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Abstract: Aptamers are short oligonucleotides designed to possess high binding affinity towards
specific target compounds (ions, molecules, or cells). Due to their function and unique advantages,
aptamers are considered viable alternatives to antibodies as biorecognition elements in bioassays
and biosensors. On the other hand, paper-based devices (PADs) have emerged as a promising and
powerful technology for the fabrication of low-cost analytical tools, mainly intended for on-site
and point-of-care applications. The present work aims to provide a comprehensive overview of
paper-based aptasensors. The review describes the fabrication methods and working principles of
paper-based devices, the properties of aptamers as bioreceptors, the different modes of detection
used in conjunction with aptasensing PADs, and representative applications for the detection of
ions, small molecules, proteins, and cells. The future challenges and prospects of these devices are
also discussed.
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1. Introduction

Aptamers, which are short nucleic acid sequences with high specificity for selected
target compounds, were described for the first time in the early 1990s and have been coined
as promising bioreceptors for analytical applications due to some distinct advantages
over antibodies, including low cost, high stability, easy synthesis, and a wide range of
targets [1]. Over the last few years, aptamers have found wide application in different
fields such as clinical diagnostics, environmental analysis, food control, and pharmaceutical
analysis [2–5]. On the other hand, paper-based analytical devices (PADs) are analytical
platforms using cellulose as a functional support. The field of PADs has witnessed a rapid
expansion over the last decade, capitalizing on the advantageous properties of paper,
including wettability, conformability, lightness, easy functionalization, and instrument-free
solution flow [6].

The combination of aptamers as biorecognition elements with paper as a platform
material results in versatile, low-cost, selective, sensitive, and portable analytical devices.
This review aims to provide a thorough overview of paper-based aptasensors. The review
describes the fabrication methods and working principles of paper-based devices, the
properties of aptamers as bioreceptors, the different modes of detection used in conjunction
with aptasensing PADs, and representative applications for the detection of ions, small
molecules, proteins, and cells. It must be noted that the review does not cover aptamer-
based lateral flow devices (LFDs) and lateral flow assays (LFAs) since these differ from PADs
in that they use mainly nitrocellulose as their functional support material and are based
on unidirectional flow of solutions on overlapping separate segments of (nitro)cellulose.
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Although LFDs and LFAs, based on aptamers as the biological recognition element, have
been extensively studied and applied [7,8], the relevant literature on paper-based devices
is still limited [9].

2. Paper-Based Devices
2.1. Paper as an Analytical Platform

Nowadays, paper is considered an attractive and promising platform for analytical
applications. Paper consists of a network of randomly interwoven cellulose fibers in a
2-dimensional sheet format [10–13]. The fibrous and porous structure of cellulose con-
fers some important advantages that make paper an excellent candidate as an analytical
platform [14].

(1) It promotes the movement of liquids by capillary action, eliminating the need for
external forces to move low volumes of samples and reagents.

(2) It is highly absorbent and offers a high surface-to-volume ratio, which enables the
efficient immobilization and storage of the reagents.

(3) It enables the filtration of the sample.
(4) It is thin, light, and conformable.
(5) It is biocompatible and biodegradable.
(6) It is inexpensive and easily available worldwide.

Paper-based analytical devices (PADs) are novel analytical tools that are fabricated
with cellulose as their functional substrate material and are widely used to analyze small
amounts of samples [6,15]. Considering the unique properties of paper as an analytical
platform, PADs represent an innovative technology for fluid handling and analysis with a
wide range of applications, especially for on-site monitoring and point-of-care testing, in-
cluding clinical diagnostics [16], food quality [17], pharmaceuticals [18], and environmental
monitoring [19].

A milestone in the field of PADs was the seminal work of the Whitesides’ laboratory
in 2007, which demonstrated that it was possible to achieve fluid flow within hydrophilic
channels delimited on paper by the creation of hydrophobic barriers [20]. Paper patterning
to create multidimensional flow channels actually differentiates PADs from LFAs and LFDs.
This designed patterning allows the creation of directed flow within PADs [21], allowing
complex sample preparation steps to be performed [22], and facilitating multiplexed
detection on these devices [23].

2.2. Fabrication of Paper-Based Devices

The selection of the grade of paper is important for the proper operation of PADs and
depends on the assay. Commercial paper grades often differ in porosity, particle retention,
thickness, and flow rate, which may affect drastically the analytical and operational features
of the assay. In paper-based microfluidics, most of the studies have exploited chromato-
graphic and filter papers, which are manufactured using high-quality cotton linters with a
minimum a-cellulose content of 98% and exhibiting different degrees of purity, hardness,
and chemical resistance [10–12,14].

Two general methodologies have been applied for the fabrication of PADs: two-
dimensional shaping/cutting and patterning hydrophilic/hydrophobic areas [10–14,24].
In the first methodology, the paper channels are generally obtained by cutting the paper
manually, with an X-Y cutter/plotter, or with a CO2 laser cutting apparatus. Then, in most
cases, the cut channels are covered with sticky tape as a backing to provide rigidity to
the device. The second, and most sophisticated, method is based on creating hydrophilic
patterns on paper with hydrophobic borders that define the fluidic channels.

Over the years, increasingly complex and sophisticated 2-dimensional (2D) and 3-
dimensional (3D) PAD configurations (including multi-layered, vertical flow, daisy-shaped,
and folding (origami)) have been proposed and implemented [25,26]. 2D PADs are fab-
ricated on a single sheet of paper, while 3D PADs are more complicated in that they
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utilize multiple layers of patterned paper either in a multi-layer or a folding (origami)
configuration, many of them allowing multiplexed detection [23,26].

Theoretical and practical aspects regarding the operation of PADs (such as liquid flow,
flow control, surface modification, etc.) are discussed in several reviews [10–13,27–29].

3. Aptamers and Aptasensors
3.1. Aptamers

In the early 1990s, a new in vitro selection method was developed for nucleic acid
sequences that bind their target in a highly selective manner [30,31]. This technique, termed
SELEX (Systematic Evolution of Ligands by Exponential Enrichment), resulted in the
discovery of aptamers. During the SELEX process, a library of random oligonucleotide
sequences is exposed to the desired target. A small percentage of the library’s sequences
bind to the target and is subsequently separated. The latter is amplified via the polymerase
chain reaction (PCR), and the selection process is typically repeated for 8–15 rounds. Since
its first application in 1990, SELEX has undergone many novel modifications with the
view to identify more specific aptamers and mak the selection process more efficient, cost-
effective, and rapid. The different variants of SELEX as well as other operational and
technical issues related to this procedure have been covered by various reviews [1,32–35].

Aptamers have been considered “artificial antibodies”, and considerable attention has
been given to them as potential alternatives to antibodies as bioreceptors due to their low
production cost, easy chemical modification, high chemical stability and binding affinity,
repeatability, and reusability. The relative advantages of aptamers vs. antibodies are
discussed in [1,36].

Aptamers may fold into secondary and tertiary structures with a combination of
loops, stems, hairpins, pseudoknots, bumps, or G-quadruplexes, enabling the detection of
the target molecule by utilizing primarily hydrogen bonding, Van der Walls interactions,
and electrostatic interactions [37]. This property endows aptamers with high specificity
and affinity for a variety of targets, ranging from ions to molecules of various properties,
sizes, and complexities, including ions, small molecules (such as amino acids, nucleotides,
antibiotics), macromolecules (peptides, proteins, nucleic acids), or whole viruses, bacteria,
and cells [4,5,32,35,38,39]. Aptamers can also be readily chemically modified in order to
increase the range of their targets, increase their binding affinity and conjugation efficiency
to their targets or nanomaterials, and promote their stability. These strategies range from
adding an active functionality at either the 3′ or 5′ terminals to several more complex
chemical conjugation methods, including thiol-maleimide, carbodiimide, oxidative, thiol–
gold coordination, avidin–biotin coupling, and click chemistry [1,40].

