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Abstract: Too often, the testing and evaluation of object detection, as well as the classification
techniques for high-resolution remote sensing imagery, are confined to clean, discretely partitioned
datasets, i.e., the closed-world model. In recent years, the performance on a number of benchmark
datasets has exceeded 99% when evaluated using cross-validation techniques. However, real-world
remote sensing data are truly big data, which often exceed billions of pixels. Therefore, one of the
greatest challenges regarding the evaluation of machine learning models taken out of the clean
laboratory setting and into the real world is the difficulty of measuring performance. It is necessary
to evaluate these models on a grander scale, namely, tens of thousands of square kilometers, where it
is intractable to the ground truth and the ever-changing anthropogenic surface of Earth. The ultimate
goal of computer vision model development for automated analysis and broad area search and
discovery is to augment and assist humans, specifically human–machine teaming for real-world tasks.
In this research, various models have been trained using object classes from benchmark datasets such
as UC Merced, PatternNet, RESISC-45, and MDSv2. We detail techniques to scan broad swaths of the
Earth with deep convolutional neural networks. We present algorithms for localizing object detection
results, as well as a methodology for the evaluation of the results of broad-area scans. Our research
explores the challenges of transitioning these models out of the training–validation laboratory setting
and into the real-world application domain. We show a scalable approach to leverage state-of-the-art
deep convolutional neural networks for the search, detection, and annotation of objects within large
swaths of imagery, with the ultimate goal of providing a methodology for evaluating object detection
machine learning models in real-world scenarios.

Keywords: broad-area scan; deep convolutional neural network (DCNN); object detection

1. Introduction

The detection of objects in high-resolution (HR) electro-optical (EO) remote sensing
imagery (RSI) has been studied for many years. Objects in RSI are commonly referred to as
anthropogenic features on the surface of the Earth, which are either movable or structural
entities. Numerous applications will benefit from improved techniques to recognize and
localize objects in HR-EO-RSI, such as urban monitoring and management, mapping
applications, area searches, and many more. A critical need exists to increase the level of
visual search automation to allow humans to effectively manage the deluge of overhead
sensor data that are being continuously collected by overhead imagery sources, such as
satellites and drones.

At this point, there exist numerous datasets of HR-EO-RSI, including the UC Merced
dataset [1], the RSD or WHU-RS19 [2], the PatternNet [3], the RSI-CB256 [4], the AID [5], and
the RESISC-45 [6]. These datasets have supported a wide variety of land cover classification
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and object detection research since their releases over the last ten-plus years. The research
has explored many approaches, which range from hand-crafted features fed into many
types of classifiers to comprehensive deep learning models.

Many of these datasets have been released with initial studies of the classification per-
formance, such as [4–6], that routinely compare the performance of hand-crafted features to
deep learning techniques. In each case, deep learning methods have demonstrated superior
classification performance and object detection accuracies. Specifically, deep convolutional
neural networks (DCNNs) have emerged as leading approaches that have demonstrated
excellent performance in cross-validation studies [7,8] and other studies utilizing discrete
remote sensing datasets [9–12]. This has continued as vision transformers [13] and other
transformer-based models have been utilized to further improve the classification perfor-
mance of HR-EO-RSI [14,15]. While some studies do choose to utilize DCNNs on real-world
remote sensing imagery, they often choose to investigate small areas where the ground
truth is readily available [16–18]. However, rarely does published research move beyond
the cross-validation of these datasets and small investigation areas to evaluate object lo-
calization with DCNNs that deal with broad areas of aerial imagery. That is, models are
only evaluated in closed-world settings, and not enough research has been performed on
DCNN models trained on discrete datasets in the larger context of Earth observation.

It is not well understood how well these models perform in the complex realities of
broad-area searches (BASs) of HR-EO-RSI. Real-world remote sensing data are truly big
data, and they often exceed billions of pixels in a single scene capture. To apply DCNN
models, practitioners need algorithmic approaches for scanning data at an appropriate
range of ground sample distance (GSD) (e.g., 0.5 m GSD, 1.0 m GSD, etc.). Detection results
must then be post-processed to be filtered and refined, thereby generating an ordered list
of likely object locations for human consumption. The sheer volume of HR-EO-RSI that is
collected prevents an exhaustive human effort to label data, which both necessitates the
use of machine learning models and precludes solely relying on ground truth labels as the
only evaluative method for those models.

Scanning, i.e., sliding sub-image analysis, large swathes of Earth imagery with DCNN
models produces a classification vector response field (CVRF), which is a multi-class
response of the center point of the DCNN input field of view. The CVRF can be handled
in a number of ways, with the most straightforward being to extract layers (i.e., a single
class of object detections). By their very nature, DCNNs are somewhat robust in response
to the shift and rotation of objects in HR-EO-RSI. Therefore, if the scanning operation has a
suitable overlap of image chips that are fed to the DCNN, we can expect a single instance
of an object to be detected to varying degrees in multiple nearby locations. The challenge
is, then, to reduce the CVRF into a set of salient object locations and, furthermore, to rank
order these locations for human analytical consumption. However, evaluating machine
learning models taken out of the clean laboratory setting and into the real world is difficult
due to the lack of massively scaled ground truth data at the scale of an operational remote
sensing task.

The novel contributions of this paper include investigation into the translation of
DCNN cross-validation performance into BAS applications. Additionally, we present a
metric for assessing the performance of a DCNN detector in BAS applications that accu-
rately scores models in situations with and without a priori ground truth labels. This metric,
known as scanning precision (SP), returns a real number between 0 and 1, thus enabling
direct comparisons between detectors and functions by emphasizing true detections where
the model is most confident. It strongly penalizes models for having high confidence in
false positives, and it penalizes models less for false positives that have lower confidence.
Finally, this paper performs BASs with multiple trained DCNN models on multiple AOIs
and processes a total area of 50,000 square kilometers. We then evaluate the BAS perfor-
mance using the proposed SP metric to investigate the ability of deep learning models
to perform machine-assisted visual analytics, and we thereby enable the faster and more
efficient detection of objects by assisting humans in finding the desired objects in BAS tasks.
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The remainder of this paper is organized as follows. Section 2 discusses the training
methodologies used to build BAS capability, including the datasets and network architec-
tures used for generating trained models, as well as the algorithmic approach for object
detection localization in the context of broad-area scans. Section 3 then contains our experi-
mental results and discussion, starting from base network performance with respect to the
examined datasets in cross-validation and then presenting the results and discussion of
the broad-area search performance using the proposed scanning precision (SP) metric to
quantitatively evaluate and compare the scanning results. Finally, we conclude with some
final remarks and future directions for this research in Section 4.

