
Citation: Gosiewska, A.; Baran, Z.;

Baran, M.; Rutkowski, T. Seeking a

Sufficient Data Volume for Railway

Infrastructure Component Detection

with Computer Vision Models.

Sensors 2023, 23, 7776. https://

doi.org/10.3390/s23187776

Academic Editors: Giovanni Betta,

Abdollah Malekjafarian, Diogo

Ribeiro, Araliya Mosleh and Maria D.

Martínez-Rodrigo

Received: 20 July 2023

Revised: 29 August 2023

Accepted: 5 September 2023

Published: 9 September 2023

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Seeking a Sufficient Data Volume for Railway Infrastructure
Component Detection with Computer Vision Models
Alicja Gosiewska , Zuzanna Baran, Monika Baran and Tomasz Rutkowski *

Nevomo IoT, 03-828 Warsaw, Poland; a.gosiewska@nevomo.tech (A.G.); z.baran@nevomo.tech (Z.B.);
m.seniut@nevomo.tech (M.B.)
* Correspondence: t.rutkowski@nevomo.tech

Abstract: Railway infrastructure monitoring is crucial for transportation reliability and travelers’
safety. However, it requires plenty of human resources that generate high costs and is limited to
the efficiency of the human eye. Integrating machine learning into the railway monitoring process
can overcome these problems. Since advanced algorithms perform equally to humans in many
tasks, they can provide a faster, cost-effective, and reproducible evaluation of the infrastructure.
The main issue with this approach is that training machine learning models involves acquiring a
large amount of labeled data, which is unavailable for rail infrastructure. We trained YOLOv5 and
MobileNet architectures to meet this challenge in low-data-volume scenarios. We established that
120 observations are enough to train an accurate model for the object-detection task for railway
infrastructure. Moreover, we proposed a novel method for extracting background images from
railway images. To test our method, we compared the performance of YOLOv5 and MobileNet on
small datasets with and without background extraction. The results of the experiments show that
background extraction reduces the sufficient data volume to 90 observations.

Keywords: object detection; computer vision; machine learning; railway

1. Introduction

Nowadays, rail transportation is widely accessible and is one of the most popular
travel forms worldwide. An increasing amount of studies show that trains are more
environmentally friendly than cars [1–3]. Additionally, high-speed trains are serious
competitors for air transport [4]; therefore, railway has a good prospect of development
ahead of it. However, with the rapid growth comes a new set of challenges for rail
management. The increased popularity will put more strain on the infrastructure, which
will need to be inspected more often; what is more, the expanding rail connections network
will result in more and more kilometers of track to monitor. All of this implies an increase
in the labor workload related to infrastructure maintenance.

The need for track inspections stems from the fact that the track is susceptible to
weather conditions, such as extreme temperatures, high levels of humidity, and air pollution.
Studies show that broken rails and welds were the leading derailment cause on tracks
in the United States [5]. However, any defect on the railroad track can carry immense
costs and even lead to catastrophic incidents such as train derailments. That is why
monitoring railway infrastructure is crucial for the safety of travelers and the reliability of
public transportation.

Currently, infrastructure inspections are manual. The specially trained staff, based on
the visual evaluation and measurements from dedicated devices, assess the degradation of
the track. Such a procedure requires much human labor, translating into a high maintenance
cost. Moreover, the inspection speed is limited to the efficiency of the human eye; thus, it
requires time and is prone to mistakes [6]. The solution for the highlighted issues could be
incorporating computer vision techniques, especially machine learning, in infrastructure

Sensors 2023, 23, 7776. https://doi.org/10.3390/s23187776 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23187776
https://doi.org/10.3390/s23187776
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6563-5742
https://orcid.org/0000-0001-5280-7146
https://doi.org/10.3390/s23187776
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23187776?type=check_update&version=1


Sensors 2023, 23, 7776 2 of 15

monitoring. Machine learning is a branch of artificial intelligence that consists of algorithms
that can optimize themselves based on the provided data.

Nowadays, machine learning models achieve human-level performance in many areas,
including medicine, finance, and technology . Therefore, artificial intelligence algorithms
can be successfully used to support human decisions, including visual monitoring of rail
infrastructure [7]. In recent years, much research has been conducted on the usefulness of
computer vision for railway applications. A variety of methods were successfully applied,
starting from traditional pattern recognition [8], through classical machine learning models,
such as support vector machines [9], k-nearest neighbors [10], or random forest [11], ending
with deep neural networks [12–15]. The latter methods usually yield the best results due to
their capacity to solve complex problems. Therefore, deep learning has great potential for
detecting railway defects [16].

Computer vision-based infrastructure monitoring for fault identification usually con-
sists of two steps: (1) detection of railway components and (2) component-specific iden-
tification of defects. It is worth noting that in step (2), different rail components require
different machine learning models for fault detection. This is due to the specific char-
acteristics of faults for different components, and therefore, many studies are focusing
on only one component of the rail infrastructure. Studies include the detection of wheel
defects [17,18], the identification of bolt corrosion [19,20], assessing ballast support for
sleepers [21], aiding in the design of prestressed concrete railway sleepers [22], the recog-
nition of rail surface cracks [23], capturing fastener defect detection [24], and monitoring
bridges’ condition [25,26]. However, fault identification is impossible without accurate
object detection (OD) in the previous step (1). For example, a crack on a sleeper would not
be identified if the sleeper itself was not detected correctly. Due to its complexity and im-
portance, separate studies often address the component-detection task, where deep neural
networks detect track elements [27,28]. Over time, the need for rail object detection models
will only increase. They will be in demand for various types of infrastructure elements
and for different tracks, such as high-speed rail, maglev, or subway. Additionally, each
country may need a different model due to the country-specific regulations and different
ways the rail infrastructure is built. Therefore, it is important to study how to optimally
build object-detection models.

