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Abstract: Many animal aggregations display remarkable collective coordinated movements on a
large scale, which emerge as a result of distributed local decision-making by individuals. The recent
advances in modelling the collective motion of animals through the utilisation of Nearest Neighbour
rules, without the need for centralised coordination, resulted in the development of self-deployment
algorithms in Mobile Sensor Networks (MSNs) to achieve various types of coverage essential for
different applications. However, the energy consumption associated with sensor movement to
achieve the desired coverage remains a significant concern for the majority of algorithms reported in
the literature. In this paper, the Nearest Neighbour Node Deployment (NNND) algorithm is proposed
to efficiently provide blanket coverage across a given area while minimising energy consumption
and enhancing fault tolerance. In contrast to other algorithms that sequentially move sensors, NNND
leverages the power of parallelism by employing multiple streams of sensor motions, each directed
towards a distinct section of the area. The cohesion of each stream is maintained by adaptively
choosing a leader for each stream while collision avoidance is also ensured. These properties
contribute to minimising the travel distance within each stream, resulting in decreased energy
consumption. Additionally, the utilisation of multiple leaders in NNND eliminates the presence of a
single point of failure, hence enhancing the fault tolerance of the area coverage. The results of our
extensive simulation study demonstrate that NNND not only achieves lower energy consumption
but also a higher percentage of k-coverage.

Keywords: distributed mobile sensor network; node deployment algorithm; nearest neighbour;
collective movement

1. Introduction

In recent decades, there has been a significant interest in studying the spectacular
phenomenon of animal collective movement. Such collective movement can be observed
in various biological events, including the migration of bacteria [1–3], the flocking of fish
and birds [4–9], and the coordinated motion of ants [10,11], whether in small or large
groups. What makes these events truly fascinating is the distributed decision-making and
leaderless movements of the individuals, resulting in coordinated behaviour. For example,
the leaderless bird flock motion creates amazing patterns in the sky, which arise from the
distributed decision-making processes of each bird. Understanding and analysing these
collective movements can provide valuable insights for designing distributed decision-
making systems. By developing models and algorithms inspired by the study of animal
collective movements, it becomes possible to simplify the decentralized decision-making
processes in complex systems, which can be used in various fields such as sensor networks,
robotics, and more.
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The collective movement of animals inspired many models [12–16]. One of the pio-
neering discrete models that exemplifies the collective behaviour of autonomous nodes is
Vicsek’s algorithm [14]. This algorithm defines the motion of each self-propelled particle
(SPP), such as a bird, by updating its location based on a local rule that takes into account
the state of each particle and its neighbouring particles. This distributed decision-making
process, known as the nearest neighbour rule, effectively emulates the collective movement
observed in animal aggregations. Over the years, the nearest neighbour rule of Vicsek’s
algorithm has been thoroughly studied and analysed by several researchers, providing
valuable insights [15,17–19]. These studies have acted as a substantial source of inspiration
for many innovative solutions and novel approaches in various research areas, including
mobile sensor networks [19–21].

The analysis and modelling of collective movement in animal aggregations have
had a profound impact on the development of decentralized control mechanisms for self-
deploying mobile sensors [14]. In a network, mobile sensor nodes can emulate the individual
particle behaviour observed in a collective movement to navigate within the network. A
distinguishing feature of mobile nodes is their dynamic decoupling, meaning the movement
of one individual node does not directly affect its neighbouring nodes [15,21–23]. This
characteristic allows for the possibility of creating collective movement among mobile
sensor nodes within a network, based on the nearest neighbour rule.

By employing the nearest neighbour rule, the collective movement within the network
can converge all the mobile sensor nodes and guide them along the same trajectory based
on their initial headings. The concept of convergence in mobile nodes over a period of
time is stated in [22], while also considering limitations on the heading angles in some
specific scenarios. Furthermore, the impact of introducing a static leader into a group of
mobile sensor nodes and how the sensor nodes’ characteristics are aligned with the leader’s
characteristics, are discussed in [17]. It was observed that including a static leader within a
group of sensor nodes, operating under the nearest neighbour rule, leads to the convergence
of their characteristics towards those of the leader. Consequently, by incorporating a static
leader with adequate parameters, the sensor nodes in the network can be brought into
alignment with those parameters, thus achieving convergence. Sensor nodes in a network
can also be heterogeneous meaning leaders or any other sensor nodes in the network have
different characteristics [24].

Building upon the findings presented in [15,20,21,23,25,26], a novel algorithm, which
we refer to as Cheng algorithm, is presented in [22] to tackle the blanket coverage problem
within mobile sensor networks. This algorithm utilises the nearest neighbour rule to
guarantee the convergence of sensor nodes towards their respective assigned leaders
within the group. This concept was initially explored in the context of barrier coverage
with two leaders, aiming to synchronize the group of sensors between these leaders [26].
The exploration then extended to blanket coverage between two defined lines, where a
single leader node is situated at the starting point of the left line to achieve complete
coverage of the designated area. The proposed algorithm has been built from research on
different types of coverage. Initially, a distributed self-deployment algorithm to cover a
line is discussed [26]. Later, the coverage problem has been extended to barrier coverage
and sweep coverage in corridor environment [20,27]. The decentralised control laws used
in [20,27,28] are adopted to provide blanket coverage, full coverage of an area, in [21,23] and
finally [22]. By employing the nearest neighbour rule, the sensor nodes converge towards
the assigned static leader’s characteristics, while a control law restricts their movements
within the defined boundaries. The resulting movement of the sensor nodes ensures that
each sensor traverses the area in a sequential manner, facilitating full blanket coverage.