2. Materials and Methods

To generate the models used for BASs, we considered multiple architectures and
datasets. Modern DCNNs vary greatly in their architectures, and these differences may be
crucial in object detection performance in highly variable regions of Earth. Additionally,
the choice of augmentation and other hyperparameters such as learning rate or momentum
can affect how the DCNN performs in a BAS task. We considered four benchmark datasets
for this research, which are detailed in the next subsection. Furthermore, we evaluated
three network architectures, which are detailed in Section 2.4.2: EfficientNet, ProxylessNAS,
and Xception. These three networks utilize diverse feature extraction techniques, and by
evaluating all three against the selected datasets, we will be able to better understand
the performance of the models in cross-validation versus scanning performance when
considering the differing characteristics of the models.

2.1. Datasets

In recent years, many benchmark datasets have been released, and these datasets have
been researched with a high level of success, such as in [8,19–21]. With these datasets, a high
level of average recall can be obtained through the careful selection of hyperparameters
and augmentation schemes. For this research, we will evaluate the performance of DCNN
models regarding their ability to detect and locate five selected anthropogenic features in
large swaths of aerial imagery: Airplane, Baseball Diamond, Overpass, Storage Tanks, and Tennis
Courts. We chose four benchmark datasets containing these five classes for the training of
our DCNN models for eventual use in BAS. These datasets are described below, and sample
image chips from each dataset can be seen in Figure 1.

2.1.1. UC Merced

The UC Merced (UCM) benchmark dataset [1] has been used in a wide range of remote
sensing research, which includes prior work in the classification of objects and land cover,
such as [7,8,22–25]. It includes 21 classes with 100 samples each. This dataset is well
standardized and has consistent resolution of 256 × 256 pixel images of 0.3 m GSD. As
shown in Table 1, column UCM, UC Merced contains all five classes of interest for BAS,
with each containing the standard 100 images.

Table 1. Number of Images in Classes of Interest for UCMerced (UCM), PatternNet (PN), RESISC-45
(R-45) and Improved MetaDataset (MDSv2).

Class UCM PN R-45 MDSv2

Airplane 100 800 700 2545

Baseball Diamond 100 800 700 1600

Overpass 100 800 700 1658

Storage Tanks 100 800 700 10,042

Tennis Court 100 800 700 1600



Sensors 2023, 23, 7766 4 of 22

UCMerced

PatternNet

RESISC-45

Improved MetaDataset

Figure 1. Sample imagery from the four chosen datasets: UCMerced, PatternNet, RESISC-45, and Im-
proved MetaDataset.

2.1.2. PatternNet

The PatternNet benchmark dataset was designed by Zhou et al. [3] for remote sensing
image retrieval. This dataset includes 38 classes, each with 800 image samples. The image
chips are 256 × 256 pixels, and the spatial resolution varies from 0.06 m to 4.7 m GSD. All
five of the classes of interest for BAS are included in the PatternNet dataset, as shown in
Table 1, column PN.
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2.1.3. NWPU-RESISC45

The Remote Sensing Image Scene Classification 45 (RESISC-45) is a benchmark remote
sensing dataset developed by Cheng et al. [6]. It was designed to be a challenging remote
sensing image scene classification benchmark dataset. It contains 45 classes, each with
700 samples. The image chips are 256 × 256 pixels, and the spatial resolution varies from
0.2 m to 30 m GSD. RESISC-45 is the most difficult dataset to classify in cross-validation
evaluation, as shown in [19]. This dataset’s selected class distribution is shown in Table 1,
column R-45.

2.1.4. Improved Benchmark Meta-Dataset

The Improved Benchmark Meta-Dataset (MDSv2) [26] was developed in 2020 as
an enhanced version of the original Benchmark Meta Dataset (MDS) [27]. The MDSv2
combines co-occurring and unique classes from six distinct overhead datasets, including
four benchmark datasets and two challenge datasets. The resulting dataset is heavily
unbalanced, with as little as 700 samples and as many as 17,000 in the largest class. It has
over 80,000 samples belonging to 33 classes and is the dataset with the most intra-class
diversity in this study where GSD and visual features are concerned. The dataset was
designed with BAS in mind, and as such, one would expect it to train the most robust
detectors in our BAS experiments. This dataset’s class distribution is shown in Table 1,
column MDSv2.

2.1.5. Ground Truth Datasets

Ground truth was collected in the two areas of interest (AOIs) of Beijing, CHN,
and Springfield, MO, USA. All ground truth was collected by utilizing Google Earth
Pro. The larger Beijing AOI was divided into 9 smaller sections for purposes of ground
truth collection. For each section, the area was scanned horizontally for target objects of
(1) airplanes, (2) storage tanks, and (3) street overpasses, for a total of 3 layers for each
subsection. When an object of interest was found, a pin was placed, and the object was
labeled. Each area was then given a second pass to ensure all objects were correctly labeled
and that no object of interest had gone unlabeled.

Ground truth collection was timed to enable comparison between human-alone and
machine-assisted methodologies for detecting these objects of interest. This same method-
ology was utilized for Springfield, MO, but it utilized 12 smaller polygons to divide the
AOI rather than the 9 used in the Beijing AOI. The data was then exported to KML and
later used for computing performance metrics of models in detecting objects of interest
in the 2 AOIs. The total number of objects collected from the manual review of our AOIs
is 1826 across the three chosen classes, with a total of 1471 objects in the Beijing AOI and
355 in Springfield. More details on the number of objects collected per class in each AOI
are available in Table 2.

Table 2. Number of collected ground truth objects (Ct.) in selected classes in the Beijing and
Springfield AOIs along with the human time (H:M:S) required to scan each AOI for each target
class (Time).

Springfield AOI Beijing AOI

Class Ct. Time Ct. Time

Airplane 32 32:17:17 107 12:29:11

Overpass 79 36:01:04 773 16:20:25

Storage Tank 244 3:37:04 591 12:59:31

Total 355 71:55:25 1471 41:49:07

The total number of hours required to collect the ground truth data was 113:44:32,
with around 72 h allocated to the smaller Springfield AOI and around 42 h for data



Sensors 2023, 23, 7766 6 of 22

collection in the Beijing AOI. In both AOIs, the class requiring the most time to collect
ground truth was the Overpass class; however, the Springfield AOI required more than 2×
the human hours to collect Overpass ground truth, despite having only 1/4th the area of
review. This trend continued for the Airplane class, as the smaller Springfield AOI required
more collection time at 32 h than the larger Beijing AOI at 12.5 h. We then observed the
opposing trend in the data collection times for the Storage Tank class, as the Springfield
AOI only required 3.5 h for data collection, while the larger Beijing AOI required just under
4× the time at 13 h. As noted, the manual collection of data from the imagery required
over 100 h of human eyes on imagery. This is ultimately the task we seek to enable with
human–machine teaming, thereby leveraging the trained networks for BAS to reduce the
human time element by one to two orders of magnitude.