This paper focuses on fast and accurate railway track component detection that can
be used to support humans in monitoring rail infrastructure. We consider a scenario
when only a small dataset is available, which is the most common case for railway data.
The reason behind this stems from the low number of publicly available datasets with
photos of the tracks. As a result, it is necessary to rely on a small number of public images
or to gather new photos. The process of preparing new training datasets with railway
images is costly and time-consuming since the images have to be labeled by experts with
domain knowledge. This increases the need for precise upfront estimation of how many
images are needed to obtain an accurate machine learning model. In this article, we show
how much data are enough to train a neural network that detects track components and
which architectures are best for this task. The key contributions of this paper are as follows:

• We conducted a benchmark to determine the sufficient data volume for railway
component detection. We have shown how the YOLO and MobileNet neural network
architectures perform for different sizes of datasets. We have used a completely new
dataset with track images we collected and labeled. The results of the analysis will be
valuable to anyone designing their own railway dataset, as we provide an estimate of
the sufficient size of the data.

• We introduced a novel method of extracting background images (BIE) that can be
used to enrich the datasets for the railway object detection task. We have shown that
this method allows us to obtain better neural networks for really small datasets. BIE is
useful to improve the performance of any models for railway track object detection.

This paper is organized as follows. Section 2.1 describes railway track and its compo-
nents, Section 2.2 gives an overview of machine learning algorithms for OD, Section 2.3



Sensors 2023, 23, 7776 3 of 15

introduces our novel Background Image Extraction method, and Section 2.4 exhibits the de-
tails of the OD benchmark. Section 3 outlines the main results of the benchmark. Section 4
summarizes the findings presented in the paper.

2. Materials and Methods
2.1. Railway Track

In this Section, we describe the railway track components that are detected in experi-
ments in Section 2.4—rails, sleepers, and fasteners. The image areas without the mentioned
components mostly contain track ballast. For the object-detection task, we consider ballast
part of image background. The added examples are the images used in experiments, so
they illustrate the data used in model training.

Rails are steel bars that are the surface on which trains can move. Figure 1 shows an
example of rail used on a railway track. Sleepers serve as support for rails, fixing them
in position. Figures 2 and 3 show examples of concrete and wooden sleepers. Fasteners
are elements used to keep rails fastened to sleepers. Figure 4 shows examples of different
types of fasteners on railway tracks. Track ballast is defined as a layer of crushed materials,
usually rocks, placed around sleepers. Figure 5 shows a railway track with red arrows
pointing to the ballast.

Figure 1. Example of rail.

Figure 2. Example of concrete sleeper.

Figure 3. Example of wooden sleeper.

Figure 4. Examples of different types of fasteners.

Figure 5. Example of railway track with marked track ballast.



Sensors 2023, 23, 7776 4 of 15

2.2. Machine Learning Models for Object Detection

Object detection is a computer vision technique for locating objects with bounding
boxes (bboxes). Nowadays, convolutional neural networks (CNN) perform very well in
this task. As a result, there is plenty of research on various architectures, for example,
region-based convolutional neural networks (R-CNN) [29]. The idea of R-CNN is to start
with a selective search [30]—a region-proposal procedure to pick out regions in the image
that may contain objects of interest. In the next step, CNN extracts a feature vector from
each region proposal, then a classification model assigns classes and scores to the extracted
vectors. In the last step, a non-maximum suppression algorithm rejects image proposals
with large intersection over union (IoU) overlap with higher-scored image proposals.

While R-CNN achieves satisfactory results, the drawback of this approach is the speed
of training and prediction. To overcome these issues, Faster R-CNN [31] replaces the use of
selective search with CNN. As a result, Faster R-CNN takes an entire image and processes
it through a region-proposal network and then through a neural network that predicts
classes of objects. This increases the detection speed, yet the prediction time is still not fast
enough for real-time applications.

The Single-Shot Detector (SSD) is one of the fastest ways to achieve accurate object
detection [32]. SSD consists of a feature-extractor backbone and SSD head. A backbone is
a pre-trained classification neural network with a removed fully connected classification
layer. The SSD head consists of convolutional layers added to the backbone to find the most
appropriate bounding boxes. There is also a mobile variant of SSD, SSDLite [33], where
regular convolutions in the SSD head are replaced with separable convolutions, which
reduces both the parameter count and the computational cost compared to regular SSD.
In Section 2.4, we used MobileNetV3-small as a backbone feature extractor in SSDLite,
which is the same combination that the authors of MobileNetV3 used in their benchmarks
Section 2.4. The MobileNet architecture is based on depth-wise separable convolutions
that reduce the number of parameters [34]. In MobileNetV2, the authors introduced new
inverted residual blocks [33] and in MobileNetV3 they added squeeze and excitation
layers [35]. The MobileNetV3-small architecture is a variant targeted to low-resource use
cases and we have chosen it for experiments because of its low number of parameters,
which assures their ability to catch relationships in the data based on a small number
of samples.