Although Cheng algorithm [21,22] provides full blanket coverage with no conflict
between sensor nodes, it introduces a deterministic approach by establishing a singular
stream of sensor motion to provide blanket coverage as the sensors are guided by one leader.
It is important to note that this single-stream movement presents a potential single point
of failure, as the entire system relies on the performance of a single leader. Additionally,
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the sequential movement of sensors throughout the entire area not only prolongs the
deployment time but also significantly increases energy consumption. Finally, the Cheng
algorithm may encounter issues with out-of-boundary movements, where the singular
stream continues to operate beyond the predefined boundaries of the area, leading to
increased energy consumption. Needless to say, this heightened energy consumption is of
significant concern, especially for mobile sensors with inherently limited energy sources.
Finding efficient strategies to reduce both the deployment time and energy consumption is
therefore crucial in optimizing the performance and prolonging the operational lifespan
of sensors.

In this paper, we propose a distributed node deployment algorithm, called Nearest
Neighbour Node Deployment (NNND), to achieve blanket coverage in a mobile sensor
network. Leveraging the advantages of parallelism, NNND facilitates the creation of
multiple sensor motion streams, with each stream heading towards a different region of
the designated area. To ensure cohesion within each stream and eliminate the risk of a
single point of failure, a leader is adaptively elected for each stream. This utilisation of
multiple leaders enhances fault tolerance and incorporates collision avoidance mechanisms.
As a result, the algorithm effectively reduces the total distance travelled by sensors, thus
minimizing energy consumption. It especially holds high importance as optimal coverage
with a limited number of sensor nodes is a significant topic in industry and academia [29].
Furthermore, NNND incorporates control laws that prevent out-of-boundary movements.
These control laws account for various features of the area, ensuring that sensor nodes
remain within the predefined boundaries of the RoI.

The rest of the paper is organised as follows. Section 2 explains the preliminaries in
two sub-sections, the area description in nearest neighbour algorithms and the assumptions
of these algorithms. The NNND algorithm is explained in Section 3. The performance
evaluation section to describe the simulation setup and results are under Section 4 and
finally, the paper is concluded in Section 5.

2. Preliminaries
2.1. Area Description in Nearest Neighbour Algorithms

A Wireless Sensor Network (WSN) includes a set of sensor nodes S = {s1, s2, . . . , sn|
n ∈ N}, that provide the area coverage in a Region of Interest (RoI). The RoI can be defined
mathematically. For instance, a rectangular RoI can be specified by two vertical, and two
horizontal lines or four points that are the crossing points of those lines. Every line of a
rectangular RoI is presented as follows:

Wi := {p ∈ R : py = mi ∗ px + bi} (1)

where mi is the slope of the Wi and bi is a scalar associated with the y-intercept of Wi. In a
rectangular RoI where lines are vertical (mi = ∞, x = di) and horizontal (mi = 0, y = bi)
the area is defined asR = {p ∈ R : d1 < px < d2, b1 < py < b2}. This paper considers the
RoI to be a rectangular area.

2.2. Assumptions

We adopt the following commonly used assumptions from the literature [21–23] to
provide a solid foundation for our study:

• All the sensors in the area are assumed to be mobile sensors and can move freely
across the area without any restrictions, i.e., there is no obstacle in the area.

• The sensors are capable of accurately determining their positions within the area and
effectively communicating their information to neighbouring sensor nodes.

• The sensors are aware of their environment and can detect when they cross the
predefined borders within the designated area.
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• In every time step kT, each sensor si moves toward its proper location. This movement
can be shown by Cartesian coordinate, pi(kT), heading, θi(kT), and the speed, V(kT)
for si at time step kT.

• The values of the aforementioned parameters are defined as (θi(0) ∈ [0, π), pi(0) ∈
R,Vi(0) = 10−3), during the initial deployment. Within each following time step, ev-
ery sensor autonomously determines the desired values for its subsequent movement
and adjusts its position accordingly.

• The triangular blanket coverage takes place within the network, where sensors ex-
clusively communicate with their neighbouring sensors within their communication
range, rc. As a result, the movement decisions of each sensor depend on the received
location and coordination information from its neighbours at each time step, kT.

• The set of the neighbours for sensor i at time step kT, denoted as Ni(kT), comprises
those sensors whose distances, ∆i−j(kT), are lower than the rc, as presented in (2).

