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Abstract: Amid the rapid proliferation of thousands of new websites daily, distinguishing safe
ones from potentially harmful ones has become an increasingly complex task. These websites often
collect user data, and, without adequate cybersecurity measures such as the efficient detection and
classification of malicious URLs, users’ sensitive information could be compromised. This study
aims to develop models based on machine learning algorithms for the efficient identification and
classification of malicious URLS, contributing to enhanced cybersecurity. Within this context, this
study leverages support vector machines (SVMs), random forests (RFs), decision trees (DTs), and k-
nearest neighbors (KNNs) in combination with Bayesian optimization to accurately classify URLs. To
improve computational efficiency, instance selection methods are employed, including data reduction
based on locality-sensitive hashing (DRLSH), border point extraction based on locality-sensitive
hashing (BPLSH), and random selection. The results show the effectiveness of RFs in delivering high
precision, recall, and F1 scores, with SVMs also providing competitive performance at the expense of
increased training time. The results also emphasize the substantial impact of the instance selection
method on the performance of these models, indicating its significance in the machine learning
pipeline for malicious URL classification.
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1. Introduction

Thousands of new websites are created every day that collect user data through
login functions. The large number of networks makes it challenging to determine which
websites are safe and reliable [1]. In this context, the role of cybersecurity becomes critical.
Cybersecurity can be defined as a set of tools or techniques aimed at protecting companies
and users from cyberattacks [2]. In this vast digital landscape, malicious URLs, which are
hyperlinks, stand as a prime tool that is exploited by cybercriminals to manipulate Internet
users to give out sensitive and personal information. By interacting with these links, users
expose themselves to consequences, from compromising sensitive information to becoming
prime targets for cyberattacks.

There are various methods employed by cybercriminals to exploit the vulnerabilities
of both users and systems. One of the most common methods is phishing, where attackers
try to trick recipients into revealing sensitive information, which can have serious conse-
quences [3]. Defacement is another technique used by attackers to manipulate the content
of web pages by changing the underlying code. This form of cyber intrusion is frequently
leveraged to undermine an organization’s website [4]. Malware techniques in malicious
URLs are the methods that cybercriminals use to distribute and execute malware through
deceptive website addresses. These techniques aim to exploit vulnerabilities in software,
deceive users, and deliver harmful payloads. A report from the RSA [5] in 2013 showed
that nearly 450,000 websites fell victim to phishing attacks, causing a loss of USD 5.9 billion.
To counter such threats, blacklists consisting of known malicious URLs are employed.
However, their efficacy remains limited due to the constant emergence of new malicious
URLs associated with spam and phishing activities.
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Machine learning is important in identifying known and new malicious URLs [6].
Machine learning is a mechanism by which computers are trained to interpret data, enabling
them to autonomously make predictions or decisions. The most commonly used machine
learning technique for identifying malicious URLs is classification, a branch of supervised
machine learning [7]. This approach relies on previously established information to guide
the learning process. Various specific machine learning models fall under this category,
such as support vector machines (SVMs), decision trees (DTs), k-nearest neighbors (KNNs),
and random forests (RFs). However, the efficiency of these models can be hampered when
dealing with large datasets, which can significantly slow down the training process. In this
context, instance selection can be used to overcome this challenge. This approach refines
the dataset by choosing a smaller-yet-indicative sample, significantly saving computational
resources. As a result, the learning process is expedited without compromising the essential
predictive capabilities, ensuring the efficient and precise identification of malicious URLs.

This study aims to develop models based on machine learning for the accurate classifi-
cation of malicious URLs. To achieve this, we applied and evaluated the performance of
specific machine learning algorithms, namely, SVMs, DTs, KNNs, and RFs. Furthermore,
we examined the role of instance selection methods—including data reduction based on
locality-sensitive hashing (DRLSH) [8], border point extraction based on locality-sensitive
hashing (BPLSH) [9], and random selection—in the speed and accuracy of the learning
process for malicious URLs’ detection.