2.2. Network Architectures

In the sections below, we describe the deep network architectures that we utilized in
this study. We chose three architectures with differing design paradigms so that we could
evaluate multiple types of deep networks in BAS applications.

2.2.1. EfficientNet

The EfficientNet [28] family of networks was developed in 2019 and was presented
at the International Conference of Machine Learning (ICML). EfficientNet is a family of
8 different architectures, where 7 of them are scaled networks from the original network:
EfficientNet-B0. EfficientNet-B0 is the result of neural architecture searches (NASs), but, un-
like other NAS-based networks, EfficientNet-B0 optimizes both to maximize network accu-
racy, while also minimizing FLOPS, i.e., it produces a highly efficient and well-performing
network. After establishing the architecture of the EfficientNet-B0, the authors scaled the
network using a compound scaling coefficient, φ, to scale the depth, width, and resolution
of the network to larger sizes. The resulting family of networks offers eight options, each
with a different level of tradeoff between the number of parameters and the ImageNet
accuracy. For this research, we used EfficientNet-B4, which is a model with ImageNet
performance similar to NASNet-A [29] but with only 4.2B FLOPs, which is similar to
ResNet-50 [30] in the number of FLOPs and which has 5.7 × fewer FLOPs than similarly
performing networks, e.g., NASNet-A.

2.2.2. ProxylessNAS

The ProxylessNAS network [31] advertises better performance, lower training times,
and smaller memory footprints than NASNet-A [29]. When compared on the CIFAR-
10 dataset [32], the ProxylessNAS architecture was able to achieve a 2.08% test error,
which was better than NASNet-A’s respectable 2.40% test error. One important note on
these results, however, is that the NASNet-A has 27.6 million learnable parameters, while
ProxylessNAS has only 5.7 million. With regard to training performance, ProxylessNAS
not only outperforms NASNet-A’s 38.3 ms GPU latency, but its 5.1 ms GPU latency is faster
than ResNet-34 (8.0 ms) or MobileNetV2 (6.1 ms) when used on the NVIDIA Tesla V-100.
The times reported are taken from an experiment on the ImageNet dataset [33] published in
the International Conference on Learning Representations (ICLR) paper for ProxylessNAS.
What is more, these times do not come at the cost of classification performance, as the
ProxylessNAS has a 92.5% Top-5 accuracy on ImageNet, which again has outperformed
NASNet-A (91.3%) and ResNet-34 (91.4%). While ProxylessNAS has shown promise, there
are still questions as to how ProxylessNAS will perform on HR-EO-RSI.

2.2.3. Xception

Xception is another popular network that has achieved a high level of success in
the remote sensing domain [19]. The Xception architecture is one that relies on residual
connections similar to ResNet-50 but adds an extreme inception module to the residual
layers. The extreme inception module is based on the inception module used in the Incep-
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tion networks, specifically, the inception module used in Inception V-3’s architecture [34].
This module creates a pseudo-depth-wise separable convolution that performs better than
standard convolutional layers in many contexts. Important characteristics of this network
are 36 residual, depth-wise separable convolutional layers with ReLU activation functions
that are separated into 14 modules before being fed into a single fully connected layer with
a softmax output.

2.3. DCNN Training Methodology

We now detail our methodology for training DCNN models for both our cross-
validation experiments as well as for the BASs. The training methodology follows the
prescribed concepts of transfer learning and data augmentation described in [7]. Regarding
the hyperparameters, all models were trained using an Adam optimizer and a categorical
cross-entropy loss function with an initial learning rate of 0.0001 (1× 10−4). All networks
were initialized with publicly available ImageNet [33] weights (transfer learning) and are
GPU-accelerated with four NVIDIA V100S running the PyTorch deep learning framework
in Python 3.6.

2.3.1. Training DCNNs for Cross-Validation

As shown in [7], data augmentation can significantly improve the performance of
DCNNs. For the four datasets considered here, augmentations applied to the training
image chips included rotations and horizontal flips. Conceptually, these augmentations are
increasing the variability of the data the models are exposed to during training, with the
goal of increasing generalizability. The augmentation through rotation was selected to be in
increments of five degrees from 0 to 360. All four datasets received identical augmentation
schemes, and the total data augmentation multiplier during cross-validation was 144. The
training length was set to only a single epoch; however, it should be noted that, while we
only trained for a single epoch, our use of data augmentation means we effectively were
training for 144 epochs with randomly shuffled variations in our original dataset.

2.3.2. Training DCNNs for Scanning

The critical difference in training detectors for use in BAS is the addition of translation
augmentations. We translated each chip of 15 pixels in all ordinal and cardinal directions
for a total of eight translations per chip. We continued our 5-degree rotation and flip
augmentations for a total augmentation multiplier of 1296× and initialized our learning
rate to 0.0001. Recall that the usage of data augmentation means that our single epoch of
training was effectively 1296 epochs of training for variations of our training dataset.

2.4. Broad-Area Scanning (BAS)

In [35], it was shown that human broad-area search time can be variable and exceed
numerous hours for large areas of interest (AOIs), even when searching for large-scale
visual features in HR-EO-RSI. This is exacerbated as the geospatial footprint (extent) of
objects continues to shrink. The value of machine learning technology in this domain is
the reduction of human hours to accomplish cognitive tasks through human–machine
teaming; in this case, this is accomplished by assisting human analysts in visual searches,
i.e., machine-learning-assisted visual analytics. Therefore, it is critical to transition high-
performing object detection models out of the experimental cross-validation settings and
closed-world evaluations and into the application domain of aided imagery analysis tasks.
Machine learning models, such as DCNNs, are ideal technologies to augment human
analytical tasks, as the models do not fatigue and can simply scale with the data.