3.2. Aptasensors

Biosensors are bioanalytical devices containing a biological recognition moiety (such
as cells, antibodies, enzymes, or oligonucleotides) that selectively reacts/binds with the
target of interest. The resulting biorecognition event is converted into a measurable sig-
nal by a suitable transducer. Aptasensors, as their name suggests, utilize an aptamer as
the biorecognition element. Aptasensors should be differentiated from DNA sensors or
genosensors, even though aptasensors and genosensors utilize single-stranded nucleotide
sequences for biorecognition. In genosensors, the target is an oligonucleotide or DNA/RNA
fragment, and the biorecognition element is a complementary target oligonucleotide; the
biorecognition is sequence-dependent and occurs through hybridization (formation of
double-strand structure) between the bioreceptor and the target [41]. In contrast, in aptasen-
sors, the target is an ion, molecule, or cell, and the biorecognition mechanism is structure-
or conformational-dependent and not sequence-dependent [42]. Once synthesized to bind
to a specific target, an aptamer can be integrated into a sensing configuration. The re-
sulting aptasensors are used in different fields such as POC testing, food safety, and the
environment [2–5].
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In aptasensors, the oligonucleic acid is commonly immobilized on the biosensor
surface. Immobilization drastically improves the handling of the biosensor, and the aptamer
can be regenerated more easily for multiple measurements. Once properly immobilized on
the biosensor surface, the binding event between the aptamer and the target is translated
into a signal via a suitable transducer. Figure 1 schematically illustrates four typical and
widely used operational modes of aptasensors via which the analytical signal can be
generated: sandwich or sandwich-like mode, target-induced structure switching mode,
target-induced dissociation mode, and finally competitive replacement mode.
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Different strategies have been developed to enhance the operational characteristics of
aptasensors [43]. The recent advances in the field of nanomaterials have also impacted the
field of biosensors [44,45], as illustrated in Figure 2. These nanomaterials (such as metal
and metal oxide nanoparticles (NPs), nanowires (NWs), nanorods (NRs), carbon nanotubes
(CNTs), graphene oxide (GO), and quantum dots (QDs)) can contribute to a more efficient
transduction process, enhance the analytical performance of sensors (sensitivity, response
time, reproducibility, detection limits), and potentially lead to more miniaturized devices.
Following this trend, nanomaterials have been applied as functional materials in various
aptasensor platforms [33,46–50].
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4. Detection Modes in Paper-Based Aptasensors
4.1. Optical Detection

Various detection schemes have been applied in conjunction with PADs [14], with opti-
cal detection being the most widely used [49]. Optical aptasensors provide detection of the
target species based on an optical signal generated by the interaction between the aptamer
and the target. Optical detection is one of the most commonly used detection approaches in
aptasensing because it offers convenient coupling to various laboratory instruments such
as fluorescence microscopes, CCD cameras, chemiluminometers, and photodiodes and
even enables instrument-free detection with smartphones [51]. Several optical methods
have been used in paper-based aptasensing, including colorimetry, fluorescence, and lumi-
nescence. Recent developments in nanomaterials have greatly facilitated and accelerated
the development of optical aptasensors with enhanced operational features [33,47,48].

In colorimetric aptasensors, the target analyte is identified and quantified by variations
in the color or the color intensity induced by the aptamer-target interaction. Colorimetric
methods are widely used in aptasensing due to the simple, portable, and low-cost instru-
mentation required. The compatibility of colorimetric methods with low-cost reporting
devices, such as smartphones and scanners, as well as with miniaturized detectors, enables
the development of inexpensive and portable set-ups. Aptamers have been utilized as
bioprobes in colorimetric enzyme-linked oligonucleotide assays (ELONA), also known as
enzyme-linked aptamer assays (ELAA) or enzyme-linked aptamer sorbent assays (ELASA),
which are the equivalent to enzyme-linked immunosorbent assays (ELISA) using antibod-
ies [5]. ELONA relies on aptamers immobilized on a solid substrate to capture the targets,
followed by binding with another enzyme-tagged aptamer (or antibody); the enzyme
catalyzes the oxidation of a colorless substrate to a colored product (Figure 3A). Many
colorimetric aptasensors make use of gold nanoparticles (AuNPs), whose localized surface
plasmon resonance produces a bright red coloration that is highly susceptible to changes
in nanoparticle size, allowing their utilization as optical probes. AuNPs are used in both
the “signal-on” and the “signal change” modes. In “signal-on” aptasensors, AuNPs are
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attached to the target, either directly or indirectly, and cause an increase in the red color
intensity [47]. The “signal change” provides a wider scope for analytical applications; it
is based on the fact that AuNPs of ca. 20 nm diameter are red in color and show a blue
shift with an increase in size [47]. Therefore, a distinct change in the visible spectrum could
be observed along with a change in the color of the AuNPs when there is a change in the
ratio of dispersed-to-aggregated AuNPs. In the absence of the target analyte, the aptamer
provides a protective layer on the AuNPs, thus preventing salt-induced aggregation of
the AuNPs, which remain red in color. In the presence of a target analyte, the aptamer
dissociates from the AuNPs and binds with the target; therefore, the free AuNPs undergo
salt-induced aggregation and their color turns blue-purple (Figure 3B).
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Analytical aptasensing strategies based on fluorescence detection require more ex-
pensive instrumentation than colorimetric methods but provide excellent sensitivity. The
principle of operation of such aptasensors is that some fluorophores, used as detection
probes, are able to change their emission due to conformational changes of aptamers in-
duced by binding with the target [35]. A suitable fluorophore material for aptasensor
design is expected to be characterized by a high fluorescence lifetime, low photobleaching,
and narrow emission bands. Although traditional organic dyes (such as Alexa Fluor 488,
fluorescein, and carboxyfluorescein) can serve as fluorophores, nanomaterials (such as QDs
and other semiconducting nanocrystals) are widely used because they meet the fluorophore
criteria in a more satisfactory way. In particular, QDs exhibit excellent luminescence prop-
erties as a virtue of the quantum effects arising due to their tiny sizes. The fluorescence of
QDs can usually be controlled by their size and shape. Due to their high fluorescence yield,
QDs are widely utilized as ultra-sensitive fluorescent probes in aptasensing [47]. Some
nanomaterials may be applied in the design of aptasensors by virtue of their function as
quenchers in the Förster resonance energy transfer (FRET) fluorescence mode (Figure 3C).
FRET is based on the coupling between a fluorophore (i.e., a visible light-emitting molecule)
and a quenching molecule that absorbs visible light and emits optical energy at invisible
wavelengths. A prominent material used as a quencher is GO. Single-stranded aptamers
have the tendency to bind with the GO planar sheets through π-π stacking, while the
planar structure of GO provides a very large surface area for molecular interactions and can
harvest the radiative energy emitted by the fluorophores, quenching them in the process.
The main reasons for the widespread use of GO in biosensing are its easy functionalization
and conjugation, its high optical quenching ability, its excellent dispersibility in aqueous
media, and its biocompatibility [47]. Several applications adopt FRET in displacement
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assays by exploiting the fact that the fluorophore–aptamer conjugate remains bound to GO
in the quenched state in the absence of the target. The addition of target species causes the
removal of the aptamer strands from GO, restoring the fluorescence signal [51].

Another optical detection technique used in conjunction with aptasensors is lumines-
cence [52]. Two main variants of luminescence are used in paper-based aptasensors, namely
chemiluminescence (CL) and electrogenerated chemiluminescence (ECL). CL sensors are
based on light generated by appropriate chemical reactions between two reactants. Com-
pared with fluorescence, CL does not require a light source and exhibits a lower background
as well as higher sensitivity. ECL relies on light generated by specific electrochemical re-
actions; its advantages over CL include lower background signals and higher selectivity
achieved by control of the driving excitation potential or current applied to the electrode.

4.2. Electrochemical Detection

After colorimetry, electrochemistry is the second most widely used detection method in
PADs [53]. It is well known that electrochemical detection has some important advantages:
it requires simple, low-cost, and portable instrumentation, offers high sensitivity and high
selectivity after judicious choice of the detection technique electrode material, and can be
miniaturized.

One of the most critical elements in an electrochemical aptasensor is the reporting
electrode; the applicability of different types of disposable and non-disposable types of
electrodes, as well as new electrode materials for aptasensing, have been reviewed [54].
A prerequisite for the development of electrochemical aptasensors is the modification
of a sensing electrode surface with the aptamer biorecognition element. A wide vari-
ety of coupling chemistries can be adopted for linking aptamers to a variety of sens-
ing electrode materials (including thiol-on-gold self-assembled monolayers of aptamers,
biotin-avidin bonding, carbodiimide-mediated amine-carboxy group reaction, and click
chemistry) [55,56] (Figure 4).
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In terms of the electrochemical technique used, electrochemical aptasensors can be
categorized as voltammetric/amperometric, impedimetric, and potentiometric [55–58]. In
voltammetric/amperometric aptasensors, the aptamer-target interaction is monitored by a
current generated through a redox reaction of an electrochemically active label entity. In
potentiometric aptasensors, the potential difference between an indicator electrode and a
reference electrode is measured and related to the target species concentration in contact
with the indicator electrode. In impedimetric aptasensors, the binding event induces a
change in the charge transfer resistance of the transducer/solution interface, which is
monitored by electrochemical impedance spectroscopy (EIS).
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A second classification relies on whether a label is used in the assay (labeled) or
not (label-free) [59]. Labeled aptasensors are highly sensitive due to the signal amplifica-
tion resulting from the action of the label (typically an enzyme or an electrochemically
active compound). However, the modification of aptamers with tagged molecules is
time-consuming and labor-intensive and may affect the binding affinity of the aptamer to
the target.