The remainder of this study is structured as follows. Section 2 gives an overview of
the relevant literature about the identification of malicious URLs using machine learning.
Section 3 overviews the study’s methodology, including data collection, machine learning
models, and the instance selection methods employed. In Section 4, the study’s results are
presented, and the performances of the models and instance selection methods are analyzed
and discussed. Lastly, Section 5 presents the conclusions and the proposed directions for
future work.

2. Related Work

Several studies were conducted on malicious URL detection and classification us-
ing various machine learning methods. These studies contributed to understanding the
effective approaches and techniques for identifying and classifying malicious URLs.

In a study conducted by Li et al. [10], a dataset comprising approximately 52,000 URLs
was analyzed. This dataset was divided so that 70% was used for model training, and
the remaining 30% was used for validation and testing. The analysis relied on eight key
input features, including the HTTPS status, the IP address, the number of dots in the
domain name, and some features related to the top-level domain. Various machine learning
methods were implemented in this study, including SVMs, KNNs, DTs, RFs, gradient
boosting decision trees, XGBoost (XGB), and LightGBM (LGB). The results showed that the
SVM model performs notably well, achieving an accuracy rate of 94.45%.

Saleem Raja et al. [11] used a dataset of about 66,000 URLs, in which 70% of the
samples were devoted to model training, and 30% were used for validation and testing.
The trained models included SVMs, logistic regression (LR), KNNs, Naive Bayes (NB), and
RFs. About 20 features were used in the analysis, such as the URL length, HTTPS status,
number of digits, alphabetic characters, and symbols in URLs. The RF model showed the
highest performance, achieving an accuracy of 99%, closely followed by the SVM model,
which obtained an accuracy of 98%.

In a study by Mrad [12], a large dataset was collected, encompassing different cate-
gories, including 428,103 benign URLs, 96,457 defacement URLs, 94,111 phishing URLs,
and 32,520 malware samples. Various machine learning methods were implemented, in-
cluding DTs, RFs, KNNs, NB, and Ada-boost. Among them, the DTs and RFs demonstrated
superior performance, achieving an accuracy of 91%.

Aljabri et al. [13] used several machine learning models, such as NB, RFs, long short-
term memory, and a convolutional neural network for malicious URLs” detection. A
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training dataset with 1.2 million samples and a test dataset with 0.364 million records were
employed. Various attributes such as the URL, IP address, JavaScript code, obfuscated code,
geographical location, top-level domain, and HTTPS were considered for the classification.
The training set exhibited a class imbalance, with most samples being benign, and a
minority being malicious. Randomized undersampling was applied to balance the classes,
resulting in a training dataset with 54,506 records. Feature selection techniques were also
applied to select the most relevant features. The results showed that the NB model has the
best performance, achieving an accuracy of 95%.

Ahammad et al. [3] used a dataset of 3000 URLs to identify malicious URLs, where
1500 samples were malicious, and 1500 samples were benign. The dataset had fifteen
features, including the domain name, URL length, and HTTPS status. Some models based
on the RF, DT, LGB, LR, and SVM methods were developed. Then, 80% of the samples
were used for training and validation, and 20% of the samples were used for testing. LGB
demonstrated the highest testing accuracy among the evaluated models: 86%. This was
followed by RFs and DTs, with accuracies of 85.3% and 85%, respectively, while SVMs
displayed the lowest testing accuracy: 83.5%.

Upendra Shetty et al. [14] utilized XGB, LGB, and RFs to detect and classify malicious
URLs. A dataset of 651,191 URLs, categorized into four groups, malware, defacement,
benign, and phishing, was used. A feature selection process was incorporated to enhance
the decision-making capacity of the models, leading to the identification of the IP addresses
and URL length and the calculation of the character/digit ratio and the non-alphanumeric
characters in the URLs as the most important features. The results showed that the RF
model outperforms the others, achieving an accuracy rate of over 91%.