An overall data flow for scanning broad areas of HR-EO-RSI using trained DCNNs
is depicted in Figure 2. Large imagery tiles acquired from data providers are processed
to generate a stream of geolocated imagery chips, which then flow through the DCNN to
produce the CVRF. Following aggregation of the CVRF, candidate objects can be presented
to users in an ordered fashion for rapid visual assessment. As a result if searching, for ex-
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ample, for anthropogenic objects such as baseball fields in a broad area, we can reduce the
visual inspection to a few hundred image chips within the entire AOI. The remainder of this
section details the algorithmic approaches to performing object localization in large-scale
regions of Earth that have been scanned by machine learning models.

Figure 2. BAS with HR-EO-RSI for object detection and localization. Large imagery tiles are scanned
in a highly overlapped method to stream image chips through DCNNs, thus resulting in a geolocated
mesh of confidence vectors. The response surfaces are refined using morphological filtering, followed
by mode-seeking clustering algorithms for localization.

2.4.1. Classification Vector Response Field

The critical first step for BAS is the generation of the CVRF. It should be noted that
the scale of satellite imagery and the area of analysis precludes the use of techniques such
as region proposal networks or candidate object nomination non-maximal suppression,
which are common in single image bounding box detectors. In this work, we leveraged an
HR-EO-RSI provider to acquire two AOIs, the first of which was a quarter geocell and the
second being a full geocell, with each covering 1 degree latitude by 1 degree longitude. All
imagery were 0.5 m GSD multi-spectral imagery that were reduced to just the traditional
color bands: red, green, and blue. The AOIs were scanned via a data collector that moved
through each AOI to pull down large image tiles from the imagery provider’s web API.
These image tiles were overlapped by 10% of their width, thereby ensuring sufficient AOI
coverage by preventing objects from only being partially seen when captured on tile edges.
Each tile was then processed with a stride of 90% of its width, which pulled image chips
from the broad area that were 227× 227 pixels in size (113.5 × 113.5 m). Figure 3 illustrates
the chip scanning, which effectively forms a set of overlapping grids over the AOI. In the
Beijing AOI, the larger of the two chosen for this study, our source imagery is composed
of 33,201 PNGs at 1280 × 1280 pixels, meaning that each of our detectors must evaluate
54,396,518,400 unique pixels, which requires hours of processing even on high-performance
NVIDIA V100S GPUs, due to memory limitations of GPU cards.

Each image chip was pushed through the DCNN to generate a geolocated classification
response vector. Figure 4 illustrates the relationship and data path from AOI tiles to chips
to DCNN inference to classification vectors. The response vectors were automatically
geolocated based on the chip center latitude and longitude (see also Figure 3). The CVRF
generated from the AOIs in this research consisted of 601,344 geolocated classification
vectors in the Springfield AOI and 11,983,927 vectors in the Beijing AOI.
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Figure 3. Imagery scanning with overlap for a single tile in a scanning AOI for DCNN inference.
Chip centers are marked with X, and each chip is the size of the yellow box. Overlap is added to
ensure all objects are detected regardless of the position in the tile.

Figure 4. The AOI is scanned as a set of overlapping tiles, where each tile is processed as a set of
overlapping chips. Each chip is passed through the DCNN to produce the geolocated classification
vector (CVRF). The N-d vectors are then used as input for the object localization process. N is the
number of classes upon which the model is trained.

The scanning forms an irregular field, i.e., mesh, of classification vectors over the AOI.
A very important consideration is the nature of the classification output of the DCNN
architectures. DCNNs typically utilize a softmax output layer that generates the final
classification response. This layer type aids in the training of the DCNN. However, the effect
is that the output vector, C, during inference is normalized such that

1 =
|C|

∑
i=1

Ci. (1)

Unfortunately, when the network has low activation because of a lack of presence of
relevant visual content, as expected by the classifier, the vector response is lifted up to the
normalized condition of Equation (1). Hence, the CVRF is expected to have densities of
detections around true detections, as well as a massive number of artificially high responses
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that are false alarms (noise). Efficient processing of the CRVF to accommodate this real
consequence of applying the DCNN in a real-world application setting is therefore a critical
processing step.

2.4.2. Multi-Object Localization

As just discussed, the CVRF cannot be taken as raw confidence in detections due to
the softmax output layers on DCNN architectures. As such, we present an algorithm to
perform multi-object localization across a broad area’s CVRF. The CVRF generated from the
DCNN broad area scan can be accessed one classification layer at a time, thus effectively
processing one response surface at a time. We refer to a single response classification layer,
R, as a classification surface.

Based on DCNNs trained on the datasets used in this study, we yielded 21-layer,
38-layer, 45-layer, and 33-layer CVRFs for the UCM, PatternNet, RESISC-45, and MDSv2,
respectively. The number of layers in a given model’s CVRF is equal to the number of
classes in the dataset upon which the model was trained. Knowing this, we can, for each
model, slice out a response field, R, for a single class, such as Baseball Field. This response
field is then a surface over the AOI, therein having a topology shaped by a single DCNN
output neuron. We can expect regions within the AOI that have probable baseball fields,
in this example, to have a peak in R. R will, therefore, have some unknown number of peaks
that we can discover and rank to achieve a broad-area search assisted by the DCNN. Recall,
however, that the response surface may have many artificial spikes where the softmax layer
has lifted up the confidence.

To discover the true detection peaks, we first apply an alpha cut using a confidence
threshold. Recall that the output of the DCNN is a softmax layer; therefore, each output
neuron produces a value in the range [0.0, 1.0]. We used a threshold to drastically reduce
our data space to only the points where the DCNN was most certain of the target class.
In essence, we can produce a spatial field of densities where the dense regions will be the
highest likelihood objects of interest. Afterward, we can seek the modes under the densities
(localized peaks), and then we can label and rank the detection clusters.

Due to the nature of the softmax classification vectors from the DCNN, the density
surface can have irregularities and holes when examined in the isolated context of a single-
class surface, R, thus creating multiple small disparate densities (peaks) where, in fact,
we expect a single larger density. Therefore, we seek to simultaneously smooth false
alarms (outliers) and amplify the true detection densities for enhanced mode seeking.
This is accomplished using a function-to-function morphology, with a distance decaying
structuring function positioned over a detection response, i.e., the chip centers on the R
that survive the alpha cut. We define our structuring function, s(p), as follows:

s(p) =

{
exp(−d/D), if d < D;
0, otherwise

(2)

where p is the chip position (center point), D is the maximum aperture of the structuring
function (kernel), and d is the computed haversine distance of neighbor, n, as a function
of p:

d = haversine(n, p). (3)

In this work, we constrained the aperture to D = 150 m; however, this should be
adjusted, in practice, based on various factors such as image resolution, target object size,
and spatial distribution of image chip centers.