∆i−j(kT) =
√

pi(kT)2 − pj(kT)2 (2)

• The |Ni(kT)| shows the number of neighbours for si at every time step.
• All sensors possess the capability to detect the boundaries of the Region of Interest and

determine the orientations of their tangents. In the case of vertical lines, the assumed
orientation is equal to sin−1(mi) + π/2.

• The sensing range of every sensor node, si, is limited to rs which is assumed to be
lower or equal to 1/

√
3rc. Therefore the area every sensor, si, covers, C , is:

C = {pj ∈ R : ∆i−j(kT) ≤ rs} (3)

• In addition, the relation between Vmax and rc is considered rc < VmaxT/
√

2 where
Vmax is the maximum velocity of every sensor and T is the period time.

• At each time period T = 1, all the mentioned parameters undergo update for every
sensor, si.

3. Nearest Neighbour Node Deployment Algorithm

The Nearest Neighbour Node Deployment (NNND) algorithm is a distributed al-
gorithm designed for mobile sensor nodes to achieve blanket coverage in an area. Our
algorithm incorporates the nearest neighbour rule and control laws proposed in [21,22] to
facilitate distributed movements of the sensor nodes.

In the algorithms presented in [21,22], control laws are introduced to achieve triangular
blanket coverage in a region defined between two parallel lines, W1 and W2. By applying
the nearest neighbour rule, sensor nodes converge and sequentially move along these lines
to cover the Region of Interest. The movement is limited between W1 and W2 through the
use of control laws.

To enhance the coverage efficiency, we introduce two additional lines, W3 and W4,
with the same slope as W1 and W2, to facilitate sensors’ parallel movement. In our NNND
algorithm, the sensor nodes begin their movement from line W3, where a static leader
sensor node is positioned. Each sensor node moves sequentially towards line W4 and then
transitions towards the unfilled area using newly adopted control laws. This allows the
sensor nodes to move in parallel, ensuring full coverage of the area. Figure 1 illustrates a
deployment of the NNND algorithm.

The NNND algorithm aims to enable sensors to determine their optimal locations in a
distributed manner by exchanging information with their neighbouring sensors, denoted as
Ni(kt), at each time step. In the initial deployment phase, the sensors have the initial values
of θi(0), pi(0), and Vi(0) based on the given assumptions. Additionally, the coordination
variable Θi(kT), representing the coordination motion of sensor i, is initialized at the first
step as Θi(0) = θi(0). Furthermore, the sensors can be positioned on different lines at
each time step, denoted by γ(i, kT), and can occupy various positions along these lines,
represented by Γ(i, γi(kT)). At the initial step, for all sensors si, Γ(i, γi(0)) = 1, and
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γ(i, 0) = 1. These values are updated at each time step according to the predefined rules to
ensure that the sensor nodes are positioned correctly.

Taking into account the initial step and the initial values of the variables, the NNND
algorithm utilizes the nearest neighbour rule and control laws to guide the movement of
sensors in subsequent time steps. This movement can be projected in two perpendicular
directions: (a) the Stabilizer axis and (b) the Thrust-Drag axis. These directions determine
the desired trajectory for each sensor. Thus, the new positions of the sensor nodes are
updated based on the resultant force acting on each sensor. The resultant force considers
factors, such as the influence of neighbouring sensors, environmental conditions, and
control laws.

The Stabilizer axis refers to the direction that helps maintain stability and balance in
the sensor movement after applying the nearest neighbour rule. It ensures that the sensors
stay aligned and coordinated with their neighbouring nodes while navigating through
the area. This axis plays a crucial role in achieving a cohesive and synchronized motion
among the sensors [14]. On the other hand, the Thrust-Drag axis represents the direction
that drives the forward movement of the sensors. The Thrust-Drag axis guides the sensors
to move efficiently and effectively towards their target locations within the area.

By considering both the Stabilizer axis and the Thrust-Drag axis, the NNND algorithm
enables the sensors to navigate the space while maintaining coordination and making
progress towards the goal of achieving full blanket coverage.

W1W1 W2W2W4W4W3W3

Figure 1. Pattern of sensor movements in NNND algorithm.

3.1. Stabilizer Axis

The Stabilizer axis has the same direction Θi(kT) for every sensor si at time step
kT. In a distributed sensor networks with n sensors, S = {s1, s2, . . . , sn|n ∈ N}, the
next direction of sensor si, Θi((k + 1)T), based on the nearest neighbour rule is equal to
χi(kT), Equation (4). The χi(kT) is the average of si and its neighbouring nodes directions,
presented as Equation (5), where Ni(kT) is the set of si neighbours at the time step kT.
Hence, the direction of the Stabilizer axis for each sensor node can vary at every time step
kT depending on the directions’ changes.