The related work underscores the promising potential and continued relevance of
employing machine learning techniques such as SVMs, KNNs, DTs, and RFs for classifying
malicious URLs. Compared to the reviewed work, this study also focuses on using instance
selection methods to enhance the efficiency of the training processes. In doing so, it
responds to an emerging need in the field to find innovative approaches that can quickly
adapt to the rapidly evolving landscape of cyber threats.

The proposed approach stands out by addressing the issue of computational efficiency
through the application of instance selection methods. It provides a comprehensive analysis
of the model performance, feature importance, and category-specific challenges, offering
valuable insights for improving malicious URL detection and classification. The emphasis
on computational efficiency and instance selection methods is a notable improvement in
the field, as it directly addresses a practical challenge in cybersecurity.

3. Methodology

This section presents the methodology for developing machine learning models to
identify malicious URLs. It delineates the research framework, explaining the strategies
and techniques utilized. Figure 1 shows the workflow of the methodology in this study. It
consists of three main steps.

The initial step entailed data collection and preparation. This step involved gathering a
multitude of URLs and their corresponding labels and indicating their malicious or benign
status. Moreover, null values in the dataset were eliminated to maintain data integrity.
Next, features (attributes) instrumental for identifying malicious URLs were extracted. The
result was a dataset wherein each row represented a unique URL delineated by its extracted
features and an associated output label indicating its classification. The second phase
focused on developing models using SVMs, KNNs, DTs, and RFs to accurately distinguish
malicious URLs. The prepared dataset was divided into an outer training set and an outer
test set. The outer training set played a pivotal role in refining the hyperparameters of
each model and in the subsequent training process, using the optimized hyperparameters.
Various instance selection techniques were also employed to understand their influence on
the model’s performance. These techniques helped generate smaller, representative subsets
of the dataset, accelerating the training process. In the final phase, the performance of the
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3.1. Data Collection and Preparation

A list of 650,000 URLSs, along with their respective categories—phishing, defacement,
malware, and benign—was collected from the Kaggle repository (www.kaggle.com, ac-
cessed on 26 February 2023). A URL is a unique address identifying a resource, such as an
HTML page. A URL consists of several parts, as shown in Figure 2. First, it is planned to
specify the protocol that is used to retrieve the object, with HTTPS (encrypted connection)
and HTTP (unencrypted) being the most-used protocols. Second, the IP address indicates
the web server being requested, and the port indicates the gateway that should be used to
access the content. The third part of a URL is the path to the object. The fourth part is a
list of parameters that can be used to specify keys and values that allow other actions to
be performed. Finally, an anchor allows for jumping to a specific section of the web page.
Parameters and anchors may sometimes be excluded from a URL.

Figure 1. Workflow of the study.

Authority
http:/fwww.example.com:80/path/to/myfile.htmi?key1=value1&key2=value2#Somewhere

Schema

ort Path to the fil Parameters Anchor

Figure 2. URL anatomy.

Raw URL data alone are insufficient for the identification of malignant URLS, as they
fail to offer insightful details about the characteristics of the URLs that could aid in their
classification. To bridge this gap, feature extraction becomes necessary, transforming raw
URL data into quantifiable indicators that machine learning algorithms can effectively
process. Hence, a total of 16 distinct input features were selected to train and develop
machine learning models. These features captured crucial information needed for the
classification task. The extracted input features were as follows:

URL_length: The length of a given URL.

Domain_length: The length of the domain name.

Has_ipv4: Verifying the presence of an IPv4 address in each URL and subsequently

returning either 1 or 0.
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e  Has_http: Verifying the presence of the HTTP protocol in each URL and subsequently
returning either 1 or 0.

e Has_https: Verifying the presence of the HTTPS protocol in each URL and subse-

quently returning either 1 or 0.

Count_dots: The number of dots.

Count_dashes: The number of dashes.

Count_underscores: The number of underscores.

Count_slashes: The number of slashes.

Count_ques: The number of question marks.