To generate the amplified spatial density surface, R′, we apply s(p) to R, (Algorithm 1,
step 3). Let N(p) be the spatial neighborhood of a point p having points n. Then, we define
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p’s value in the amplified spatial density field as the intersected volume defined by the
spatial neighbors of of p and N(p), i.e.,

δ(s(p), N(p)) = ∑
n∈N(p)

max{R(p), R(n)} ∗ s(p). (4)

Algorithm 1: Spatial Clustering of Classification Vector Response Field (R)
Input: CRVF, R
Input: Movement Threshold, ε
Output: Mode-Clustered R′

1 begin
// Alpha-Cut, e.g., α = 99%

2 Rα := confidenceFilter(R, α)
// Dilation of Rα by s(p)

3 R′ := {δ(s(p), N(p))}∀p ∈ Rα

4 do
5 R′Next := WeightedMeanshift(R′, s(p))
6 M := haversine(R′Next, R′)
7 R′ := R′Next
8 while M > ε;
9 end

Mode-seeking clustering algorithms are designed to discover the number of clusters
(or peaks) without relying on the specification of expected clusters ahead of time. This is
an ideal approach for refining broad-area scans of HR-EO-RSI, as we do not know a priori
the number of objects we expect to find. In the case of R′, the clusters are the modes within
the field that are the local maxima. These maxima are peaks found as the center of mass of
spatially connected densities in R′. A straightforward approach to discovering these modes
is the mean shift algorithm, which defines a spatial aperture of the nearest neighbors to
be evaluated at each iteration for each point. Each point is then moved to the center of
mass of its spatially local neighbor set. Algorithm 1, steps 4–8, provides the algorithm to
mode cluster R′. The algorithm defines the processing of a classification response R from
the CVRF into the amplified spatial density surface, R′, which then leads to the evolution
of the R′ into clusters representing object detections. A sample AOI response surface and
amplified spatial density surface can be seen in Figure 5.

(a) (b)
Figure 5. AOI response surface for a UCM-trained EfficientNet model. (a) Each dot is a location in
the AOI in which the model’s confidence of storage tank is ≥0.99. (b) The amplified spatial density
surface following function-to-function morphology with a distance decaying structuring function.
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In this work, we utilized a variant of the mean shift algorithm that operated in both
the spatial proximity and amplified spatial field domain, which was labeled as the weighted
meanshift in Algorithm 1, step 5. The spatial decay function, Equation (2), was used to
weight the computation of the local field mean density. We defined the weighted meanshift
as the standard mean shift algorithm, thereby computing the weighted distance between
p ∈ R′ and n ∈ N(p) as d(p, n) = haversine(p, n) ∗ s(p). Points were continually evaluated
and shifted until the total Earth surface movement of all the points was less than one meter.
As above, we used 150 m as the aperture radius (i.e., neighborhood) around each point
during weighted mean shift evaluation.

Once the points have converged under the modes, they are then mapped onto their
respective clusters, which are labeled and ranked. Each cluster’s score is computed as
the volume under its amplified spatial density. The cluster score can then be used to rank
(highest to lowest score) all clusters in an AOI to determine the order for subsequent human
analysis. Algorithm 2 provides the algorithm with the means to extract the rank-ordered
clusters from the mean-shifted data. In this study, single-detection clusters (i.e., spatial
outliers) were filtered out from the results. Figure 6 shows the result of the clustering along
the application of a top 100 cluster limit.

Algorithm 2: Object Detection Ranking (R′)

Input: Mode-Clustered R′

Output: Ranked Clusters: C; such that C(i) ≥ C(i+1)

1 begin
2 i := 0
3 do
4 p := pop(R′)
5 Ci := p // Init. Ci with chip, p
6 N := NN(p, R′, D)
7 foreach n ∈ N(p) do
8 Ci := {Ci, n}
9 R′.remove(n)

10 end
11 Ci.score = ∑c∈Ci

c.confidence
12 i++
13 while R′ 6= ∅;
14 {C(i)} := Sort C∀i by score, descending
15 end

(a) (b)
Figure 6. Clustering results from the UCM-trained EfficientNet model. (a) Clustering results, where
the darker areas indicate higher-ranked final detections. (b) top 100 cluster locations with larger
clusters ranked higher. Rank is indicated by the size of the circle.
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3. Results and Discussion

Most research literature evaluates machine learning models solely in the context
of well-constructed, discrete datasets, i.e., the closed-world model. In this setting, well-
understood cross-validation methodologies are typically used. For instance, many dataset
authors evaluate the baseline performance of numerous machine learning approaches
using a five-fold or ten-fold cross-validation on their newly published datasets (e.g., [3–6]).
Therein, a single fold is withheld from the model training phase, which is then used as
blind validation data. This is repeated for each fold until every data fold is withheld from
training and then used for validation.

However, an open question is how well models that are high-performing on discrete
datasets will adapt to the complex realities of broad area HR-EO-RSI. As it so happens,
rarely are tools applied to satellite imagery in the context of small image chips of a few
thousand pixels. Real-world remote sensing data are truly big data, and they often exceed
hundreds of millions of pixels. However, one of the greatest challenges regarding the
evaluation of machine learning models taken out of the clean laboratory setting and into
the real world is the difficulty of measuring performance. DCNNs applied to the remote
sensing domain are no different. In the real world, the ever-changing anthropogenic
landscape of Earth ensures that any active scanning of the large swaths of HR-EO-RSI is
sure to discover new objects that cannot be efficiently cataloged by humans into a ground
truth database.

In this section, we establish the baseline model performance for three leading deep
neural network architectures across a collection of benchmark datasets. Then, we propose a
metric inspired by the field of information retrieval (see [36,37]) to allow for the comparison
of the models in an applied remote sensing data processing task. We then examine how the
various network architectures performed in BASs relative to each other. This provides a
foundation for discussing the cross-validation versus scanning performance, thus offering
insights into the generalizability of the respective architectures, as well as the suitability of
the datasets for training real-world models.

3.1. Cross-Validation Performance

The cross-validation performance of the three DCNNs (Section 2.2) trained with the
four benchmark datasets (Section 2.1) provides a baseline of the expectation for performance.
Unfortunately, these discrete, well-partitioned datasets are not representative of the real-
world operating environment. Nevertheless, we must understand the clean room operating
characteristics to effectively evaluate the transition into the real world. Five-fold cross-
validation was run using the training methodology detailed in Section 2.3.1. The results of
these experiments are shown in Table 3.