Another object-detection architecture is You Only look Once (YOLO) [36,37], which has
become very popular in recent years. YOLOv5 is composed of three parts: backbone, neck,
and detection networks. The backbone CNN aggregates image features that are processed
in the neck network, creating Feature Pyramid Networks [38]. Finally, the detection network
predicts each object’s class, probability, and bbox position. In experiments in Section 2.4, we
have used two small YOLOv5 variants, the smallest variant nano (YOLOv5n) and variant
small with ghost bottleneck (YOLOv5s-ghost). The small number of parameters means
that the model has a chance to perform well on the low-volume datasets that are typical
for railway OD. Moreover, YOLO’s good performance in a wide variety of applications
implies that this architecture has great potential for railway applications as well.

We measured models’ performance with mean average precision (mAP) and mean
average recall (mAR) [39]. Precision measures how well a model finds true positives and
recall measures the proportion of true positive predictions,

Precisiont =
TPt

TPt + FPt
, (1)

Recallt =
TPt

TPt + FNt
, (2)

where TPt denotes the number of true positives, FPt denotes number of false positives,
and FNt denotes the number of false negatives. The value of t determines the IoU overlap



Sensors 2023, 23, 7776 5 of 15

above which bboxes are considered to be the same; thus, if the IoU value for predicted and
true bboxes is greater than t, the predicted bbox is considered to be correct.

The average precision is the area under the precision–recall curve obtained by plotting
the precision and recall values as a function of model’s confidence. The mAP@t is the
mean of the average precision values over all classes with a given IoU overlap threshold t.
For example, mAP@0.5 is the mean average precision for an IoU overlap threshold t equal
to 0.5. In the experiments, we use also mAP@[0.5,0.95], which is an average of the mAP
values for different IoU thresholds, starting from 0.5 and finishing at 0.95 with a step of
0.05.

The average recall is the area over a recall–IoU threshold for IoU ∈ [0.5, 1] and mAR is
the mean of the average recall across all classes. mAR n denotes that mAR is calculated
based on the top n bboxes detected in the image. In the experiments we have used an mAR
of 100.

2.3. Background Image Extraction

In this Section, we describe our novel method, named Background Image Extraction
(BIE), which cuts out areas without bboxes from the railway photo and then joins them into
a new image. Adding background images to the training set is a common procedure to
improve model performance—the same stands for detecting railway components where
the background consists mostly of ballast. Adding background images with no objects
to detect to the training phase allows neural networks to learn what they should avoid
detecting, which improves the performance of their predictions. Due to the distinctive
composition of the railway track, we came up with a railway-targeted method of extracting
background images. Figure 6 shows the general idea behind BIE. A bbox-based mask is
extracted based on a labeled image based on the position of the track component. Then,
a mask is used to cut out areas in the image that are merged into a new background image.

Figure 6. A diagram of the BIE method.

Algorithm 1 shows the procedure of mask extraction; its result is an array of the same
size as an input image. In the mask, values of 0 represent the background and 225 non-
background areas. Initially, each pixel within the mask has a value of 0. To identify the
background, i.e., the area with ballast only, bboxes of rails are pulled to the top and bottom
edges of the image, while bboxes of fasteners and sleepers are pulled to the side edges of
the image. Then, the area of the pulled bboxes is treated as non-background and cropped
out by setting the values of the corresponding pixels to 255. Such an approach ensures that
after cropping, the union of the remaining parts will form a rectangle that contains only
ballast. The newly created background image can then be used to enhance the training
dataset. Figure 7 shows example backgrounds extracted with BIE.



Sensors 2023, 23, 7776 6 of 15

Algorithm 1 Mask extraction from railway image labeled with bboxes. The dot denotes
a reference to the bbox property; thus, bbox.label means a class of bbox, bbox.width and
bbox.height are its width and height, Additionally bbox.x_left and bbox.y_top denote the
x coordinate of the left edge and y coordinate of the top edge of the bbox, respectively.

Require: n: image width, m: image height, x_margin: x coordinate bbox margin used for
mask extraction, y_margin: y coordinate bbox margin used for mask extraction
image_mask← zeros(n, m) . An array of size n ×m filled with zeros.
for bbox in bboxes do

if bbox.label is "rail" then
x_left = bbox.x_left - x_margin
if x_left < 0 then

x_left← 0
end if
box_width← bbox.width + x_margin * 2
y_top← 0 . Extend rail to whole image height.
box_height← bbox.height

else
x_left← 0 . Extend non-rail elements to whole image width.
box_width← n
y_top← bbox.y_top - y_margin
if y_top < 0 then

y_top← 0
end if
box_height← bbox.height * n + y_margin * 2

end if
. Set area in mask related to the adjusted bbox to 255.

image_mask[top_y : top_y + box_height, top_x : top_x + box_width] = 255
end for

Figure 7. Example backgrounds extracted with BIE.

All background images used in the experiments in Section 2.4 were created with BIE
with x_margin 30 px and y_margin 90 px. Backgrounds with a width or height smaller
than 100 px were filtered out.

2.4. Experiment

The aim of the experiment is to establish a sufficient data volume to train an efficient
railway object detection model. Railway datasets usually are small and consist of images
that are similar to each other. Moreover, infrastructure objects are also similar and are
of a regular, rectangular shape. To find the number of images sufficient to obtain an
accurate detector, we prepared training subsets of different sizes and trained the most
common object-detection models. The training was carried out with and without the
background-extraction method.