Count_non_alphanumeric: The number of non-alphanumeric characters.

Count_digits: The number of digits.

Count_letters: The number of letters.

Count_params: The number of parameters.

Has_php: Verifying the presence of the word “php” in each URL and subsequently

returning either 1 or 0.

e  Has_html: Verifying the presence of the word “html” in each URL and subsequently
returning either 1 or 0.

The category of each URL—phishing, defacement, malware, or benign—was used as
the output feature. Hence, the resulting dataset comprised 650,000 instances, with each
characterized by 16 input features and a corresponding output feature. To construct and
evaluate the machine learning models, a strategic division of the dataset was implemented.
Specifically, 85% of the dataset (552,500 instances) was dedicated to training the models,
and the remaining 15% (97,500 instances) was reserved for testing purposes, allowing for
an accurate assessment of the models’ ability to classify URLs.

3.2. Developing Machine Learning Models

While the prepared large training dataset (552,500 instances) provided a rich foun-
dation for analysis, it could lead to the issue of computational inefficiency. To address
this issue and ensure that the machine learning methods effectively and efficiently learn,
instance selection was utilized. Instance selection methods enhance the efficiency of com-
putations by selecting a small subset of instances representative of the original set. Many
instance selection methods have been proposed, owing to the increasing number of records
in datasets. In this study, we used BPLSH [9], DRLSH [8], and random selection to reduce
the number of samples in the dataset.

Both DRLSH and BPLSH are based on locality-sensitive hashing. They pinpoint critical
samples by scrutinizing the similarity in data points and their respective labels. While
DRLSH’s main objective is to detect similar instances within each class, BPLSH expands
this objective to include both similar and border instances. In DRLSH, sample reduction is
achieved by independently removing nearly identical data points within each class. BPLSH,
however, takes a more comprehensive approach, collectively evaluating samples from
all classes. It discards similar samples only when they are distanced from the decision
boundaries. The time complexity of DRLSH is less than that of BPLSH. In random selection,
a small subset of instances in a random manner is selected to form a reduced training
dataset. Simplicity and low computational complexity are the biggest advantages of such a
method, making it feasible for many different types of datasets. By applying the instance
selection methods, three datasets were derived.

In the study’s dataset, comprising four categories, benign, defacement, phishing, and
malware, the BPLSH method focused on analyzing the boundaries that separate these
categories. In contrast, DRLSH concentrated on the examination of similar samples within
the dataset. Meanwhile, random selection reduced the dataset’s size by using the randperm
function.

The use of these instance selection methods, BPLSH, DRLSH, and random selection,
differed from other techniques due to their varying selection criteria, objectives, and han-
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dling of decision boundaries. These distinctions made each method suitable for particular
contexts and dataset characteristics.

In this study, we employed machine learning models for the detection of malicious
URLSs. Symbolic Al can also be used as an alternative approach to detect malicious URLs
by defining a set of rules or patterns that characterize such URLs. Symbolic Al is well-
suited for well-defined, rule-based tasks like identifying known patterns of malicious URLs.
However, it encounters challenges when it comes to adapting to new and evolving threats.

In contrast, machine learning models, especially when complemented with instance
selection methods such as BPLSH, DRLSH, and random selection, offer greater flexibility,
scalability, and adaptability to address the dynamic nature of evolving threats. These
models can autonomously learn and adapt to new patterns and variations in malicious
URLs, making them a preferred choice for modern URL threat detection systems.

In this study, the pressing challenge was prolonged machine learning model training
times. To address this, we implemented instance selection methods. These techniques, by
reducing dataset size, expedited training, facilitated efficient pattern discovery in the data,
and enhanced research efficiency.

After instance selection, four machine learning models, namely, DT, RF, KNNs, and
SVM, were developed to identify malicious URLs. These models were selected due to
their widespread popularity and extensive applications in classification. Moreover, the
performance of these models was further enhanced by employing Bayesian optimization
for hyperparameter tuning, a process that allows for fine-tuning the model configurations
to achieve the best possible results.