A final categorization is based on the aptasensing assay principles, which are exploited
and can involve: the formation of “sandwich” structures; aptamer folding; electrode
surface blocking; and displacement [55–58]. Sandwich assays are based on the use of a
set of two probes consisting of either two different aptamers that are able to bind a target
at two distinct sites or an aptamer-antibody combination. The first probe is used as a
surface-immobilized capture probe. The second probe is used as a detection probe labeled
with the specific redox label (or an enzyme catalyzing a reaction forming a redox-active
product); if the target is present, a sandwich is formed and the redox label (or the enzymatic
product) is electrochemically monitored (Figure 5A,B). Another common methodology is
to exploit conformation changes in transducer-bound, redox-labeled aptamers upon the
addition of a target. The conformational change induced by the binding event (e.g., folding)
causes a change in the distance between the transducer, and the resulting change in the
electrochemical signal is monitored (folding assays) (Figure 5C). Blocking assays are based
on the aptamer-target binding causing a change in the morphology of the surface, which
can be assessed electrochemically using a redox probe in solution (Figure 5D). Finally, in
displacement assays, the target species in the sample compete with labeled target species for
specific binding sites on the sensor surface, and the displaced species are electrochemically
interrogated (Figure 6E). Signal amplification strategies exploiting the use of various
nanomaterials (metal nanoparticles, QDs, magnetic nanoparticles (MNPs), carbon-based
nanoparticles, and polymeric nanoparticles) have been widely reported in electrochemical
aptasensing, serving as sensing platform modifiers, nanocarriers, nanocatalysts, nanotraces,
magnetic accumulators, and separators [48,60].
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5. Applications of Aptasensing PADs
5.1. Ions

Paper-based aptasensors have been mainly reported for the quantification of metal
ions, many of them of environmental importance due to their toxicity (e.g., Pb(II), Hg(II)) or
biological function (e.g., K+). The common methods for the determination of these cations
are based on advanced spectroscopic techniques that offer low limits of detection and multi-
metal determinations [61]. However, these methodologies are laboratory-based, requiring
expensive and bulky equipment, trained personnel, and sample pretreatment. In contrast,
aptasensing PADs can serve as sensitive, low-cost on-site diagnostic devices to acquire
preliminary information on potential heavy metal contamination in many samples [38].
However, the selection of aptamer sequences for heavy metals is challenging, and in
many cases the binding selectivity is low [38], while other competing low-cost and field-
deployable analytical approaches are available (e.g., stripping voltammetry [62]). Table 1
summarizes the features of the reported aptasensing PADs for ions.

Table 1. Examples of paper-based aptasensors for ions.

Analyte
(Sample) PAD Type of Paper Detection Aptamer Sequence Ref.

K+ (urine) Circular-laser
printing Glossy paper Colorimetric

with AuNPs 5′-GGGTTAGGGTTAGGGTTAGGG-3′ [63]

Pb2+ (water)
Y-shaped

fluidic-laser
cutting

Whatman No 1,
nylon

Colorimetric
with AuNPs 5′-GGTTGGTGTGGTTGG-3′ [64]

Pb2+ (tap water,
lake water, milk,

blood serum)
Square-craft punch Whatman No 1 FRET/GO 5′-FAMGGGTGGGTGGGTGGGT-3′ [65]

Hg2+ (water) NR Whatman No 1 CL
(S1): 5′-NH2-(CH2)6-

CAGTTTGGAC-3′

(S2): 5′-NH2-GTCCTTTCTG-3′
[66]

A paper-based calorimetric aptasensor has been fabricated for K+ detection using
cationic dyes [63]. The cationic dye (Y5GL) serves as an aggregator, which changes the
AuNP solution color from blue-purple to green. In the presence of K+, the aptamer disso-
ciates from the surface of the AuNPs, so that the free AuNPs and cationic dye make the
solution green. The linear range of the aptasensor was from 10 µM to 40 mM and the limit
of detection (LOD) of 6.2 µM was obtained.

Another aptasensing microfluidic PAD has been reported for Pb2+ ions in the wa-
ter [64]. It is based on the aggregation of AuNPs with NaCl, leading to a color change from
red to purple in the presence of Pb2+ (Figure 6). Whatman No. 1 and nylon filter papers
were used as the platform of this assay with a linear range from 10 nM to 1 mM for both
supports; the LODs were 1.2 nm and 0.7 nm, respectively.

An aptasensing PAD, based on FRET, was proposed for the detection of Pb2+ [65]. The
detection exploits conformational transformations of the Pb2+-specific aptamer that affect
its binding with GO. The addition of the target Pb2+ induces the release of the specific
aptamer from the GO surface, thus restoring the fluorescence emission. The linearity held
in the ranges 5–70 pM and 0.07–20 nM with an LOD of 0.5 pM.
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Finally, a CL cellulose aptasensor was introduced for Hg2+ detection in water using
a sandwich assay made up of two aptamers [66]. A capture aptamer (S1) is immobilized
on paper. When the target Hg2+ is captured by S1, it is tagged by the second aptamer
(S2), which is modified with CL reagents (phenylene-ethynylene reagents on nanoporous
silver). Finally, CL is induced via the addition of permanganate. This device allowed Hg2+

detection in a range of 20 nM to 0.5 µM with an LOD of 1 pM.

5.2. Small Molecules

Small molecules are typically organic compounds with a molecular weight of
<900–1000 Daltons and comprise a large variety of natural or man-made compounds of
environmental, biological, pharmaceutical, or industrial importance. Natural food contami-
nants (such as toxic mycotoxins, aflatoxins, and ochratoxins produced by fungi), pesticides,
many pharmaceuticals (e.g., antibiotics), and human body regulators (such as vitamins
and hormones) are typical examples of small molecules with high significance. The main
challenges in the development of aptasensors for small molecules are related to the struc-
ture of the targets, the aptamer selection process, and the determination of the binding
constant [32]. The small size of the target and the lack of functional groups available for im-
mobilization or interaction with nucleic acids make the selection process of small molecules’
aptamers very challenging. Nevertheless, the current progress in SELEX technologies such
as high-throughput sequencing (HTS) and post-SELEX optimization procedures has led
to improved screening of aptamers that are selective to small molecules [67,68]. However,
aptamers provide appropriate binding pockets within their tertiary structures for the recog-
nition of small molecules and are, therefore, better small-molecule receptors compared
to antibodies [43]. Typical examples of paper-based aptasensors for small molecules are
gathered in Table 2.
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Table 2. Examples of paper-based aptasensors for small molecules.

Analyte
(Sample) PAD Type of Paper Detection Aptamer Sequence Ref.