Sensors 2023, 23, 7776 7 of 15

2.4.1. Data Acquisition and Dataset

The data were collected on 2 March 2022 and 13 April 2022 at Warszawa Grochów
motive power depot in Poland. All images are grayscale and come from line-scan cameras
(raL4096-24gm - Basler racer, Basler AG, Ahrensburg, Germany). placed on the draisine
running on the railway tracks. The photos contain track sections with wooden and concrete
sleepers and do not contain switches. The dataset consists of 348 labeled images, including
299 short images of size 2083 px × 500 px and 49 long images of size 2083 px × 2100 px.
Rails, sleepers, and fasteners are labeled on the images with bboxes. Figures 8 and 9 show
the annotations of short and long photos, respectively.

Figure 8. Example of a labeled short image of size 2083 px × 500 px with concrete sleepers.

Figure 9. Example of a labeled long image of size 2083 px × 2100 px with wooden sleepers.

2.4.2. Experiment Settings

The experiments were conducted on an AMD Ryzen 5 4600H CPU (Advanced Micro
Devices, Inc., Santa Clara, California, United States) with Radeon Graphics (3.00 GHz, 32
GB RAM) and an NVIDIA GeForce RTX 2060 (CUDA version 12.0) (Nvidia Corporation,
Santa Clara, California, United States) with Python 3.8.10 in the 64-bit Windows 10 business
operating system.

We split the dataset into training, validation, and testing subsets of sizes 300, 24, and 24.
We then took subsets of the training set of sizes 240, 180, 120, 90, 60, and 30, where each
successive subset is contained in the preceding subset. The sizes of all subsets, along with
the number of extracted backgrounds, are in Table 1.

We compared three neural networks: YOLOv5n, YOLOv5s-ghost, and MobileNetV3-
small. Since the characteristic of the railway OD task is the small data volume, we have
chosen architectures that have a small number of parameters and therefore, do not require
much training data and have a fair chance to fit well. The models were trained for 100
epochs with default hyperparameters on all training subsets, both with and without ex-
tracted backgrounds, a total of 14 datasets. Detailed information about the hyperparameter
values is in Table 2. For each training subset, the best model across all epochs was chosen



Sensors 2023, 23, 7776 8 of 15

based on its performance on the validation subset, then the final model performances were
computed on the testing subset with mAP@0.5, mAP@[0.5, 0.95], and mAR 100.

Table 1. Dataset splits for experiment with numbers of observations.

Split Number of Full
Railway Images

Number of
Background Images
Extracted with BIE

Total Number of
Images

training subset 30 30 12 42
training subset 60 60 25 85
training subset 90 90 34 124

training subset 120 120 49 169
training subset 180 180 69 249
training subset 240 240 86 326
training subset 300 300 106 406
validation subset 24 7 31

testing subset 24 - 24

Table 2. Values of models’ hyperparameters.

Hyperparameter YOLOv5n YOLOv5s-Ghost MobileNetV3-Small

Number of epochs 100 100 100
Batch size 16 16 32

Image size (in pixels) 640 × 640 640 × 640 320 × 320
Learning rate 0.001 0.001 0.01

Changes in the hyperparameter values listed in Table 2 influence the model predictions
and performance. For a smaller number of epochs, the models might not be able to learn
relationships in the data and therefore, might achieve a poor quality on both the training
and testing subsets. For a larger number of epochs, the models will learn the data better,
but there is a risk of overfitting to the training data and poor generalization. Setting a
higher value of learning rate causes a faster loss decrease but increases the risk of missing
the optimal minimum. For the lower value of learning rate, the decrease in the loss is
lower; therefore, training will take longer and there is a risk of falling into a local minimum.
Resizing images to a smaller size will lead to their poor quality; some details can be missed
and therefore, the model will not be able to detect objects properly. Too-large image sizes
will make it harder for models to properly fit the data when there is a small number of
images in the training subset.

All background images used in the experiments in Section 2.4 were created with BIE
with the hyperparameter values described in Table 3. Backgrounds with a width or height
smaller than 100 px were filtered out.

Table 3. Values of BIE hyperparameters.

Hyperparameter Value

x_margin 30 px
y_margin 30 px

Background width or height minimal size 100 px

3. Results

Tables 4–6 show the results of YOLOv5n, YOLOv5s-ghost, and MobileNetV3-small
on the testing subset. The YOLOv5n architecture achieved the best performance in terms
of all performance measures; its variant trained on datasets with background extraction
performed the best or not far below the best result. YOLOv5s-ghost and MobileNetV3-
small performed significantly worse in terms of mAP@0.5, mAP@[0.5, 0.95], and mAR.
This illustrates an advantage of the YOLOv5n model as a railway object detector, which is



Sensors 2023, 23, 7776 9 of 15

the smallest of the neural networks taken into consideration. The task is relatively simple
and the dataset so small that the large number of features in more capacious architectures
caused overfitting.

Table 4. Values of mAP@0.5 on testing subset. Bold values are the highest ones for each size of the
training subset. mAP@0.5 measures how well a model finds true objects on the image, allowing a
50% margin of error for the bbox area.

Method 30 obs. 60 obs. 90 obs. 120
obs.

180
obs.

240
obs.

300
obs.