Θi((k + 1)T) = χi(kT) (4)

χi(kT) =
1

|Ni(kT)|+ 1 ∑
j∈Ni(kT)+i

Θj(kT) (5)

It is an effective and straightforward approach to provide a clear representation of its
neighbouring location.
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The projection of the neighbouring sensors’ location on the Stabilizer axis is an effective
technique for sensor si to grasp its neighbours’ positions. The ζi,j(kT), represents the
projection of the neighbour sj ∈ Ni(kT) which is calculated in Equation (7). Moreover,
zi(kT) represents the current projection of si on this axis, Equation (8). The average of
these projections is called µi(kT), and is calculated using Equation (9), which represents a
proper location for sensor si based on the nearest neighbour rule at this time step.

ζi,j(kT) = [cos(Θi(kT)), sin(Θi(kT))] ∗ pj(kT)T (6)

zi((k + 1)T) = µi(kT) (7)

zi(kT) = [cos(Θi(kT)), sin(Θi(kT))] ∗ pi(kT)T (8)

µi(kT) =
1

|Ni(kT)|+ 1 ∑
j∈Ni(kT)+i

ζi,j(kT) (9)

As stated in [22] that all the sensors will be moving in the same direction after a
certain number of time steps if the sensor nodes update their locations based on the nearest
neighbour rule. However, relying solely on the nearest neighbour rule is only useful when
covering a line. Moreover, based on one of the control laws, µi(kT) as a movement point
is only valid when sensor nodes are needed in the same line. Therefore, although µi(kT)
represents the next point of the movement on the Stabilizer axis, it is not valid when
zi(kT) > δi(kT). The Equation (10) shows the next movement point on the stabilizer axis

under this condition where δi(kT) = ζi,W4(kT)− (

√
3

4
s ∗ (γi(kT)− 1)).

µi(kT) =

ζi,i(kT)−
√

3
4

zi(kT) > δi(kT)

µi(kT) otherwise
(10)

The next movement point and the current point present the head and tail of the
movement vector. However, the only important value on this axis is the magnitude of
this vector at every time step. The velocity value on this axis shows the magnitude of the
movement vector and it is calculated as below:

V̂i(kT) =
µi(kT)−zi(kT)

T
(11)

3.2. Thrust-Drag Axis

The Thrust-Drag axis constitutes the second component of every sensor, si, movement
in the NNND algorithm. The axis name is inspired by the Drag and Thrust forces on the
aeroplane that behaves similarly to the final movement vector of si on this axis.

On this axis, the projections of the neighbouring nodes’ locations, Ni(kT), in the
perpendicular direction of the Stabilizer axis is calculated, Equation (12), where ψi,j(kT)
represents the projection of every sj ∈ Ni(kT) on the Thrust-Drag axis. Afterwards, the two
nearest projected neighbours on this axis to si which has a greater and lower values than
ψi,i(kT), the projection of si on this axis, are considered as ψi,β(kT) and ψi,α(kT), respectively.
These two neighbours, alongside the situation of si, determine the next movement point of
the si on this axis. The nearest two neighbours are used to explain the surrounding of the
sensor si and manage its movement across the line.

ψi,j(kT) = [sin(Θi(kT)),−cos(Θi(kT))] ∗ pj(kT)T (12)

The next movement point for si on this axis, Ψi(kT), is determined based on the
following condition:
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1. When si is crossing W1 the value of Ψi(kT) is calculated as:

• If only neighbour β exits the value of Ψi(kT) is:

Ψi(kT) =
ψi,β(kT) + rs + ψi,i(kT)

2
(13)

• If there is no α and β neighbours and si is with no neighbour around:

Ψi(kT) = ψi,TD.W4(kT) (14)

where TD.W4 represents an intersection point of W4 and the Thrust-Drag axis at
time step kT and the ψi,TD.W4(kT) is the projection of that intersection point on
the Thrust-Drag axis.

• And in any other situation:

Ψi(kT) =
ψi,α(kT) + rs + ψi,i(kT)

2
(15)

2. In other situations where si is not crossing the W1:

• If both neighbour α and neighbour β exist:

Ψi(kT) =
ψi,α(kT) + ψi,β(kT)

2
(16)

• When there is no α and only β neighbour exists for si:

Ψi(kT) =
ψi,β(kT) + ψi,i(kT)− rs

2
(17)

• If there is no neighbour α and si is the last sensor on the line:

Ψi(kT) =
ψi,β(kT) + ψi,i(kT)

2
(18)

• If there is no α and β neighbours and si is the last sensor on the line:

Ψi(kT) = ψi,i(kT) +
rs

D
(19)

where D is a high number relevant to the number of sensors and area to manage
the movement of the sensors.

• And finally when there is no neighbour α and β:

Ψi(kT) = ψi,TD.W1(kT) (20)

where TD.W1 represents an intersection point of W1 and the Thrust-Drag axis at
time step kT and the ψi,TD.W1(kT) is the projection of that intersection point on the
Thrust-Drag axis.