Epinephrine NR *-wax dipping Whatman No. 1 Colorimetric
with AuNPs 32-mer (sequence NR *) [69]

Streptomycin,
tobramycin,

kanamycin (milk)

Five layer-wax
printing

Whatman
chromatography

paper No. 4, 5
Fluorescence

Str: TAGGGAATTCGTCGA-
CGGATGCGGGG

TCTGGTGTTGTGCTTT-
GTTCTGTCGGG

TCGTCTGCAGGTCGA-
CGCATGCGCCG

Tob: GACTAGGCACTAGTC
Kana: TGGGGGTTGAG-
GCTAAGCCGAC 78.8

[70]

Quinine, serotonin
(urine, water,

tomatoes,
tomato juice)

Triangular-hand
cutting

Glass microfiber
filter paper

Paper spray-mass
spectrometry

qui: 5′-GAC-AAG-GAA-AAT-
CCT-TCA-ACG-AAG-TGG-GTC-3′
ser: 5′-CGA-CTG-GTA-GGC-AGA-

TAG-GGG-AAG-
CTG-ATT-CGA-TGC- GTG-GGT-CG-3′

[71]

Tetracycline (water)
Guanosine tetra-

Phosphate (cell lysate)
Circular-hole

punch Whatman No. 42 Fluorescence
tet: AUGGAAAAACAUACCAGAUU-

UCGAUCUGGAGAGGUGAA-
GAAUACGACCACCUUCCCA

ppGpp: NR
[72]

Kanamycin (milk) Strips-hand
cutting NR * Potentiometry 5′-AGATGGGGGTT-

GAGGCTAAGCCGA-3′ [73]

Adenosine
Origami-wax
printing and
lamination

Whatman No. 1 Charge
5′-ACTCATCTGTGAAGAG-

AACCTGGGGGAGTAT-
TGCGGAGGAAGGT-3′

[74]

Gentamicin Star-shaped-hand
punch Whatman Protran Colorimetric with

AuNPs
5′-GGGACT

TGGTTTAGGTAATGAGTCCC- 3′ [75]

17β-estradiol (serum)
Origami-wax

printing-screen
printed electrodes

Whatman No. 1 DPV

5′-SH-(CH2)6-GCTTCCAGC-
TTATTGAATTACACGCAGAGGTACG-

GCTCTGCGC
ATTCAATTGCTGCGCG-

CTGAAGCGCGGAAGC-3′

[76]

Ochratoxin A
(corn, wheat)

Circular-wax
printing-screen

printed electrodes
Whatman No. 1 DPV

5′-SH-(CH2)6-GATCGGGT-
GTGGGTGGCGTAAAG-
GGAGCATCGGACA-3′

[77]

Adenosine
triphosphate

Origami/wax
printing/screen-

printed
electrodes

Whatman
chromatography

paper No. 1
ECL

capture:
5′-HS-(CH2)6-ACCTGGGGGAGTAT-3′;

probe: 5′-TGCGGAGGA-
AGGT-NH2-3′

[78]

Ochratoxin A
(corn, groundnut)

Microfluidic-
photoresist

Whatman filter
paper

Colorimetric with
AuNPs

5′-GATCGGGTGTGG-
GTGGCGTAAAGG-

GAGCATCGGACA-3′
[79]

* not reported.

Saraf et al. proposed a simple label-free colorimetric aptasensor for epinephrine
detection [69]. The detection of epinephrine is based on the interaction with aptamer-
functionalized AuNPs. A change in color from red to blue was observed in the solution
with increasing concentrations of epinephrine, and the LOD was 0.9 nM.

In another work, a fluorescent paper-based aptasensing method was developed for
simultaneous aminoglycoside detection (streptomycin, tobramycin, and kanamycin) [70].
The paper platform consists of five paper layers and four parallel channels. Aptamer/graphitic
carbon nitride nanosheet-modified layers can catalyze o-phenylenediamine to fluorescent
2,3-diaminophenazine (DAP) in the presence of H2O2. The peroxidase-like activity is
reduced when the aptamer is detached from the nanosheets as a result of its binding with
the target molecules. The calibration curves for streptomycin, tobramycin, and kanamycin
were linear in the ranges 0.01–30 ng mL−1, 0.1–150 ng mL−1, and 0.05–150 ng mL−1,
respectively, and the LODs were estimated as 0.023, 0.069, and 0.045 ng mL−1, respectively.

Martínez-Jarquín et al. introduced a paper platform (called “aptapaper”) modified
with aptamers for the separation, preconcentration, and semi-quantitation of quinine and
serotonin [71] (Figure 7). After preconcentration of the targets on the aptapaper, they were
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detected by paper spray ionization coupled with high-resolution mass spectrometry. The
LODs were 81 pg mL−1 and 1.8 ng mL−1 for quinine and serotonin, respectively.

A portable paper-based sensor system has been reported for the rapid detection of
tetracycline and guanosine tetraphosphate [72]. The target detection is performed on RNA-
modified filter papers using a target-binding aptamer with fluorogenic RNA. The binding
of the target with the aptamer induced the folding of the RNA, which activated the fluores-
cence of a fluorophore (DFHBI-1T). This sensor was used for the selective determination
of tetracycline with a linear range of 0.1–0.8 mM and of guanosine tetraphosphate in the
range of 0.1–10 µM.
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Figure 7. Aptapaper methodology. (A) General outline of aptapaper synthesis, p-phenylene
di-isothiocyanate is used as a cross-linker between the paper and the amino-modified aptamer;
(B) Target binding with aptapaper. Five minutes of dipping in the solution followed by a washing
step to get rid of unspecific binders; (C) Paper spray analysis of aptapaper. Acidified solvent and the
applied high voltage were used to release the target from the aptamer) (Reprinted with permission
from Ref. [71]).

In addition, a potentiometric aptasensor using a graphene paper support was proposed
to detect kanamycin [73]. A nuclease-assisted amplification process was implemented in
order to significantly improve the detection sensitivity via the catalytic recycling reaction
of the target induced by the nuclease (DNase I) (Figure 8). This aptasensor exhibits linear
ranges in the 0.03–20 pg mL−1 and 20–150 pg mL−1 intervals with an LOD of 30.0 fg mL−1.

A self-powered origami PAD was implemented by Liu et al. to determine adeno-
sine [74]. The device uses an aptamer to recognize an analyte, GOx to modify the relative
concentrations of the [Fe(CN)6]3−/[Fe(CN)6]4− redox couple, and a digital multimeter to
record the result of the assay. This device offers an LOD for adenosine of 11.8 µM.

A flower-shaped microfluidic paper biosensor for gentamicin in milk [75] was devel-
oped employing colorimetric detection of the salt-induced aggregation of AuNPs with an
LOD of 300 nM.

Ming et al. described a folding, label-free electrochemical aptasensor to detect estra-
diol [76]. Amine-functionalized single-walled carbon nanotube/methylene blue/AuNPs
were immobilized on the working electrode to increase its detection sensitivity and immo-
bilize the aptamer. The principle is based on a decrease in the voltametric response as soon
as the aptamer and target combine. A linear range of 0.01–500 ng mL−1 and an LOD of
5 pg mL−1 were achieved.
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Figure 8. Schematic illustration of the principle of flexible freestanding graphene paper-based poten-
tiometric enzymatic aptasensor for nuclease-based amplification detection of kanamycin (Reprinted
with permission from Ref. [73]).

Zhang et al. have fabricated an electrochemical aptasensor to detect ochratoxin A [77]
(Figure 9). The complementary aptamer was attached to a MXene-Au electrode decorated
with Pt nanoparticles (NPs) anchored in hollow structures of NiCo-layered double hy-
droxides as signal amplification materials via Au-S bonds. Then, aptamer (apta)-binding
Pt@NiCo-LDH with peroxidase-like activity was immobilized through hybridization to
trigger the “signal on” state, generating a significant electrochemical signal. The presence
of ochratoxin A enabled the dissociation of the aptamer-complimentary aptamer hybrid,
releasing signal amplification labels to achieve a “signal off” state. The aptasensor exhibited
a linear range from 20 fg mL−1 to 100 ng mL−1 and an LOD of 8.9 fg mL−1.
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An origami ECL aptasensor was developed for adenosine triphosphate using an
AuNPs-modified paper-working electrode [78]. The sandwich assay employs a thiolated
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capture aptamer that is immobilized on the working electrode and an amino-modified
probe aptamer with ECL Pt–Ag alloy nanoparticle labels. The presence of the target induces
hybridization of the two fragments, leading to enhancement of the ECL intensity. The LOD
was 0.1 pmol L−1, and the linear range was from 0.5 pmol L−1 to 7.0 nmol L−1.

Finally, an aptamer was used as a molecular recognition element coupled with the
target-induced color change of AuNPs for colorimetric detection of ochratoxin A in a
microfluidic paper-based analytical device [79]. Although the device can only provide
a Yes/No qualitative result, it has the potential to rapidly detect ochratoxin A without
pre-treatment steps.

5.3. Large Molecules and Proteins

The field of protein detection on PADs is dominated by immunosensors, which utilize
antibodies as the biorecognition element [80]. Antibodies are considered the “gold standard”
since their high affinity and specificity to bind their target analyte have naturally evolved
over long periods of time, and, in addition, there has been accumulated expertise on their
use for biosensor design for many decades [50]. Recent studies comparing the relative
performance of aptamers and antibodies in biosensor design (in terms of selectivity and
sensitivity) are inconclusive because the results depend strongly on many experimental
variables, the most important being the proper integration of the biosensing element with
the transducer [36]. Table 3 summarizes some examples of paper-based aptasensors for
large molecules and proteins.