YOLOv5n 0.563 0.899 0.919 0.933 0.941 0.934 0.942
BIE + YOLOv5n 0.843 0.908 0.923 0.931 0.947 0.938 0.936
YOLOv5s-ghost 0.00 0.079 0.589 0.712 0.848 0.879 0.906
BIE + YOLOv5s-ghost 0.008 0.352 0.778 0.816 0.858 0.899 0.910
MobileNetV3-small 0.113 0.229 0.258 0.169 0.343 0.337 0.408
BIE + MobileNetV3-small 0.276 0.149 0.176 0.281 0.348 0.322 0.369

Table 5. Values of mAP@[0.5, 0.95] on testing subset. Bold values are the highest ones for each size
of the training subset. mAP@[0.5, 0.95] measures how well a model finds true objects in the image,
averaging over different margins of error for the bbox area.

Method 30 obs. 60 obs. 90 obs. 120
obs.

180
obs.

240
obs.

300
obs.

YOLOv5n 0.208 0.531 0.582 0.615 0.641 0.647 0.663
BIE + YOLOv5n 0.427 0.593 0.636 0.617 0.651 0.659 0.667
YOLOv5s-ghost 0.00 0.020 0.218 0.326 0.480 0.499 0.555
BIE + YOLOv5s-ghost 0.002 0.120 0.395 0.395 0.479 0.541 0.559
MobileNetV3-small 0.039 0.067 0.084 0.060 0.109 0.116 0.161
BIE + MobileNetV3-small 0.099 0.026 0.042 0.087 0.093 0.120 0.108

Table 6. Values of mAR 100 on testing subset. Bold values are the highest ones for each size of the
training subset. mAR 100 measures the proportion of the top 100 correctly detected objects to all
objects in the image.

Method 30 obs. 60 obs. 90 obs. 120
obs.

180
obs.

240
obs.

300
obs.

YOLOv5n 0.391 0.596 0.645 0.686 0.707 0.711 0.718
BIE + YOLOv5n 0.528 0.666 0.702 0.683 0.707 0.717 0.723
YOLOv5s-ghost 0.00 0.074 0.334 0.420 0.549 0.584 0.626
BIE + YOLOv5s-ghost 0.020 0.208 0.469 0.483 0.552 0.607 0.630
MobileNetV3-small 0.069 0.124 0.132 0.109 0.167 0.165 0.216
BIE + MobileNetV3-small 0.142 0.065 0.091 0.140 0.140 0.185 0.160

Figure 10 shows the relationship between the training subset size and model perfor-
mance. The plot shows that for training subsets that consist of 120 or fewer observations,
YOLO models trained with BIE performed better than their variants trained without BIE.
For training subsets containing more than 120 observations, there was no noticeable im-
provement of the YOLOv5n model trained with BIE when compared to its variant trained
without BIE. Nevertheless, including background images in training subsets larger than
120 observations improved YOLOv5s-ghost. MobileNetv3-small did not show a notice-
able quality increase after adding background images. The plots show that for training
subsets consisting of more than 120 observations, the relative improvement of YOLOv5n’s
performance is slight. Therefore, 120 is a sufficient number of observations to train an
accurate model. In addition, when BIE is applied, even 90 observations are enough to
achieve the same performance as 120 observations without BIE. YOLOv5n, compared
to YOLOv5s-ghost and MobileNetv3-small, consists of a smaller number of parameters;



Sensors 2023, 23, 7776 10 of 15

therefore, it is expected to require fewer observations to achieve a good performance, which
is consistent with the experimental results. BIE augments the training set with additional
background images to teach algorithms which objects should not be detected and it can be
seen that for small datasets it does indeed improve the quality of YOLO models. In contrast,
it does not improve the quality of MobileNet, presumably because the model consists of
the largest number of parameters and needs a larger volume of data.

Figure 10. The relationship between the size of the training subset (x-axis) and model performance on
the corresponding testing subset (y-axis) . Each plot corresponds to a different performance measure.
Colors mark neural network architectures and line types mark the presence of background images
extracted with BIE in the training subset. This plot is the visualization of Tables 4–6.

To showcase the phenomena observed throughout the entire test set, we present
a sample of images. Figures 11–16 show the representative visualizations of example
railway component detections from the testing subset. All figures contain the results
of models trained on datasets with Background Image Extraction. The red arrows and
numbers on figures point to incorrectly detected bboxes. YOLOv5n returns more accurate
detections when compared to YOLOv5s-ghost and MobileNetv3-small. A comparison
between Figures 11 and 12 and Figures 14 and 15 shows that YOLOv5s-ghost detects
sleepers and fasteners as well as YOLOv5n, but incorrectly detects rail bboxes, which are
too short (Figure 12) and overlapping (Figure 15). In turn, Figure 13 shows that on short
images MobileNetV3-small detects additional fasteners in inaccurate places, which may be
caused by the fact that MobileNetV3 is a backbone for SSDLite, which is a variant of Single-
Shot Detector (SSD) and SSD is known for worse detections on small objects [40]. Figure 16
shows that on long images MobileNetV3-small detects too-large bboxes for fasteners and
sleepers, which might be caused by the small number of long images in the dataset and
therefore, the model has overfitted the short images.

Figure 11. Example BIE + YOLOv5n model prediction for short image.



Sensors 2023, 23, 7776 11 of 15

Figure 12. Example BIE + YOLOv5s-ghost model prediction for short image with marked incorrectly
detected bboxes.

The red arrows in Figure 12 point to incorrectly detected rail bboxes—they are
too short.