3. There is a specific situation for the second sensor at each line. The specified distance
of this sensor from the first sensor at the line makes its Ψi(kT) different from other
sensors on the line:

Ψi(kT) =
ψi,α(kT) + ψi,i(kT) + τ

2
(21)

4. Finally, when si reaches to W2:

Ψi(kT) = ψi,TD.W2(kT) (22)
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where TD.W2 represents an intersection point of W2 and the Thrust-Drag axis at
time step kT and the ψi,TD.W2(kT) is the projection of that intersection point on the
Thrust-Drag axis.
The value of Ψi(kT) and the current projection of si on this axis determine the next
movement point for the sensor si. The magnitude of this vector is the significance
parameter of this vector which will be used in this algorithm. The velocity value,
V i(kT), the vectors’ magnitude, is calculated as presented below:

V i(kT) =


0 i on the line

Ψi(kT)− ψi,i(kT)
T

otherwise
(23)

3.3. The Resultant Force

At every time step of the NNND algorithm, every sensor si in the network moves to a
point that is calculated by the resultant force. The resultant force at each step is a vector
which consists of both magnitude and direction for every sensor si to move towards a point.
At every time step, kT, for each si the magnitude of the resultant force corresponds to the
final velocity of that sensor. We presented the calculations of the velocity values for both
Stabilizer, V i(kT), and Thrust-Drag axis, Vi(kT), in previous sections and projections of
neighbouring sensors are shown in Figure 2. The Equation (24) is utilized to determine the
final velocity of every sensor si.

Therefore, the final velocity is calculated as:

Vi(kT) =
√
V̂i(kT)2 + V i(kT)2 (24)

At every time step, sensor si moves towards a terminal point of a resultant vector with
this magnitude.

The direction of the resultant force, θi(kT), for every sensor si is calculated as below:
The Stabilizer axis direction, φ(i, kT), is updated based on the situation of the sensors in
this time step:

φ(i, kT) =

{
Φ i on the line

Θi(kT) otherwise
(25)

Afterwards, the angle of the resultant force, θi(kT), is adjusted based on the current
φ(i, kT) as:

θi(kT) =


φi(kT) + ϑi(kT)− π

2
V i(kT) ≥ 0

φi(kT)− ϑi(kT)− π

2
otherwise

(26)

where ϑi(kT) = cos−1(Vi(kT)/Vi(kT))
Finally, the new position of sensor si at time step kT in the horizontal and vertical axis

is calculated based on the angle and the velocity value as:

pi−x((k + 1)T) = pi−x(kT) + cos(θi(kT)) ∗ Vi(kT) (27)

pi−y((k + 1)T) = pi−y(kT) + sin(θi(kT)) ∗ Vi(kT) (28)

In addition to the location of the sensor si at every time step on different axis, the position
of the sensor on each line and the line number that this sensor is located on is important
and should be updated for the next time step (k + 1)T. If the sensor si has a neighbour β,
the position of the sensor on its line γi(kT), changes using the Equation (29):

Γ(i, γi(kT)) =

{
Γ(β, γi(kT)) + 1 only β

Γ(i, γi(kT)) otherwise
(29)
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Also, if the sensor’s position on the line is higher than the maximum expected number

of sensors on a line, Λ = dW2−x −W1−x
s

e, and it has crossed the W3, the sensor should
move to the next line using Equation (30) and the sensor’s position on the new line is set
to one as expressed in Equation (31). Obviously, Equation (30) becomes ineffective when
movement extends beyond the boundaries of the area. Consequently, the generation of a
new line is circumvented.

As mentioned previously, in NNND each stream has a leader recognised as the first
sensor node on the line. Utilising multiple leaders in the area; one for each stream; enhances
the fault tolerance of the algorithm in comparison to the original algorithm where only one
leader; the first sensor node that reaches the first line; is chosen. Losing the first sensor
node of the line affects the communication between sensor nodes. However, in NNND
failure of one sensor node does not compromise the coverage of the whole area. Moreover,
control laws are adjusted to prevent out-of-boundary movements, resulting in a decrease in
the total travelled distance by sensor nodes and lower energy consumption in the NNND
algorithm. In Table 1, used notations in the NNND algorithm are presented.

γ(i, (k + 1)T) =

{
γ(i, kT) + 1 i on the line

γ(i, kT) otherwise
(30)

Γ(i, γi(kT) + 1) =

{
1 Γ(i, γi(kT)) > Λ

Γ(i, γi(kT)) otherwise
(31)

Figure 2. The Thrust-Drag and Stabilizer axis for a sensor si and its neighbours projections points.
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Table 1. Notation used in the NNND algorithm.