The results of cross-validation show that all of our networks were able to classify the
four chosen datasets with high levels of recall and precision. The lowest score seen in cross-
validation was the 95.72% F1 Score obtained by ProxylessNAS in classifying RESISC-45,
which is a very respectable score, given the heterogeneity of the dataset. Looking across
datasets, we see that UCMerced and PatternNet were easier to classify than MDSv2, which
was then more easily classified than RESISC-45. This trend remained consistent across all
of the three evaluated networks.

Comparing results across networks, Xception seemed to slightly outperform Proxy-
lessNAS for all four datasets, but only by less than half a percent. Xception was then, in
turn, outperformed by EfficientNet on all four datasets by varying margins. EfficientNet
outperformed Xception by less than half a percent on the less challenging datasets of UC
Merced and PatternNet, but then that gap in the F1 Score grew to over half a percent for the
harder datasets of MDSv2 and RESISC-45. Margins larger than half a percent are a more
significant margin when scores are higher, as an increase from 95.82% to 96.47% on the
RESISC-45 F1 Score is a reduction in error of over 15%.
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Table 3. Cross-validation performance of selected network architectures over the investigated
datasets. Each network architecture underwent five-fold cross-validation with all 4 selected datasets.
The metrics shown are average values across all five folds for each dataset.

Network Dataset Recall Precision F1 Score

EfficientNet

UC Merced 98.67 98.72 98.66
PatternNet 99.70 99.70 99.70
RESISC-45 96.47 96.52 96.47
MDSv2 97.91 98.05 97.97

ProxylessNAS

UC Merced 98.24 98.34 98.24
PatternNet 99.48 99.50 99.48
RESISC-45 95.73 95.79 95.72
MDSv2 [26] 97.24 97.38 97.29

Xception

UC Merced 98.57 98.63 98.57
PatternNet 99.58 99.58 99.58
RESISC-45 95.83 95.90 95.82
MDSv2 97.32 97.34 97.31

3.2. Scanning Metrics

As discussed, it is nearly impossible to judge how well high-performing models,
measured in the context of discrete datasets, will perform for applied remote sensing tasks.
Given that many of the contemporary deep neural network models have performed in
excess of 95% on numerous datasets, it is necessary to develop evaluative procedures
to compare the applied performance of these models on full remote sensing data with
real-world contextual and compositional complexities. For instance, if examining the top
twenty candidate object detections from an applied broad-area search with two separate
DCNNs, how do we evaluate the relative worth of each model if both DCNNs had one
false detection in the top 20? In traditional machine learning metrics, this is the true positive
(TP) divided by the number of TP plus false positives (FP). In other words, the ratio of the
result set that was relevant, which in both cases of this example is 95%. However, what
if the first DCNN had the FP at rank 1, and the second DCNN had the FP at rank 20? We
should have a metric that indicates that the first DCNN (rank 1) is performing worse than
the second DCNN (rank 20), since its false positive is the highest-ranked detection.

For this reason, we propose a metric that allows for the relative measure of success be-
tween two models or scanning algorithms applied to large areas for an object discovery task
when acquiring ground truth is intractable. Let T = {O1, O2, . . . O∞} be a set of an unknown
quantity of relevant objects that exists within the broad area. Let L = (O(1), O(2), . . . O(N))
be a ranked object candidate list generated by a scanning method (i.e., model and algorithm
for localization). Then, a measure of the scanning precision for L is defined as follows:

Pscan(L) =
m

∑
i=1

i
r(L, i)

, (5)

where m = min(|L|, nr) and r(L, i) represent the rank of relevant (true) detection i in the
set L. nr is the number of true detections discovered a posteriori in L. Of note, the a posteriori
is captured by m in Equation (5), which can be set based on ground truth or based on the
union set of detected objects from multiple model scans.

The characteristic of this metric is based on the idea that algorithms and models that
are more discriminatory and allow true object detections to rank higher in a result set
are better. Figure 7a demonstrates the metric of Equation (5) as the non-relevant result
moves lower and lower in the rankings. For comparison, the horizontal line represents the
traditional 95% accuracy that would be reported for all scenarios.
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(a) (b)
Figure 7. Scanning precision metric compared to the traditional precision metric. Note how the
scanning precision more heavily penalizes missed detections (false positives) at higher ranks and
penalizes missed detections at lower ranks less. (a) Geometric representation of a single false
detection as the missed detection occurs at different ranks. (b) Geometric representation of 5 correct
and 5 missed detections as the misses move between higher and lower ranks.

Figure 7b also includes the complement of only relevant objects in the set, with the
trend shown that the five relevant objects slide lower and lower in ranking. It also
provides the 25% traditional precision for reference. It should be noted that the metric
penalizes the result with the higher-ranked non-relevant results when comparing two
ranked lists of the same size. Finally, note that when there are only five objects that are
known a posteriori, as the rank of those items slides down the list, the scanning metric
exponentially decays.

While limiting false positives at high ranks following post-processing may be preferred
for several applications, there are also situations in object detection where limiting false
negatives (FN) is far more important, and, for those applications, the scanning precision
metric is not the ideal metric to evaluate the model performance. In most situations, it
would be impossible to measure the number of false negatives during BASs, because
the number of locations of the ground truth objects of interest is unknown. However,
because we have obtained the ground truths for both of our scanning AOIs for three
separate object classes of interest, we were able to report a scanning recall (SR) metric.
The SR metric is defined as TP/(TP + FN), and it is identical to recall in traditional
classification tasks. By presenting both an SP and SR, we can better understand the FP
versus FN tradeoffs of our models, as well as how the SP relates to traditional metrics, such
as the F1.

3.3. Springfield AOI Localization Performance

To measure object detection localization performance, full benchmark datasets were
used to train new DCNN models (see Section 2.3.2). In other words, all available data
that had appropriate labels were used to train the networks used for BAS, as opposed
to the 80% used for each fold in the cross-validation experiments. We chose to utilize
the EfficientNet-B4 network for the BAS, due to its superior performance shown in cross-
validation and its excellent trade-off between model performance and GPU inference time.
We then performed scanning on two geographically distinct AOIs: a one-quarter geocell
AOI surrounding Springfield, Missouri, USA and a full geocell AOI surrounding Beijing,
CHN. Sample imagery from each of these AOIs can be seen in Figure 8.
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Springfield, MO, USA (2500 km2)

Beijing, CHN (10,000 km2)

Figure 8. Sample imagery tiles from each of the scanning AOIs. Imagery are RGB and downloaded
as overlapping tiles at 0.5 m GSD.