A syringe-based colorimetric paper aptasensor has been reported for the assay of the
malaria biomarker Plasmodium falciparum lactate dehydrogenase [81]. The target protein
is captured by the aptamer immobilized on microbeads and is detected by a color change
due to its enzymatic activity upon a development reagent. The device responds to con-
centrations of the biomarker spanning four orders of magnitude and achieves an LOD of
5 ng mL−1.

In another interesting work, aptamers were selected to discriminate B. caeruleus (com-
mon krait) venom from cobra, Russell’s, and saw-scaled viper’s venom [82]. The selected
aptamers (against the β-bungarotoxin present in the specific venom) were used as a molec-
ular recognition element in a colorimetric paper-based devicethat was able to detect 2 ng
krait venom.

Table 3. Examples of paper-based aptasensors for large molecules and proteins.

Analyte
(Sample) PAD Type of Paper Detection Aptamer Sequence Ref.

Plasmodium
falciparum lactate
dehydrogenase

(blood)

circular-hole
punch

Whatman 3MM
chromatography

paper
colorimetric of

enzymatic activity
5′Biotin- CTG GGC GGTAGAA-

CCATAGTGACCCAGCCG TCTAC-3′ [81]

β-bungarotoxin
(venom)

circular-wax
printing

Whatman filter
paper No. 4

colorimetric
assay with

streptavidin-HRP-
TMB

5′-CATACAAACGGAAA-
TTCCGATTTAGTCTT-
TATGATCTTGATGC-3′

5′-GGACAGAAAAAAAAA-
AAGACAAAGAAGAGAGA-
GGGAGATGGGGCTCAT-3′

[82]

Osteopontin
(serum)

circular-hand
cutting Fanoia S300 paper colorimetric with

Bradford reagent
5′-Thiol-AAAAAAAAAA TGT GTG

CGG CAC TCC AGT CTG TTA
CGC CGC-3′

[83]

platelet-derived
growth factor

(serum)

circular-wax
printing

nitrocellulose
HF 180

colorimetric-
horseradish
peroxidase-
mimicking
DNAzyme-

H2O2- hemin

5′-ATATA GTAGA AACCA CTATC
GACTC AGGCT ACGGC ACGTA
GAGCA TCACC ATGAT CCTGT

AGTATCAATC CTTCG CCGTC-3′
5′-ATATA GTAGA AACCA CTATC
GACTC AGGCT ACGGC ACGTA
GAGCA TCACC ATGAT CCTGT

AAACCCAACC CGCCC
TACCC TAAA-3′

[84]
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Table 3. Cont.

Analyte
(Sample) PAD Type of Paper Detection Aptamer Sequence Ref.

arachin,
β-lactoglobulin,

tropomyosin (NR)

origami-wax
printing

Whatman
chromatography

paper
colorimetric with

AuNPs

arachin: TCG CAC ATT CCG CTT
CTA CCG GGG

GGG TCG AGC GAG TGA
GCG AAT CTG

TGG GTG GGC CGT AAG TCC GTG TGT
GCG AA

β-lactoglobulin: ATA CCA GCT TAT TCA
ATT CGA CGATCG GAC CGC AGT ACC

CAC CCA CCA
GCC CCA ACA TCA TGC

CCA TCC GTG
TGT GAG ATA GTA AGT GCA ATC T

Tropomyosin: TAC TAA CGG TAC AAG
CTA CCA GGCCGC CAA CGT TGA CCT

AGA AGC ACT
GCC AGA CCC GAA CGT

TGA CCT AGA
AGC

[85]

Plasmodium lactate
dehydrogenase

(NR)

rectangular-hand
cutting Printer paper FRET 5′- GTT CGA TTG GAT TGT GCC GGA

AGT GCT GGCTCG AAC—FAM—3′ [86]

mucin-1 (serum)

origami-wax
printing-screen-

printed
electrodes

Whatman
chromatography

paper No. 1
ECL 5′-GCAGTTGATCCT-

TTGGATACCCTGG-3′ [87]

carcinoembryonic
antigen (serum)

rectangular--wax
printng-screen-

printed
electrodes

Whatman
chromatography

paper No. 1
ECL

5′HS-(CH2)6-ATA CCA GCT TAT
TCAATT-3′

5′HS-(CH2)6-CCC ATA GGG
AAG TGG GGG A-3′

[88]

immunoglobulin E
(serum)

circular/marker
plotting

Whatman
chromatography

paper No. 1
FRET

5′-NH2-AAAAAGGGGCACGT-
TTATCCGTCCCTCCTA-

GTGGCGTGCCCC-3′
[89]

hemoglobin A1
(blood) NR * graphite paper

DPV with
Fe(CN)6

3−/Fe(CN)6
4−

probe

5′-SH-TGGCAGGAAGACAAA-
CACATCGTCGCGGCC-

TTAGGAGGGGCG-
GACGGGGGGGGGCGTTG-

GTCTGTGGTGCTGT-3′

[90]

prostate specific
antigen (serum)

microfluidic/wax
printing/screen-

printed
electrodes

Whatman
chromatography

paper No. 1
DPV 5′-ATT AAA GCT CGC

CAT CAA ATA GC-3′ [91]

carcinoembryonic
antigen (serum)

circular/laser
cutting

Whatman
chromatography

paper
DPV 5′-AGATACCAGCTTATTCA-

ATTCCGCTGCTGGTATCT-3′ [92]

carcinoembryonic
antigen (serum)

circular/as
received

Whatman
qualitative filter

paper No. 3
EIS 5′-NH2-GAC GAT AGC GGT GAC GGC

ACA GAC GTC CCG CAT CCT CCG-3′ [93]

Thrombin (serum)

origami/wax
printing/screen-

printed
electrodes

Whatman
chromatography

paper No. 2
PEC

5′-GGT TGG TGT GGT TGG AGA AGA
AGG CCA ACC ACA
CCA ACC GAT CC-3′

[94]

prostate specific
antigen (serum)

origami/wax
printing/screen-

printed
electrodes

chromatographic
paper PEC 5′-SH-TTAATTAAAGCT-

CGCCATCAAATAGC-3′ [95]

vascular endothelial
growth

factor 165
(mesenchymal stem

cells culture)

circular and
microfluidic/wax

printing
Whatman

filter paper No. 1 fluorescence
5′-TGTGGGGGTGGACTGG-
GTGGGTACCGTCACTCG-

CCTCGCACCGTCC- Biotin—3′
[96]

epidermal growth
factor receptor

(serum)

origami/wax
printing/screen-

printed
electrodes

Whatman
chromatography

paper No. 1
DPV

5′-TAC CAG TGC GAT GCT CAG TGC
CGT TTCTTC TCT TTC GCT TTT TTT

GCT TTT GAG CAT
GCT GAC GCA TTC GGT TGA C-3′

[97]

* not reported.
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A novel cellulose-based aptasensor for the colorimetric detection of the cancer biomarker
protein osteopontin has been reported [83]. The paper was chemically modified with (mer-
captopropyl)methyldimetoxisilane to attach the thiolated aptamer. Colorimetric detection
was performed using a Bradford reagent. The linear range was 5–1000 ng mL−1 and the
LOD was <5 ng mL−1.

In addition, Li et al. have reported on a colorimetric aptamer-based assay for the
detection of platelet-derived growth factor, a target protein on bioactive paper [84]. The
aptamer was self-assembled onto graphene oxide, followed by desorption induced by
the specific binding of the target. The released aptamer hybridizes to paper-bound DNA
primers, thus initiating a rolling circle amplification reaction to produce a long DNA
molecule containing multiple horseradish peroxidase-mimicking DNAzyme moieties that
catalyze the oxidation of substrates by H2O2 in the presence of hemin. This device can
achieve detection of the target protein at 100 pmol L−1 with a linear range from 0.001 to
10 nmol L−1.

A microfluidic paper-assisted analytical device was developed to determine the food
allergens arachin, β-lactoglobulin, and tropomyosin using a colorimetric assay [85]. AuNPs
were conjugated with biotinylated aptamers and incubated with the sample. In the absence
of analytes, the AuNP-aptamer conjugates will not adsorb on GO, but in the presence
of analytes, the AuNP-aptamer conjugates will adsorb on GO-forming aggregates. Al-
lergens were determined in the 25–1000 nmol L−1 range with LODs ranging from 6.2 to
12.4 nmol L−1.