Notation Description

pi(kT) Location of si at time step kT
∆i−j(kT) Distance between two sensor nodes si and sj
θi(kT) The movement angle of si at time step kT
Ni(kt) Set of the neighbours for si at time step kT
|Ni(kT)| Number of neighbours for si at every time step
γ(i, kT) Number of the row si is located on
Γ(i, γi(kT)) Position of the si on the γ(I, kT) row
Θi(kT) Angle between si coordinate system and Global Cartesian coordinate system
ζi,j(kT) Projection of the location of sj on the S-axis
zi(kT) Current projection of si on its S-axis
χi(kT) Average of the neighbours’ projections for si on the S-axis
µi(kT) Ending point of the movement vector for si on S-axis
δi(kT) The calculated remained distance for si to take on S-axis
ψi,i(kT) Projection of the si on the TD-axis
Ψi(kT) Selected point on TD-axis from the projected points
ψi,TD.W2 (kT) Projection of the intersection point of the line W2 and TD-axis on the TD-axis
ψi,TD.W1 (kT) Projection of the intersection point of the line W1 and A-axis on the TD-axis
V i(kT) Velocity magnitude of si on TD-axis
Vi(0) Initial velocity value of si
V̂i(kT) Velocity magnitude of si on S-axis
θi(kT) Assigned angle between S-axis and Global Cartesian coordinate

4. Performance Study

In this section, we focus on the evaluation of our proposed algorithm, NNND. The
NNND is an algorithm under the nearest neighbour category of node deployment al-
gorithms for MSNs. To our best knowledge, the Cheng algorithm stands as the sole
counterpart within this category. Thus, we proceed to gauge the performance of NNND by
comparing it against the Cheng algorithm.

We begin by outlining the simulation setup, followed by the presentation of the results
obtained from the simulations.

4.1. Simulation Setup

In this section, the NNND and Cheng algorithms are examined under various con-
figurations. The analysis of these algorithms includes scenarios with different number of
sensors and different area shapes, studying the total movement of sensor nodes, runtime,
sensing potential and k-coverage. It is important to highlight that within Mobile Sensor
Networks, the costs associated with sensing, computing, and communication are relatively
insignificant in comparison to the substantial expenses incurred due to mobility. In this con-
text, the energy expended by sensor nodes is predominantly determined by the cumulative
distance travelled by all nodes.

The considered formats for the area are: Wide (4 × 1), Square (2 × 2), and Deep
(1 × 4). These area formats are chosen to further study the impact of the width and length
of the area on sensor movements, sensors’ location and the area coverage. Moreover, for
each scenario where area is considered constant we consider a range for the number of
sensor nodes in the area to cover the minimum of the minimum and the maximum of the
minimum number of sensor nodes for that area. In the following section, the results of our
studies for all scenarios are discussed with cR = 1 and sR = 1√

3
using the Matlab R2018b.

4.2. Total Movement of Sensor Nodes

Figure 3 illustrates the total movement of 68 sensor nodes, which is the maximum
of the minimum number of required sensor nodes with the mentioned characteristic for
this area, across different area formats for both algorithms. Overall, the NNND algorithm
demonstrates significantly reduced travel distance compared to that of Cheng algorithm
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in all area formats. However, the behaviour of total travelled distance by sensor nodes in
different Y to X ratios (different area formats) varies for these algorithms. In the NNND
algorithm, the total travel distance by sensors increases as the Y to X ratio increases, while
in the Cheng algorithm, this value decreases. To understand the reasons behind these
behaviours, we need to consider two aspects. First, we explore why NNND shows a
lower travel distance compared to that of Cheng algorithm. Second, we examine why
NNND exhibits incremental behaviour while Cheng algorithm demonstrates decremental
behaviour as the depth of area increases.

Figure 3. Total movement of 68 sensors based on length to wide ratio of the area.

The different behaviours of the NNND and Cheng algorithm in regard to the depth of
the area are related to their different principals towards sensor movement at each time step.
In an area with X width and Y length, with n number of sensors and sensing range rs, the
total movement of sensors in Cheng’s algorithm is calculated as:

α

∑
j=1

β−1

∑
i=0

(jX− irs) + (j− 1) ∗ y (32)

where β = dX
rs
e, α = d n

β e, and y =
√

3/4rs.
While the total movement of sensors in NNND algorithm is calculated as:

α

∑
j=1

β−1

∑
i=1

(X− (i− 1)d) + (j− 1)y +
α(α + 1)

2
∗ y (33)

where α = d Y√
3/4
e β = d n

α e, d = dX
β e and y =

√
3/4s.
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To address the first question, an analysis of Equations (32) and (33) can provide
insights. In the Cheng algorithm, the total travelled distance is notably higher. This is
primarily due to the multiplication of the X value by a considerably larger number, which
amplifies the total travelled distance. However, in the case of NNND, the total travelled
distance is influenced by both X and Y values. Nevertheless, it is the Y values that hold a
stronger influence over the final outcome. The described equations verify the behaviour
of these algorithms in different areas. It demonstrates that although NNND algorithm
has a significantly less total movement of sensor nodes in different shapes of an area, its
behaviour is different from the Cheng algorithm as they use different mechanisms for
employing sensor nodes.

In Figure 4, the total movement of 48, 58 and 68 sensor nodes (appropriate range of
sensor nodes in this area) for a 2× 2 square area is presented. This figure displays the
relationship between the total distance travelled by sensor nodes in the area and the varying
numbers of sensor nodes. In comparison to the NNND algorithm, the Cheng algorithm
demonstrates an overall total movement of sensor nodes that is more than three times
higher. As expected, increasing the number of sensor nodes leads to an increased total
distance travelled by the sensor nodes in both algorithms. However, the main behaviour
difference in this simulation’s results lies in the steeper slope of the Cheng algorithm,
indicating a higher growth rate in total movement and wasted energy in comparison to the
NNND algorithm when there is a higher number of sensors present in the area.