We begin our BAS performance discussion with model performance in the Springfield
AOI. Each broad area scan in the Springfield AOI involves processing 9396 tiles, which are
then chipped into 601,344 chips at 227 × 227 with a stride of 57 pixels. As highlighted in
Algorithm 1, the CVRF is sliced to extract a single classification response surface, containing
nearly 12 million points, for each of the three investigated object classes.

Table 4 provides the per-class number of object detections that survived the 95% confi-
dence alpha cut, as well as the number of cluster centers following post-processing alongside
the SR and SP. For reference, we also provide the mean F1 score achieved by the EfficientNet
models for the same set of classes in Table 5. Of note, the number of object detections was
significantly large to the point of clearly over-classifying patches of Earth during the scanning
for some of the models, which depended on the training dataset. Both our SP and SR require
a list, R, that describes which detections in the ranked list of candidates are true detections,
i.e., they are valid. This list was obtained through Algorithm 3 with a buffer of 200 m, and it
was then fed into the formulae for SP (Equation (5)) and SR.



Sensors 2023, 23, 7766 17 of 22

Algorithm 3: Scoring of Cluster Centers
Input: Ranked Object Candidate List, L
Input: Set of Ground Truth Points, G
Input: Buffer Size, B
Output: List R such that R[i] = 1 if L[i] is a valid cluster

1 begin
2 // the set of detected Ground Truth
3 D := ∅
4 // list holding 1 if R[i] is true detection, else 0
5 R := LIST()
6 // for each cluster center
7 forall i in |L| do
8 // buffer the point by B
9 C := BUFFER(L[i], B)

10 // intersection of the buffer with the list of GT
11 T := INTERSECTION(C, G)
12 // if we found at least one GT point
13 if |T| > 0 then
14 // set this cluster as a valid cluster
15 R[i] := 1
16 else
17 // set this cluster as an invalid cluster
18 R[i] := 0
19 end
20 // save the intersections to the list of detected GT
21 D := UNION(D, T)
22 // if we have found all GT, break from this loop
23 if G \ D = ∅ then
24 BREAK
25 end
26 end

Table 4. Scanning results of anthropogenic object localization in Springfield AOI, including post
alpha cut counts (Hits), number of cluster centers (Clusters), the recall of each class in the AOI (SR),
and the scanning precision for the clusters (SP).

Dataset Class Hits Clusters SR SP

UC Merced
Airplane 266 51 9.4 29.0
Overpass 52 14 6.3 46.1
Storage Tank 1228 229 29.9 30.6

PatternNet
Airplane 10 1 0.0 0.0
Overpass 872 118 31.6 28.4
Storage Tank 48 9 2.0 58.9

RESISC-45
Airplane 375 63 15.6 18.1
Overpass 273 43 25.3 45.3
Storage Tank 153 26 7.8 40.6

MDSv2
Airplane 1222 239 56.3 6.2
Overpass 789 115 34.2 34.9
Storage Tank 5892 1001 59.4 29.7
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Table 5. Per-class F1 Score for selected classes trained with EfficientNet during cross-validation.
These same models were used for BAS. Note the excellent cross-validation performance of the models
on all three investigated target classes.

Class UCM PN R-45 MDSv2
Airplane 99.48 100 98.71 99.15
Overpass 99.02 99.87 96.96 98.33
Storage Tank 97.48 99.94 98.36 97.48

We now review, first on a class-by-class basis and then in summary, the results of the
Springfield BAS experiments:

3.3.1. Airplane

The first takeaway from the airplane results (Table 4) is the high range of pre-processing
hits, with as few as 10 and as high as 1222, reported by the models trained on the PatternNet
and MDSv2 datasets, respectively. This range in hits was replicated in the number of
detections, with only a single detection coming from the model trained on the PatternNet
dataset and 239 detections being derived from the model trained on MDSv2. We can
observe that the model with the fewest reasonable number of detections achieved the
highest SP, thus indicating that more discriminative models detect fewer false positives.
However, the airplane results showed overall poor SP performance, with the highest SP
reaching only 29%, which was achieved by the model trained with the UC Merced dataset.

Upon reviewing the SR results for the airplane class, we see that the most balanced
model was trained on the RESISC-45 dataset, considering that its gap between the SP and
SR was only 2.5%, while that gap was significantly larger for the models with the highest
performance in each statistic. The best-performing SP model, trained on the UC Merced
dataset, had an SP of 29%, but only a 9.4% SR, while the best-performing SR model, trained
on MDSv2, had a 56.3% SR, but only a 6.2% SP. This trend indicates that the choice of
the training dataset for aircraft detection in the Springfield AOI is dependent upon the
sensitivity to FPs and FNs.

3.3.2. Overpass

The overpass results, seen in Table 4, showed overall better model performance than
the airplane class, thus indicating that these overpasses are perhaps not as heterogeneous
in the Springfield AOI. We again see that there was a large disparity in the number of hits
and detections between the models trained on different datasets, with 14 detections yielded
by the model trained on UC Merced and 789 yielded by the model trained on MDSv2. The
models were overall more balanced in detecting overpasses between SP and SR, as two
of the four models were within a 3.5% difference between the SP and SR. The results for
overpasses are more competitive than for airplanes, with the SR scores being much closer
between the models trained on disparate datasets. Unfortunately, none of the models were
able to achieve SP or SR scores that were over 50% for the overpass class, with the best SP
achieved by the model trained on UC Merced at 46.1% and the best SR achieved by the
model trained on MDSv2 at 34.2%.

3.3.3. Storage Tank

The storage tank results, shown in Table 4, were similar to previous classes’ perfor-
mance results, with large disparities in the number of hits and detections that ranged from
48 hits (PatternNet) to 5892 hits (MDSv2), which is an egregiously high number of hits in a
2500 square kilometer area for a single class. We again see large gaps between the SR and
SP scores for all but one model (trained on UC Merced), which again suggests that models
trained on these datasets must be specialized either for the minimization of FNs or FPs
according to the nature of the dataset. For both the SR and SP, the best performance was
around 60%, although those scores were achieved by different models, with the best SP
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reported by the model trained on PatternNet and the best SR reported by the model trained
on MDSv2.