Figure 13. Example BIE + MobileNetV3-small model prediction for short image with marked
incorrectly detected bboxes.

The red arrows in Figure 13 point to fastener bboxes that are detected in incor-
rect places.

Figure 14. Example BIE + YOLOv5n model prediction for long image.

The red arrows in Figure 15 point to places where the detected rail bboxes are overlap-
ping.

The red arrows in Figure 16 with the number 1 point to examples of undetected
fastener bboxes, with number 2 to detected fastener bboxes that are too large, with number
3 to detected sleeper bboxes that are too large, with number 4 to a detected sleeper bbox
that is in the incorrect place, and with number 5 to detected rail bboxes that are too short.



Sensors 2023, 23, 7776 12 of 15

Figure 15. Example BIE + YOLOv5s-ghost model prediction for long image with marked incorrectly
detected bboxes.

Figure 16. Example BIE + MobileNetV3-small model prediction for long image with marked incor-
rectly detected bboxes.



Sensors 2023, 23, 7776 13 of 15

4. Discussion

In summary, the experiments show that the task of railway component detection is
relatively simple, and a training set consisting of 120 labeled observations is sufficient to
train an efficient model. In addition, the results show that BIE may enrich a small dataset
and reduce the number of observations needed to train an accurate model from 120 to
90. The model that performed best is YOLOv5n, which is the smallest of the considered
architectures, supporting the hypothesis that the task is simple and does not require much
labeled data.

5. Conclusions

In this paper, we searched for a sufficient data volume for the detection of railway
infrastructure components. As a result of this study, the following findings have been made:

• In total, 120 training observations are enough to train an efficient YOLO model.
At the same time, the authors of YOLO recommend using over 1500 images per
class and over 10,000 labeled objects for best training results (https://github.com/
ultralytics/yolov5/wiki/Tips-for-Best-Training-Results), accessed on 3 July 2023,
which is approximately 100 times more than was needed in our experiment. Taking
this into account, a sufficient detector of the railway objects requires a relatively
small amount of data, which is desirable since labeled railway images are not easily
available;

• The number of observations required to train an efficient railway OD model can be re-
duced to 90 observations after applying our method BIE, which allows for background
extraction from the training subset. The use of background images is common in OD
tasks since backgrounds are usually simple to acquire, which is different for railway
backgrounds, which cannot have any images that do not contain railway components.
These should be photos composed of the ballast alone, which requires additional effort
to obtain them. Thus, this paper’s result that BIE can be used to extract backgrounds
from training images is an important finding;

• The best model for the railway object detection task is YOLOv5n, which is the smallest
of the YOLO models, and therefore, is more robust for overfitting to small datasets.

In summary, this paper’s results demonstrate the great potential of neural networks for
detecting railway infrastructure objects. With a limited amount of data labeling, it is possible
to obtain adequate models that can support people in railway track condition analysis.

Author Contributions: Conceptualization, A.G., M.B. and T.R.; data curation, Z.B. and M.B.; software
A.G., Z.B. and M.B.; visualization, A.G.; writing—original draft, A.G. and Z.B.; writing—review
and editing, T.R.; supervision, T.R. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was financially supported by the National Center for Research and Development
(Poland) grant POIR.01.01.01-00-1131/20-00.

Data Availability Statement: Data unavailable for public sharing due to privacy reasons.

Acknowledgments: We would like to acknowledge Aleksander Hernik and Marcin Baran for their
support with data gathering, and Korneliusz Lewczuk and Ignacy Gloza for their contributions to
the code development.

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results
https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results


Sensors 2023, 23, 7776 14 of 15

Abbreviations
The following abbreviations are used in this manuscript:

bbox Bounding Box
BIE Background Image Extraction
CNN Convolutional Neural Network
IoU Intersection Over Union
KNN K-Nearest Neighbors
ML Machine Learning
mAP Mean Average Precision
mAR Mean Average Recall
OD Object Detection
R-CNN Region-based Convolutional Neural Networks
SSD Single-Shot Detector
SVM Support Vector Machines
YOLO You Only Look Once
YOLOv5n YOLO version 5 nano
YOLOv5s-ghost YOLO version 5 small with ghost bottleneck

References
1. Banister, D. Cities, mobility and climate change. J. Transp. Geogr. 2011, 19, 1538–1546. https://doi.org/https://doi.org/10.1016/j.

jtrangeo.2011.03.009.
2. Xia, T.; Zhang, Y.; Crabb, S.; Shah, P. Cobenefits of Replacing Car Trips with Alternative Transportation: A Review of Evidence

and Methodological Issues. J. Environ. Public Health 2013, 2013, 1–14. https://doi.org/10.1155/2013/797312.
3. Kim, N.S.; Wee, B.V. Assessment of CO2 emissions for truck-only and rail-based intermodal freight systems in Europe. Transp.

Plan. Technol. 2009, 32, 313–333, [https://doi.org/10.1080/03081060903119584]. https://doi.org/10.1080/03081060903119584.
4. Xia, W.; Zhang, A. High-speed rail and air transport competition and cooperation: A vertical differentiation approach. Transp.

Res. Part B Methodol. 2016, 94, 456–481. https://doi.org/https://doi.org/10.1016/j.trb.2016.10.006.
5. Liu, X.; Saat, M.R.; Barkan, C.P.L. Analysis of Causes of Major Train Derailment and Their Effect on Accident Rates. Transp. Res.

