conclusions and Future Work 

In this research, we developed an efficient brain tumor segmentation method AM-

SOM-FKM based on an adaptive moving self-organizing map and the Fuzzy K-mean 

clustering method. Specifically, the Brats18 MRI Tumor Image database was used for this 

study. Detecting and extracting the heterogeneous tumor area from the many MR brain 

Figure 11. Comparative analysis of various algorithms for time consumption.

Table 5. Dice score and Jaccard Index analysis with various techniques.

S. No. Authors Dice Score Jaccard Index

1 CNN [24] 0.717 72.56
2 Hybrid Clustering [23] 0.791 89.14
3 KMFCM [20] 0.896 68.14
4 CNN [38] 0.918 95.31
5 AMSOM-FKM (Proposed) 0.956 98.25

Similarly, Figure 12 shows the outcomes of the proposed model in terms of epoch and
accuracy/loss results. The proposed model had better training accuracy and validation
for more epochs. Additionally, we observed that training and validation loss were more
elevated once the number of epochs was less. However, when the number of epochs
increased, the training and validation loss was less.
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5. Conclusions and Future Work

In this research, we developed an efficient brain tumor segmentation method AMSOM-
FKM based on an adaptive moving self-organizing map and the Fuzzy K-mean clustering
method. Specifically, the Brats18 MRI Tumor Image database was used for this study.
Detecting and extracting the heterogeneous tumor area from the many MR brain images
in the collection is difficult. The suggested method demonstrated superior performance
over the AMSOM and FKM algorithms for solving the segmentation and segregation
issues in the tumor area. By integrating prior information with characteristics extracted
from brain MR images, classifiers may be created for the segmentation techniques. The
proposed method and existing KMFCM, SOM-FKM, andAMSOM were generated using
MATLAB and various performance measuring parameters, i.e., detection rate, accuracy,
loss validation, MSE, PSNR, and DOI. The proposed method achieved more than 10%
better results than existing methods.

In future work, the proposed methodology can be used in radiology for the everlasting
detection and position of the tumor. The same methods can also classify and analyze
pathologies like Parkinson’s disease. The suggested soft computing algorithms should be
used in the field programmable gate array (FPGA) of a clinical MRI scanner so that the
regions and tissues found in the brain can be easily visualized.
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