A paper-based aptasensor with FRET detection has been proposed for the detection
of the malaria biomarker Plasmodium lactate dehydrogenase [86]. Fluorescently labeled
aptamers towards the target protein were incubated with fluorescence-quenching MoS2
nanosheets that reduced the fluorescence of the aptamers. If the sample contains the target,
this will bind to the aptamers and restore the fluorescence.

Ma et al. have developed an electrochemiluminescence (ECL) aptasensor for the
peptide mucin-1, which is an important cancer marker [87] (Figure 10). The detection is
based on the release of a strand from a target-specific aptamer in the presence of the peptide.
This strand triggers a hybridization chain reaction between two hairpin probes, which is
detected via an ECL probe (Ru(phen)3

2+). The device enables the detection of mucin-1 in
the range of 25–50 nM with an LOD of 8.33 pM.
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Figure 10. Schematic representation of the modified µ-PADs for detecting peptides: (A) after the
specific recognition between the target mucin-1 and AP/IS, the free IS is taken into the modification
processes, and finally the ECL signals are gained; (B) the detailed electrode modification steps
(Reprinted with permission from Ref. [87]).

Another paper-based bipolar ECL aptasensor for carcinoembryonic antigen has been
reported [88]. An aptamer immobilized on paper is used to capture the antigen. A conjugate
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of a second aptamer with gold-coated Fe3O4 nanoparticles is captured by the antigen and
attached to the cathode of a bipolar cell, catalyzing the reduction of H2O2 and enhancing the
ECL emission at the anode. This aptasensor allows detection in a range of 0.1–15 ng mL−1

with an LOD of 0.03 pg mL−1.
A FRET protocol was adopted to develop a paper-based aptasensor for immunoglob-

ulin E [89]. Luminescent upconversion nanoparticles serve as energy donors and carbon
nanoparticles as energy acceptors to quench the fluorescence. Upon exposure to im-
munoglobulin E, the luminescence is recovered. The aptasensor allows the determination
of the target in the range of 0.5–80 ng mL−1.

An electrochemical aptasensor was proposed to detect hemoglobin A1c [90] (Figure 11).
A nanocomposite of reduced graphene oxide and gold was electrochemically deposited
on graphite paper and used to immobilize an aptamer. In the presence of the target the
DPV current of the Fe(CN)6

3−/Fe(CN)6
4− probe was reduced. The linear range was

1 nmol L−1–13.83 µmol L−1 and the LOD was 1 nmol L−1.
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Figure 11. A schematic representation of the main steps for modification of GS to fabricate the
hemoglobin A1c nanobiosensor. First, GO was cast coated on the graphite sheet electrode (GS)
and then, gold nanostructure was electrodeposited over GS/GO. Next, thiolated DNA aptamer as
bioreceptor was added to the modified electrode. The electrode was then incubated in 11-mercapto-
1-undecanol (MU) solution to prevent non-specific binding. In the next step, HbA1c was added to
be captured with the aptamer. Finally, the capturing of HbA1c was sensed using DPV technique
(Reprinted with permission from Ref. [90]).

Wei et al. have proposed a microfluidic electrochemical aptasensor for prostate specific
antigen (PSA) detection [91] (Figure 12). AuNPs/reduced graphene oxide (rGO)/thionine
composites were coated onto the working electrode for the immobilization of the aptamer
probe. Thionine serves as an electrochemical mediator of the recognition event between
the aptamer and the target. The LOD was 10 pg mL−1, and the linear range was 0.05 to
200 ng mL−1.
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An electrochemical sensing platform has been reported that can detect carcinoembry-
onic antigen and other biomarkers [92]. A hairpin probe (containing the specific aptamer
sequence) binds to the target and the binding event induces a conformational change of the
probe exposing its occluded stem region. The exposed domain triggered a polymerization
reaction generating DNAzyme strands that produce an amplified signal response.

A paper-based electrochemical aptasensor for carcinoembryonic antigen has been
fabricated [93]. A graphene/poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate)
(PEDOT:PSS)-modified paper serves as the conductive substrate for the aptamer immobi-
lization. The target binding is followed by EIS with a linear range 0.77–14 ng mL−1 and an
LOD of 1.06 ng mL−1 in serum.

A photoelectrochemical cellulose-based aptasensing platform was proposed to detect
thrombin by Xue et al. using a dual electron-transfer tunneling distance regulation (ETTDR)
and aptamer target-triggering nicking enzyme signaling amplification (NESA) strategy [94].
In the presence of TB, a large number of secondary tDNA pieces are generated and hy-
bridized with CeO2-labeled hairpin DNA immobilized on the electrode surface causing an
amplified photocurrent to decrease. The aptasensor has linear range of 0.02–100 p mol L−1

with an LOD of 6.7 fmol L−1.
Another photoelectrochemical aptasensor was proposed for prostate-specific antigen

based on TiO2/black phosphorus quantum dots (TiO2–BPQDs) was proposed for PSA
detection [95]. Carbon nanotubes, TiO2, black phosphorus quantum dots, and capture
DNA were sequentially immobilized on paper to bind AuNPs-modified aptamer. Upon
adding the target, the aptamer dissociates from the electrode leading to photocurrent
amplification. The linear range is 0.005–50 ng mL−1 and the LOD is 1 pg mL−1.

Azuaje-Hualde et al. have developed a cellulose microfluidic paper-based analytical
device for the detection of Vascular Endothelial Growth Factor (VEGF) [96]. A three-part
aptamer structure was designed with an aptameric sequence specific for the target which
hybridizes with a fluorescent strand and a quencher strand. The presence of the target
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triggers the displacement of a quencher strand and increase in the fluorescence intensity.
The LOD was 137 ng mL−1 and the linear range was 0.1–5 mg mL−1.

An origami electrochemical paper-based aptasensor was fabricated for label-free detection
of epidermal growth factor receptors [97]. Amino-functionalized graphene/thionine/AuNPs
nanocomposites were used to modify the working electrode and facilitate the immobiliza-
tion of specific thiol-modified aptamers. The principle of detection was the inhibition of
the electron transfer rate with the formation of the aptamer–antigen bioconjugates. The
biosensors enabled detection at 5 pg mL−1 and a linear range of 0.05–200 ng mL−1.

5.4. Cells and Bacteria

The targets of aptamers for the detection of cells can be specific proteins or receptors at
the surface of the cells, bacterial virulence factors or even the very cells themselves, and the
SELEX selection process should be tailored according to the target selection [5]. A selection
of applications using PAD aptasensors for cells and bacteria is provided in Table 4.

Table 4. Examples of paper-based aptasensors for cells and viruses.

Analyte
(Sample) PAD Type of Paper Detection Aptamer Sequence Ref.

human breast
adenocarcinoma

cells (MCF-7)
(serum)

origami/wax
printing/screen-

printed
electrodes

Whatman
chromatography

paper No. 114
ECL 5′-GCA GTT GAT CCT TTG GAT

ACC CTG GTT TTT TTT TTT-HS-3′ [98]

human breast
adenocarcinoma

cells (MCF-7)
(blood)

origami/wax
printing/screen-

printed
electrodes

Whatman
chromatography

paper No. 114
ECL 5′- GCA GTT GAT CCT TTG GAT

ACC CTG GTT TTT TTT TTT -HS-3′ [99]

human acute
promyelocytic
leukemia cells
(HL 60) (NR)

origami/wax
printing/screen-

printed
electrodes

Whatman
chromatography

paper No. 114
DPV

5′-ATCCAGAGTGACGC-
AGCATGCCCTAGTTACTAC-
TACTCTTTTTAGCAAACG-

CCCTCGCTTTGGACAC-
GGTGGCTTAGT-3′

[100]

Listeria
monocytogenes
(milk, cheese)

rectangular/wax
printing/screen-

printed
electrodes

GSM 210 paper EIS
5′-NH2-ATC CAT GGG GCG

GAGATG AGG GGG AGG AGG
GCG GGT ACC CGG TTGAT-3′

[101]

Zika virus (NR) Rectangular/hand-
cutting printer paper potentiometric 32-mehr [102]

human breast
adenocarcinoma

cells (MCF-7)
(serum)

Origami/wax
printing/screen-

printed
electrodes

Whatman
chromatography

paper No2

DPV,
colorimetric

5′-SH-CACTACAGAGGTTG-
CGTCTGTCCCACGTTG

TCATGGGGGGTTGGCCTG-3′

5′-biotin-TTTTTTGCAGTTGAT-
CCTTTGGATACCCTGGTT-

TGCAAAGCTTACGGCATACGT-3′

[103]

MCF-7 cells, K562
cells (blood)

multi-
layered/wax

printing/screen-
printed

electrodes

NR * DPV,
colorimetric

MCF-7: 5′-NH2-C6H12-CAC TAC
AGA GGT TGC GTC

CCA CGT TGT CCC ACG TTG TCA
TGG GGG GTT GGC CTG-3′

K562: 5′-NH2-TTT TTT TTT TAC
AGC AGA TCA GTC TAT CTT CTC
CTG ATG GGT TCC TAT TTA TAG

GTG AAG CTGT GGC-3′

TGG CTG GGG GGC GTT

[104]

* not reported.
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Two similar paper-based ECL aptasensors were developed to detect cancer cells [98,99].
Aptamers are immobilized on the AuNPs-modified electrode via Au-S bonds and cap-
ture the target cells. Concanavalin A-labeled AuPd alloy nanoparticles bind to the cap-
tured cells amplifying the ECL signal. The devices can perform detection in the range of
~450–1.0 × 107 cells mL−1 with an LOD of ~250 cells mL−1.