Rec. 2012, 2289, 154–163. https://doi.org/10.3141/2289-20.
6. Gawlak, K. Analysis and assessment of the human factor as a cause of occurrence of selected railway accidents and incidents.

Open Eng. 2023, 13, 1–3. https://doi.org/10.1515/eng-2022-0398.
7. Nakhaee, M.C.; Hiemstra, D.; Stoelinga, M.; van Noort, M. The Recent Applications of Machine Learning in Rail Track

Maintenance: A Survey. In Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification;
Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 91–105. https://doi.org/10.1007/978-3-030-18744-6_6.

8. Li, Y.; Trinh, H.; Haas, N.; Otto, C.; Pankanti, S. Rail Component Detection, Optimization, and Assessment for Automatic Rail
Track Inspection. IEEE Trans. Intell. Transp. Syst. 2014, 15, 760–770. https://doi.org/10.1109/TITS.2013.2287155.

9. Manikandan, R.; Balasubramanian, M.; Palanivel, S. Machine Vision Based Missing Fastener Detection in Rail Track Images
Using SVM Classifier. Int. J. Smart Sens. Intell. Syst. 2017, 10, 574–589. https://doi.org/10.21307/ijssis-2017-271.

10. Ghiasi, A.; Ng, C.T.; Sheikh, A.H. Damage detection of in-service steel railway bridges using a fine k-nearest neighbor machine
learning classifier. Structures 2022, 45, 1920–1935. https://doi.org/https://doi.org/10.1016/j.istruc.2022.10.019.

11. Santur, Y.; Karaköse, M.; Akin, E. Random forest based diagnosis approach for rail fault inspection in railways. In Proceedings of
the 2016 National Conference on Electrical, Electronics and Biomedical Engineering (ELECO), Bursa, Turkey, 1–3 December 2016;
pp. 745–750.

12. Hsieh, C.C.; Hsu, T.Y.; Huang, W.H. An Online Rail Track Fastener Classification System Based on YOLO Models. Sensors 2022,
22, 9970. https://doi.org/10.3390/s22249970.

13. Gibert, X.; Patel, V.M.; Chellappa, R. Deep Multitask Learning for Railway Track Inspection. IEEE Trans. Intell. Transp. Syst. 2017,
18, 153–164. https://doi.org/10.1109/TITS.2016.2568758.

14. Zhu, Y.; Sekiya, H.; Okatani, T.; Yoshida, I.; Hirano, S. Acceleration-based deep learning method for vehicle monitoring. IEEE
Sensors J. 2021, 21, 17154–17161.

15. Lorenzen, S.R.; Riedel, H.; Rupp, M.M.; Schmeiser, L.; Berthold, H.; Firus, A.; Schneider, J. Virtual Axle Detector Based on
Analysis of Bridge Acceleration Measurements by Fully Convolutional Network. Sensors 2022, 22, 8963. https://doi.org/10.339
0/s22228963.

16. Cha, Y.J.; Choi, W.; Suh, G.; Mahmoudkhani, S.; Büyüköztürk, O. Autonomous Structural Visual Inspection Using Region-
Based Deep Learning for Detecting Multiple Damage Types. Comput.-Aided Civ. Infrastruct. Eng. 2018, 33, 731–747. https:
//doi.org/https://doi.org/10.1111/mice.12334.

17. Guedes, A.; Silva, R.; Ribeiro, D.; Vale, C.; Mosleh, A.; Montenegro, P.; Meixedo, A. Detection of Wheel Polygonization Based on
Wayside Monitoring and Artificial Intelligence. Sensors 2023, 23, 2188. https://doi.org/10.3390/s23042188.

https://doi.org/https://doi.org/10.1016/j.jtrangeo.2011.03.009
https://doi.org/https://doi.org/10.1016/j.jtrangeo.2011.03.009
https://doi.org/10.1155/2013/797312
http://xxx.lanl.gov/abs/https://doi.org/10.1080/03081060903119584
https://doi.org/10.1080/03081060903119584
https://doi.org/https://doi.org/10.1016/j.trb.2016.10.006
https://doi.org/10.3141/2289-20
https://doi.org/10.1515/eng-2022-0398
https://doi.org/10.1007/978-3-030-18744-6_6
https://doi.org/10.1109/TITS.2013.2287155
https://doi.org/10.21307/ijssis-2017-271
https://doi.org/https://doi.org/10.1016/j.istruc.2022.10.019
https://doi.org/10.3390/s22249970
https://doi.org/10.1109/TITS.2016.2568758
https://doi.org/10.3390/s22228963
https://doi.org/10.3390/s22228963
https://doi.org/https://doi.org/10.1111/mice.12334
https://doi.org/https://doi.org/10.1111/mice.12334
https://doi.org/10.3390/s23042188


Sensors 2023, 23, 7776 15 of 15

18. Ni, Y.Q.; Zhang, Q.H. A Bayesian machine learning approach for online detection of railway wheel defects using track-side
monitoring. Struct. Health Monit. 2021, 20, 1536–1550.

19. Ta, Q.B.; Huynh, T.C.; Pham, Q.Q.; Kim, J.T. Corroded Bolt Identification Using Mask Region-Based Deep Learning Trained on
Synthesized Data. Sensors 2022, 22, 3340.