3.3.4. Summary of Springfield BAS Performance

Looking across the results of all the classes in the Springfield AOI, we see several
interesting trends. First, we see that the best overall score reported by any model on
any class was 59.4%, which was the SR achieved by the MDSv2-trained model on the
Storage Tank class. No model was able to achieve a 60% SP or SR for the Springfield AOI,
which would suggest that these models are not well-tuned for detection in the Springfield
AOI, and it is unclear as to whether that is due to the training datasets or the training
methodology. Secondly, while the best SP across the three classes changed between the
models trained on the UC Merced and PatternNet datasets, the best SR for all three classes
was achieved by the model trained on MDSv2. Recall that the MDSv2 is a collection of
overlapping classes from six other datasets, including UC Merced, PatternNet, and RESISC-
45. This result indicates that the increased intra-class variation achieved by combining
these six datasets enables models to detect more objects; however, this may come at the
cost of more FPs, as per the low SP scores reported by the model trained on MDSv2. The
last major takeaway from the Springfield AOI experiments is the surprisingly competitive
SP scores reported by the model trained on the UC Merced dataset. The UCMerced dataset
is the oldest and smallest dataset in this study at only 2100 samples, which are only 2.41%
the number of samples in the largest dataset, MDSv2, but the EfficientNet model trained
on UC Merced was able to achieve the best SP on the Airplane and Overpass classes. This
observation may be a case of over-fitting or over-specialization of the network on the
Airplane and Overpass classes; however, if these objects are important to a human analyst
conducting a BAS, then this is the ideal training configuration for this model.

3.4. Beijing AOI Localization Performance

We now move on to the Beijing AOI BAS Experiments. These experiments were con-
ducted with the same trained models from the Springfield AOI, and the BAS, along with
post-processing, were identical aside from a raising of the required confidence threshold
during post-processing from 95% to 99% to account for the much larger size of the Beijing
AOI. The scoring was conducted identically to the Springfield AOI: raw detections were
run through weighted mean shift post-processing, and those results were then program-
matically reviewed with previously attained ground truths using Algorithm 3, which was
then used to calculate our SP and SR. The resulting scores and counts of the hits and
post-processed detections can be found in Table 6.

Table 6. Scanning results of anthropogenic object localization in Beijing AOI, including post alpha
cut counts (Hits), number of cluster centers (Clusters), the scanning recall (SR) of each class in the
AOI, and the scanning precision for the clusters (SP).

Dataset Class Hits Clusters SR SP

UC Merced
Airplane 692 101 16.8 33.2
Overpass 70,635 8305 94.8 28.8
Storage Tank 53,493 6461 96.3 15.6

PatternNet
Airplane 116 19 5.6 12.2
Overpass 5884 816 38.6 32.7
Storage Tank 3619 483 61.4 42.9

RESISC-45
Airplane 5222 902 86.9 12.5
Overpass 5958 637 64.9 77.8
Storage Tank 5440 682 84.9 29.1

MDSv2
Airplane 16,430 1219 58.9 2.7
Overpass 13,626 1729 83.7 57.9
Storage Tank 142,996 17,131 97.0 12.0
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We now review, on a class-by-class basis, the results of the Beijing BAS experiments
using the EfficientNet-B4 model.

3.4.1. Airplane

The ability of the detectors to accurately detect airplanes varied between detectors;
however, even the best SP of 33.2%, reported by the UC-Merced-trained detector, indicates
that our models are unable to detect airplanes without a significant number of FPs. This idea
reinforces the Springfield AOI results, which also saw low SP scores for the Airplane class.
Unlike the Springfield results, however, our detectors were able to achieve a respectably
higher score for the SR in the detection of airplanes. While the MDSv2-trained model was
able to detect airplanes with the same level of recall as the Springfield AOI, the RESISC-
45-trained model outperformed the rest of the detectors and was able to detect 86.9% of
the 107 ground truth airplanes in the Beijing AOI. Although we see an excellent SR by our
MDSv2- and RESISC-45-trained models, this did come at the cost of a much lower SP of
2.7% and 12.5%, respectively. This means that, for applications that are more sensitive to
FNs, these models may be a good choice, but they would be inadequate for applications
that are more sensitive to FPs.

3.4.2. Overpass

Upon reviewing the overpass scores, displayed in Table 6, we see that three of our
four detectors were able to detect overpasses with at least a 60% SR, with two of our
models achieving SR scores above 80%. The best overall models, trained on the MDSv2 and
RESISC-45 datasets, not only managed to achieve a 60% or higher SR, but they did so with
a 57% or higher SP, which was the best combined performance in this study, regardless of
target or AOI. Again, we see that the model trained on PatternNet lagged in performance
compared to the other three models, thus indicating that this dataset is not optimally
designed for the detection of overpasses in BAS applications.

3.4.3. Storage Tank

While our models had inconsistent performance results in detecting other objects with
high levels of SR, all four of our models were able to detect storage tanks in the Beijing AOI
with at least 61% SR when trained on the PatternNet, and as high as 96–97% when trained
on the UC Merced and MDSv2 datasets, respectively, as shown in Table 6. The deterministic
and homogeneous visual appearance of storage tanks may be contributing to the models’
high SR scores in the Beijing AOI. Unfortunately, the excellent SR values reported by our
models came at the cost of precision, as three of our four detectors reported SP scores below
30%, thus showing a high number of FPs among the TPs detected in our AOI.

4. Conclusions

In this work, we presented the methodologies for performing anthropogenic object
detection with deep convolutional neural networks (DCNNs) in aerial imagery. We selected
four open source HR-EO-RSI datasets and showed the DCNNs’ ability to excel in the
classification of those datasets.

We then performed BAS experiments across two geographically distinct AOIs using
models trained on the four open source high-resolution datasets and scored our models
with previously acquired ground truth data. We presented a metric adapted from the
information retrieval domain for scoring our detectors in BAS experiments, both with
and without ground truth information. We observed an inherent tradeoff between the
FPs and FNs for nearly every combination of AOI, target class, and training dataset,
which suggests that each application of the DCNNs requires the specialized tuning of
training parameters and techniques according to the requirements of that application.
Most importantly, the outcomes of our BAS experiments showed the inability of the cross-
validation experiments to accurately assess a model’s ability to perform with the non-closed
set, real-world data, such as the BAS task. The F1 scores for the trained models on the
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selected classes in cross-validation were in excess of 96%, and yet these same models
struggled to detect those same classes above a 5% SR in some instances. The contradiction
between the BAS scores and cross-validation scores indicates that the selection of a model
for BAS applications cannot be performed based solely on the cross-validation scores of the
target classes.

Our future work for this research includes expanding our work into larger AOIs and
searching for more target classes. Additionally, the release of more sophisticated neural
networks offers an opportunity to better detect the classes of interest in BAS applications.
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