The same group has reported a paper-based voltammetric sandwich assay to detect
human acute promyelocytic leukemia cells [100]. The Au-paper electrode is modified
with aptamers to capture the cancer cells and horseradish peroxidase-labeled folic acid
binds to the captured cells (via recognition of folic by folate receptors on the cell surface)
which catalyzes the oxidation of o-phenylenediamine by H2O2; the enzymatic product is
monitored by differential pulse voltammetry. The device enables detection in a range of
5.0 × 102–7.5 × 107 cells mL−1 with an LOD of 350 cells mL−1.

A novel aptasensor based on an electrochemical paper-based analytical device has
been proposed for the detection of Listeria monocytogenes [101] (Figure 13). The paper
substrate was modified with a tungsten disulfide/aptamer hybrid and detection was
performed with EIS using methylene blue as a probe. A LOD of 4.5 CFU mL−1 and a range
of 10–108 CFU mL−1 were obtained.
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Figure 13. Schematic representation of the fabrication of the screen-printed paper-based aptasensor
for the detection of Listeria monocytogenes (Reprinted with permission from Ref. [101]).

A paper-based potentiometric sensor was fabricated to detect the Zika virus with an
LOD of 2.4 × 107 [102]. The sensor consists of 2 segments of paper (sample and reference
segments) with conducting silver paint contact patches on two ends and impregnated with
aptamers against Zika. When the virus is added to the sample region, a Nernstian potential
difference is generated between the sample and reference regions.

Wang et al. have reported on a paper-based dual-mode cyto-aptasensor for simul-
taneous electrochemical and colorimetric detection of breast cancer MCF-7 cells [103]
(Figure 14). The on-paper working electrode is modified with reduced graphene oxide
(rGO) and AuNPs to bind a first aptamer and capture the target cells. AuPd alloy nanopar-
ticle detection probes combine with a second aptamer and are immobilized on the captured
MCF-7 cells. The probes catalyze the oxidation of H2O2 resulting in an amplified electro-
chemical signal. In addition, the generated •OH can also produce a colorimetric signal. This
device enables a linear detection range of 50–107 cells mL−1 with an LOD of 20 cells mL−1.
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Another dual-mode aptasensor was developed for MCF-7 and K562 cells by Li et al. [104].
The paper-based device was fabricated in six layers. For electrochemical detection, an Au-
modified working electrode was used to bind a target-specific aptamer. The complementary
DNA strand, labeled with methylene blue (MB), is hybridized on the electrode and is
released in the presence of target cells. Aptamer-labeled Pd–Pt nanoparticles that are
loaded with ferrocene (Fc) are linked onto electrode, resulting in an increased Fc/MB
current intensity ratio. For colorimetric detection, H2O2 is added to the paper and, in the
presence of the target cells, more aptamer-labeled Pd–Pt nanoparticles are linked to the
electrode, resulting in increased consumption of H2O2 and decreased consumption of the
sealing reagent (AgNPs). The cell concentration can be calculated based on the distance
that the liquid moves. This aptasensor enables detection of MCF-7 and K562 cells in ranges
of 150–1.0 × 107 and 220–7.0 × 106 cells mL−1 with LODs of 117 and 140 cells mL−1,
respectively.

5.5. Multiplexed Assays

Multiplexed assays for the simultaneous detection of more than one analyte are
extremely important. A prominent example is clinical analysis, in which several biomarkers
are often necessary to monitor specific diseases (such as cancer, cardiovascular disorders, or
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diabetes). Another typical example is food safety since it is desirable to monitor many toxic
compounds that can potentially co-exist in foodstuffs (such as mycotoxins, antibiotics, and
bacteria). Apart from their higher diagnostic potential, such multi-analyte assays provide
lower cost per test and higher throughput than single-analyte assays. Different multiplexed
aptasensing strategies have been reported so far [105]. Table 5 summarizes applications of
multiplexing cellulose-based aptasensors.

Table 5. Examples of paper-based multiplex aptasensors.

Analyte
(Sample) PAD Type of Paper Detection Aptamer Sequence Ref.

Hg2+, Ag+

(human serum,
water, milk)

square/craft
punch Whatman No 1 FRET/GO Hg2+: 5′-FAM-TTT TTT TTT TTT-3′

Ag+: 5′-FAM-CCC CCC CCC CCC-3′
[106]

lysozyme,
ß-conglutin lupine,

okadaic acid,
brevetoxin (egg
white, mussels,

sausages, bread)

rectangular/hand-
cutting

Whatman
chromatography

paper
FRET

lys: 5′-AGC AGC ACA GAG GTC
AGA TG GCA GCTAAG CAG GCG
GCT CAC AAA ACC ATT CGCATG

CGG C CCT ATG CGT GCT ACC
GTG AA-3′

ß-congl: 5′-AGC TGA CAC AGC
AGG TTG GTG GGG GTGGCT TCC
AGT TGG GTT GAC AAT ACG TAG

GGA CAC GAA GTC CAA CCA
CGA GTC GAG

CAA TCT CGA AAT-3′

okadaic acid: 5′-CAG CTC AGA
AGC TTG ATC CTA TTT GACCAT
GTC GAG GGA GAC GCG CAG

TCG CTACCA CCT GAC TCG AAG
TCG TGC ATC TG-3′

brevet: 5′-ATA CCA GCT TAT TCA
ATT GGC CAC CAAACC ACA CCG

TCG CAA CCG CGA GAA CCG
AAG TAG TGA TCA TGT CCC TGC

GTG AGA
TAG TAA GTG CAA TCT-3′

[107]

carcinoembryonic
antigen,

neuron-specific
enolase (serum)

multi-layer
microfluidic/wax
printing/screen-

printed
electrodes

Whatman
chromatography

paper No1
DPV

CEA: 5′-ATA CCA GCT TAT TCA
ATT-3′, NSE: 5′-CGG TAA TAC
GGT TAT CCA CAG AAT CAG

GGG-3′
[108]

four glycans on
K562 cell surface

(cell culture)

origami/wax
printing/screen-

printed
electrodes

Whatman
chromatography

paper No114
DPV

5′-HS-TTT TTT TTT TAC AGC AGA
TCA GTC TAT CTT CTC CTG ATG

GGT TCC TAT TTA TAG GTG
AAG CTG T-3′

[109]

E. coli O157:H7,
S. Typhimurium

(NR)

star-shaped/wax
printing

Whatman filter
paper No1

colorimetric
with AuNPs

E. coli: 5′—CCG GAC GCT TAT GCC
TTG CCA TCT ACA GAG CAG GTG

TGA CGG—3′

S. Typh: 5′—ACG GGC GTG GGG
GCA ATG CTG CTT GTA GCC TTC

CCC TGT GCG CG—3′

[110]
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Table 5. Cont.

Analyte
(Sample) PAD Type of Paper Detection Aptamer Sequence Ref.