20. Tan, L.; Tang, T.; Yuan, D. An Ensemble Learning Aided Computer Vision Method with Advanced Color Enhancement for
Corroded Bolt Detection in Tunnels. Sensors 2022, 22, 9715. https://doi.org/10.3390/s22249715.

21. Datta, D.; Hosseinzadeh, A.Z.; Cui, R.; Lanza di Scalea, F. Railroad Sleeper Condition Monitoring Using Non-Contact in Motion
Ultrasonic Ranging and Machine Learning-Based Image Processing. Sensors 2023, 23, 3105. https://doi.org/10.3390/s23063105.

22. Kaewunruen, S.; Sresakoolchai, J.; Huang, J.; Zhu, Y.; Ngamkhanong, C.; Remennikov, A.M. Machine Learning Based Design of
Railway Prestressed Concrete Sleepers. Appl. Sci. 2022, 12, 311. https://doi.org/10.3390/app122010311.

23. Zhuang, L.; Wang, L.; Zhang, Z.; Tsui, K.L. Automated vision inspection of rail surface cracks: A double-layer data-driven
framework. Transp. Res. Part C: Emerg. Technol. 2018, 92, 258–277. https://doi.org/https://doi.org/10.1016/j.trc.2018.05.007.

24. Chen, J.; Liu, Z.; Wang, H.; Núñez, A.; Han, Z. Automatic Defect Detection of Fasteners on the Catenary Support Device Using
Deep Convolutional Neural Network. IEEE Trans. Instrum. Meas. 2018, 67, 257–269. https://doi.org/10.1109/TIM.2017.2775345.

25. Meixedo, A.; Ribeiro, D.; Santos, J.; Calçada, R.; Todd, M.D. Real-Time Unsupervised Detection of Early Damage in Railway Bridges
Using Traffic-Induced Responses; Springer: Berlin/Heidelberg, Germany, 2022.

26. Suh, G.; Cha, Y.J. Deep faster R-CNN-based automated detection and localization of multiple types of damage. In Proceedings of
the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018 (SPIE), Denver, CO, USA, 4–8
March 2018; Volume 10598, pp. 197–204.

27. Giben, X.; Patel, V.M.; Chellappa, R. Material classification and semantic segmentation of railway track images with deep
convolutional neural networks. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City,
QC, Canada, 27–30 September 2015; pp. 621–625. https://doi.org/10.1109/ICIP.2015.7350873.

28. Wang, T.; Yang, F.; Tsui, K.L. Real-Time Detection of Railway Track Component via One-Stage Deep Learning Networks. Sensors
2020, 20, 4325. https://doi.org/10.3390/s20154325.

29. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.
In Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH,
USA, 23–28 June 2014 .

30. Uijlings, J.R.R.; van de Sande, K.E.A.; Gevers, T.; Smeulders, A.W.M. Selective Search for Object Recognition. Int. J. Comput. Vis.
2013, 104, 154–171. https://doi.org/10.1007/s11263-013-0620-5.

31. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In
Proceedings of the Advances in Neural Information Processing Systems; Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R.,
Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2015; Volume 28.

32. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of
the Computer Vision—ECCV 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer: Cham, Switzerland, 2016; pp. 21–37.

33. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June
2018; pp. 4510–4520. https://doi.org/10.1109/CVPR.2018.00474.

34. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. .

35. Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L.C.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R.; et al. Search-
ing for MobileNetV3. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul,
Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. https://doi.org/10.1109/ICCV.2019.00140.

36. Redmon, J.; Divvala, S.K.; Girshick, R.B.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. arXiv 2015,
arXiv:1506.02640. http://xxx.lanl.gov/abs/1506.02640.

37. Guo, K.; He, C.; Yang, M.; Wang, S. A pavement distresses identification method optimized for YOLOv5s. Sci. Rep. 2022, 12, 3542.
https://doi.org/10.1038/s41598-022-07527-3.

38. Lin, T.Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings
of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26
July 2017.

39. Padilla, R.; Passos, W.L.; Dias, T.L.B.; Netto, S.L.; da Silva, E.A.B. A Comparative Analysis of Object Detection Metrics with a
Companion Open-Source Toolkit. Electronics 2021, 10, 279. https://doi.org/10.3390/electronics10030279.

40. Fang, L.; Zhao, X.; Zhang, S. Small-objectness sensitive detection based on shifted single shot detector. Multimed. Tools Appl. 2019,
78, 13227–13245. https://doi.org/10.1007/s11042-018-6227-7.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/s22249715
https://doi.org/10.3390/s23063105
https://doi.org/10.3390/app122010311
https://doi.org/https://doi.org/10.1016/j.trc.2018.05.007
https://doi.org/10.1109/TIM.2017.2775345
https://doi.org/10.1109/ICIP.2015.7350873
https://doi.org/10.3390/s20154325
https://doi.org/10.1007/s11263-013-0620-5
https://doi.org/10.1109/CVPR.2018.00474
http://xxx.lanl.gov/abs/1704.04861
https://doi.org/10.1109/ICCV.2019.00140
http://xxx.lanl.gov/abs/1506.02640
https://doi.org/10.1038/s41598-022-07527-3
https://doi.org/10.3390/electronics10030279
https://doi.org/10.1007/s11042-018-6227-7

	Introduction
	Materials and Methods
	Railway Track
	Machine Learning Models for Object Detection
	Background Image Extraction
	Experiment
	Data Acquisition and Dataset
	Experiment Settings


	Results
	Discussion
	Conclusions
	References