Figure 4. Total movement of different number of sensors in a 2× 2 Square area.

Finally, the last component of the sensor movement in our simulation study is the
wasted walk. As described in the assumptions section of this paper, sensor nodes are able to
move freely across the area. Every sensor node in the area can move in four directions. They
can move up, down, right and left or a combination of these directions. However, providing



Sensors 2023, 23, 7797 13 of 19

blanket coverage requires only specific movements for each sensor node with designated
directions from the initial location of the sensor node towards its proper destination. For
instance, if a sensor node’s initial location is on the top-left side of the Region of Interest,
any movement to the left and up is considered wasteful since it is initially outside the
required RoI and does not lead towards the proper location.

While achieving blanket coverage is possible even when not all directions align per-
fectly, it is crucial to closely examine sensor movements for algorithm efficiency and energy
usage optimization. The inefficient movement, which is usually inevitable due to various
reasons, is referred to as the wasted walk. Analysing the wasted walk provides a better
understanding of the proposed algorithm’s efficiency. In Figure 5, the total wasted walk of
68 sensors in different area shapes is presented. The total wasted walk follows the same
pattern as the total movement of sensors shown in Figure 3. Consequently, the total wasted
walk increases in the NNND algorithm and decreases in the Cheng algorithm by increasing
the Y to X ratio. However, the decremental movement in the Cheng algorithm exhibits
a steeper slope than its total travelled distance, while the incremental movement in the
NNND algorithm has a lower slope compared to its total movement.

Figure 5. Total wasted movement of 68 sensors based on the length to wide ratio of the area.

4.3. Duration of the Algorithm

The total time consumed by an algorithm or the duration of its deployment to locate
sensor nodes in their proper locations within the designated area is another parameter that
can affect algorithm efficiency. In Figure 6, the total deployment time of the Cheng and
NNND algorithms are represented for 48 sensors in different area formats. It is evident
from Figure 6, that the consumed time for the NNND algorithm rises as the Y to X ratio
increases. This is because a deeper rectangle area requires a higher number of lines to be
covered compared to a wider rectangle. In the NNND algorithm, a greater number of
sensors have to wait to move to their appropriate lines, resulting in a longer deployment
time compared to a wide area.
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Figure 6. Total consumed time for 48 sensors to be placed in different length to wide ratios of the area.

The higher deployment time for the deeper areas is not a concern in the Cheng
algorithm, as sensor nodes move sequentially and do not wait for their turn to be allocated
to their lines. However, as shown in the figure, in most scenarios (wider and square
shape area) Cheng algorithm requires more time to deploy sensor nodes in the area. The
superiority of the Cheng algorithm dominates the parallel movement of sensors in NNND
after some point that the Y to X ratio is higher than the 2.5. However, altering the initial
location of sensor nodes and rotating the area can easily address the deficiency of the
NNND algorithm and transform a deep area into a wide area.

4.4. Sensing Potential

The sensing potential is defined as the total sensing area by existing sensor nodes in the
designated area. Generally, the total sensing potential expands by increasing the number of
sensor nodes in the area. However, in deployment algorithms such as Cheng and NNND,
the total sensing potential depends on the algorithm layout for sensor nodes’ placement. In
Figure 7, the relationship between the number of sensors and the total sensing potential is
presented.

In both Cheng and NNND algorithms, sensor nodes move in lines with the same
static distance between each line. Therefore, they follow the same layout for sensor nodes’
placement. However, the number of sensor nodes on each line is adjustable and varies for
different configurations in the NNND algorithm, while it is considered a fixed number
in the Cheng algorithm. Based on the existing number of sensor nodes and the length of
the area in the NNND algorithm, the number of sensor nodes on each line is calculated
as N

Lenght/s∗
√

3/4
. Therefore, the increase in the number of sensor nodes in the same area

results in more sensor nodes on each line and consequently increases the total sensing
potential. However, in the Cheng algorithm, any extra sensor node moves forward to the
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next line and covers the following lines even when the lines are beyond the designated
area. Therefore, the potential sensing coverage is always the same for the different number
of sensors when full coverage is achieved for the designated area.

Figure 7. Total potential sensing coverage in the area per number of sensors.

4.5. K-Coverage

In the Cheng and NNND algorithms, the coverage percentage is not a valid parameter
to evaluate the algorithms, as the final coverage of the requested area is always 100%
assured. Accordingly, the 1-coverage in deterministic algorithms like Cheng and NNND
with enough number of sensors is guaranteed. Therefore, to evaluate the performance of
these algorithms exploring the minimum number of sensors that have covered every point
of the area, k in the k-coverage, is a legitimate interest. The k-coverage demonstrates that
every point within the specified area is covered by a minimum of k different sensor nodes.