MCF-7, HL-60,
K562 cells (NR)

star-shaped/wax
printing

Whatman
chromatography

paper No114
FRET

MCF-7: 5′-GCA GTT GAT CCT TTG
GAT ACC CTG GTT TTT TTT

TTT-NH2-3′

HL-60: 5′- NH2-TTT TTT TTT ATC
CAG AGT GAC GCA GCA TGC CCT
AGT TAC TAC TAC TCT TTT TAG

CAA AC-3′

K562 cells: 5′- NH2-TTT TTT TTT
TAC AGCAGA TCA GTC TAT CTT
CTC CTG ATG GGT TCC TAT TTA

TAG GTG AAG CTG T-3′

[111]

Acinetobacter
baumannii,

Escherichia coli and
Staphylococcus

aureus) (biological
fluids)

microfluidic chip nitrocellulose colorimetric A1, E27, O28 [112]

A low-cost paper-based aptasensor was developed featuring two test zones to simulta-
neously monitor Hg2+ and Ag+ using a FRET approach [106] (Figure 15). The linear ranges
were 0.05–50 nM for both Hg2+ and Ag+ while the LODs for Hg2+ and Ag+ were 1.33 and
1.01 pM, respectively.
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A paper-based microfluidic chip was developed in order to detect food allergens
and food toxins (lysozyme, ß-conglutin, lupine, okadaic acid, and brevetoxin) simultane-
ously [107]. The targets were bound onto aptamer-functionalized quantum dots (QDs).
After mixing with the GO, the fluorescence was quenched via the FRET process while
the presence of target proteins restored the fluorescence intensity. The LODs ranged from
0.56 ng mL−1 to 343 ng mL−1, depending on the analyte.

A duplex electrochemical aptasensor to detect simultaneously carcinoembryonic
antigen and neuron-specific enolase has been reported [108] (Figure 16). The device
makes use of a stacked microfluidic configuration. The working electrodes were mod-
ified with amino functional graphene/thionine/AuNPs and Prussian blue/poly (3, 4-
ethylenedioxythiophene)/AuNPs nanocomposites to improve the electron transfer rate
and immobilization efficiency of the aptamers. The aptasensor enables detection of car-
cinoembryonic antigen and neuron-specific enolase in ranges of 0.01–500 ng mL−1 and
0.05–500 ng mL−1, with LODs of 2 pg mL−1 and 10 pg mL−1, respectively.
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An electrochemical lab-on-paper cyto-device was fabricated for specific cancer cell
detection and in-situ monitoring of multi-glycans on cancer cells [109]. An aptamer-
modified AuNPs-paper electrode was employed as the working electrode for cancer
cell capture. Horseradish peroxidase-labeled with wheat germ agglutinin, peanut ag-
glutinin, concanavalin A and with dolichos biflorus agglutinin were used as probes for the
four glycans in a sandwich format. The device could detect the target cells in the range
550 to 2.0 × 107 cells mL−1 and was applied to in-situ monitor cell-surface multi-glycans
in parallel.

A paper-based microfluidic for duplex colorimetric detection of E. coli O157:H7 and
S. Typhimurium has been fabricated [110]. Polystyrene microparticles decorated with
AuNPs were used as colorimetric labels for salt-based aggregation. Linearity held for
102 CFU mL−1 to 108 CFU mL−1 and the LODS were of 103 CFU mL−1 and 102 CFU mL−1

for E. coli O157:H7 and S. Typhimurium, respectively.
Liang et al. have developed a paper-based FRET aptasensing device for multiplexed

monitoring of three kinds of cancer cells (MCF-7, HL-60, and K562) [111]. Quantum dots-
coated silica nanoparticles are labeled with aptamers which are adsorbed on the surface
of GO causing decrease in fluorescence; upon addition of the target cells, the fluorescence
intensity is recovered. The linear ranges were from 180 to 8 × 107, 210 to 7 × 107, 200 to
7 × 107 cells mL−1, and the LODs were 6270 and 65 cells mL−1 for MCF-7, HL-60, and
K562 cells, respectively.

A microfluidic paper-based manifold has been designed for the multiplexed detec-
tion of three types of bacteria (Acinetobacter baumannii, Escherichia coli, and Staphylococcus
aureus) [112]. Specific aptamers were immobilized on the nitrocellulose support and were
used to capture the bacteria. Secondary biotin-labeled aptamers were incubated with the
captured target bacteria, streptavidin-conjugated HRP was added and, finally, tetramethyl
benzidine (TMB) reagent was used as a colorimetric probe. The LOD was ~103 CFU µL−1

and the linear range ranged from 102 to 105 CFU µL−1.

6. Conclusions and Future Prospects

Aptamers have opened new directions for addressing some limitations of immunosen-
sors, such as stability, cost, and scope for chemical functionalization, with the view to
improve biosensor sensitivity, selectivity, and stability. However, despite having evolved
as potential alternatives to antibodies, the market recognition of aptamers is low and the
market share of aptasensor-based diagnostic products has not kept up with that of their
antibody-based counterparts. This lag can be traced to some important technical issues
related to aptamer-based technology: (a) the database of aptamers is still too small in
comparison to the rich database of antibodies. The main reasons are the extensive usage of
antibodies as capture probes for biosensor design for over 70 years and the relatively low
screening efficiency and success rate of the conventional SELEX process which is also time-
consuming and labor-intensive, (b) the structural flexibility of oligonucleotides means that
many of the in vitro SELEX-selected aptamers in buffers may not retain their high affinity
towards their targets under physiological conditions or in complex media, (c) aptamers are
prone to nuclease degradation and their fast renal filtration may compromise their binding
performance in in vivo imaging and sensing.

PADs have demonstrated wide potential for fulfilling critical demands for rapid and
simple analytical testing in remote, resource-limited settings. Indeed, these properties
have been largely responsible for the considerable recent interest and surge in research
in the µPAD field. These devices provide a platform for a wide variety of (bio)chemical
assays that can be employed to assess health issues, environmental pollution, and food
quality. Yet, although many (nitro)cellulose-based devices (such as dipsticks, pH paper,
and LFAs) have been successfully commercialized, there are hardly any commercial PADs
on the market, despite some noteworthy promotion efforts such as Diagnostics for All
(DFA) (http://dfa.org/, accessed on 9 August 2023) (a non-profit organization that aims
to develop paper-based diagnostics for applications in resource-poor settings). Although

http://dfa.org/
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PADs possess important characteristics including fabrication and operational simplicity,
low cost, and portability that make them suitable for out-of-the-laboratory settings and
in resource-limited environments, most of the current PAD implementations fail to fully
comply with the WHO ASSURED criteria [113]. Among the main challenges to be tackled
are [114]: (a) the low sensitivity often achieved with the widely used methods of colorimet-
ric detection which can be potentially addressed by more sensitive detection techniques
such as electrochemical and luminescence methods, (b) the poor reproducibility which is
associated with the immobilization of reagents on the cellulose substrate, stability after long-
term storage, evaporation issues and solution transport and mixing within the microfluidic
conduit, all of which are difficult to control experimentally within resource-limited settings,
(c) the inadequate specificity, expressed as false positives and, more critically as false nega-
tives, (d) the low potential for multiplexed detection to test for several key markers, (e) the
difficulty in data collection and objective interpretation.

There are several developments that are expected to facilitate the development of new
aptasensing platforms and improve their performance including: (a) advances in the SE-
LEX technology (Cell-SELEX, Slow off-rate modified aptamers (SOMAmers), microfluidic
technologies, high-throughput sequencing (HTS) and parallel microarray characterization),
(b) post-SELEX aptamer chemical modifications (PEGylation, sugar modification, phos-
phodiester linkage modification, and truncation), (c) in silico bioinformatics approaches
(such as molecular dynamics simulations or molecular docking studies) applied during
the selection and modification processes to estimate the aptamer-target binding affinity,
to calculate thermodynamic and kinetic parameters and to optimize aptamer chemical
modification, (d) exploitation of advantageous optical, electrical, or magnetic properties of
various nanomaterials so that the sensitivity and specificity of such nanomaterial-based ap-
tasensors could be significantly enhanced [5,43], (e) development of new antifouling agents
to prevent aptasensor fouling due to matrix components in complex samples [115,116].
Regarding perspectives of PADs, the future trends include: (a) an increase in sensitivity
through the exploitation of nanomaterials and new labeling reagents, optimization of the
analytical protocol to maximize the aptamer-analyte interaction and use of more sensitive
detection methods, (b) improving the physical arrangement of the devices using 3D or
origami PADs, (c) exploiting the paper support for sample pre-treatment (e.g for filtration
and preconcentration), (d) using more advanced fluid manipulation (mixing, flow delay,
and solution switching), (e) increasing the multiplexing potential of the devices [117,118].
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