In order to explore the k-coverage of these algorithms, the thermographic snapshots
are considered after the deployment of each algorithm is finished. The thermographic
snapshot of the final coverage for 64 sensor nodes in the different shapes of RoI with the
same area, 4, is used in the following figures to present the coverage for every point in
these RoI and understand the layout of sensor nodes in each algorithm. The thermographic
snapshot presents 2-coverage points with dark blue and the maximum 18-coverage point
by dark red in the RoI. Also, the assigned colour to other the k-coverage is specified as a
range in every figure. In the following three thermographic figures for three different forms
of area, (wide, square, and deep), are demonstrated.

In Figure 8, the final coverage for 68 sensor nodes in a wide-shaped area is shown.
The overall higher k-coverage in NNND Figure 8a is presented by warmer colours in
comparison to Cheng’s colder coloured Figure 8b. The reason behind the overall higher
k-coverage of the NNND is explained in previous paragraphs. The higher coverage in the
left corner of Figure 8a is caused by the close placement of the first and second sensor nodes
on the line based on the algorithm requirements for higher reliability. This placement causes
a non-symmetric shape in the thermography figure of the NNND algorithm. Although
this sensor nodes’ placement’s requirement is the same in both algorithms the different
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placement of sensor nodes on odd and even lines in Cheng has resulted in a more symmetric
k-coverage format in the corners in the area as shown in Figure 8b, in comparison to NNND
algorithm which has similar sensor placement for each line.

Figure 8. The thermography snapshot of final coverage in a wide area for 64 sensors (a) Cheng
algorithm (b) NNND algorithm.

The final deployment of 64 sensor nodes in a square-shaped area is shown in Figure 9.
The asymmetric k-coverage thermography of NNND is presented in Figure 9a while the
symmetric k-coverage thermography of the Cheng is drawn in Figure 9b. The same pattern
as the previous area is shown in this figure for the sensor nodes’ placement. However, the
higher number of lines to accommodate the sensor nodes in the requested area depicts the
layout differences between these two algorithms more prominently.

Figure 9. The thermography snapshot of final coverage in a square area for 64 sensors (a) Cheng
algorithm (b) NNND algorithm.

Although accommodating the higher number of sensor nodes in a requested area
is one of the advantages of NNND, this superiority diminishes as the Y to X ratio of an
area increases. The increase in depth of the area decreases the number of sensor nodes on
every line. The fewer required sensor node on the line decreases the number of additional
sensor nodes on each line. Therefore, the average k-coverage in the deeper area is less than
in the wide-shaped and square-shaped areas. In Figure 10 the thermographic figures of
final coverage for 64 sensors in a deep shape area are shown for (a) Cheng and (b) NNND
algorithms. Analysing the k-coverage of Cheng and NNND algorithms in different area
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shapes while considering the different layouts of sensor nodes in each of those algorithms
based on their requirements and strategies confirms the higher overall k-coverage of the
NNND algorithm in different scenarios. The higher k-coverage with the same number
of sensor nodes depicts the higher utilisation of the existing sensor nodes in the area and
reduces the chance of failure.

Figure 10. The thermography snapshot of final coverage in a depth area for 68 sensors (a) Cheng
algorithm (b) NNND algorithm.

5. Conclusions

Blanket coverage plays a pivotal role in numerous applications within Wireless Sensor
Networks (WSNs). It serves as a fundamental service that is essential for the successful
operation of various WSN applications. Distributed blanket coverage algorithms, particu-
larly those based on the Nearest Neighbour rule, have emerged as pioneering solutions in
Mobile Sensor Networks (MSNs) taking inspiration from the collective movement observed
in animal aggregations. However, the proposed algorithm in the literature often suffers
from drawbacks. Firstly, sensors tend to move sequentially and at a slow pace, which leads
to unnecessary energy consumption due to excessive movements. This inefficiency arises
from the lack of coordination and parallelization in their motion. Furthermore, these algo-
rithms often overlook the importance of considering environmental conditions, resulting
in sensor movements that extend beyond the intended area. This lack of environmental
awareness can compromise the accuracy and effectiveness of blanket coverage in MSNs.

To address these challenges, we have proposed a distributed node deployment al-
gorithm known as Nearest Neighbour Node Deployment (NNND) to provide blanket
coverage across the designated area while minimising energy consumption and enhanc-
ing fault tolerance. Unlike other algorithms that rely on sequential sensor movements,
NNND takes advantage of parallelism by introducing multiple streams of sensor motions,
each targeting a specific section of the area. The presence of multiple streams ensures
efficient coverage while reducing energy consumption. By adaptively selecting a leader
for each stream, the algorithm maintains cohesion and eliminates single points of failure.
This approach significantly enhances fault tolerance and incorporates collision avoidance
mechanisms, resulting in a network that is more robust and reliable.

Through an extensive performance study, we have compared the final k-coverage,
total movement, and time consumed by the NNND against those of the Cheng algorithm.
The simulation results confirm the advantages of the NNND, as it achieves enhanced fault
tolerance while minimizing energy consumption.
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