3.2.1. DTs

A DT is a machine learning algorithm that makes decisions based on a tree-like
model of decisions. It starts with a single node, representing the entire dataset, which is
then partitioned based on specific conditions. This process continues recursively, creating
a structure that resembles a tree with branches and leaves. Each internal node of the
tree corresponds to a feature, each branch represents a decision rule, and each leaf node
represents an outcome, i.e., the predicted class. DTs are favored for their interpretability and
simplicity, as they mirror human decision-making processes and do not require complex
computations. This approach makes it easier to identify the most important decision factors
and how they affect the outcome [15].

The performance of DTs is influenced by their hyperparameters, which are essentially
adjustable parameters that must be fine-tuned before the model is trained. The crucial
hyperparameters of DTs are the maximum number of decision splits (branch nodes) and
the splitting criterion. The maximum number of decision splits refers to the maximum
number of splitting points the decision tree can create from the root to the furthest leaf. It
regulates the complexity of the model, preventing overfitting by restricting the number of
possible decision splits. The splitting criterion refers to the function used to measure the
quality of a split. This function essentially provides a means of deciding the most effective
way to separate the instances at each decision node based on their feature values. The
most commonly used criteria are Gini impurity and entropy. Gini impurity is a measure that
quantifies the probability of incorrect classification; a Gini impurity of 0 represents perfect
purity, while a score of 1 suggests a high likelihood of misclassification. In contrast, entropy
measures the level of disorder within an input set, with maximum entropy signifying that
all classes are equally represented (hence, high disorder) and a score of 0 indicating total
order.

3.2.2. RFs

An RF is a machine learning algorithm that belongs to the ensemble learning method
class. It combines multiple decision trees to create a more powerful and robust predictive
model. Each tree in the forest is grown using a randomly selected subset of features and
data points, preventing overfitting and enhancing the model’s generalization ability. An RF
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makes a final forecast by combining the predictions of individual trees, typically through a
majority voting system. Unlike a single decision tree that may suffer from overfitting, the
aggregation of many decision trees in an RF significantly reduces this risk [16].

In constructing and optimizing RFs, several critical hyperparameters come into play,
including the number of trees, the maximum number of decision splits, the number of
predictors to sample, and the splitting criterion. The number of trees determines the total
number of decision trees grown in the forest. A higher number of trees generally improves
the robustness and accuracy of the model, but it also increases the computational demands.
The maximum number of decision splits limits the number of levels each decision tree can
have. Increasing the number of decision splits enables the model to better capture complex
relationships in the data but makes the model more prone to overfitting. The number of
predictors to sample refers to the number of randomly selected features considered at each
split in the decision tree, offering control over the model’s randomness and bias-variance
balance. Lastly, the splitting criterion plays a role similar to its function in DTs, aiding in
the selection of the optimal decision rule at each node.

3.2.3. SVMs

An SVM classifier works by determining the hyperplane that best separates the classes
of data points. This is achieved by maximizing the margin, which is the distance between
the separating hyperplane and the nearest data points from both classes. The hyperplane
is chosen to have the maximum margin, ensuring that it is as far away as possible from
the data points of both classes. This feature ensures a greater separation between classes,
thereby enhancing model accuracy. Concurrently, SVMs work toward minimizing classifi-
cation errors, achieving a balance between margin maximization and error minimization
for the optimal decision boundary [17].

The key hyperparameters of SVMs include the choice of the kernel function, box
constraint, kernel-specific parameters, and multiclass method. The kernel is a function
that transforms the data into a higher dimensional space, making it possible to find a
separating hyperplane when the data are not linearly separable in their original space. The
most common kernels include linear, polynomial, and Gaussian. The box constraint, a
regularization parameter, controls the trade-off between the model’s complexity and its
capacity to tolerate errors. Indeed, it is a controlling factor in determining the model’s
sensitivity to misclassification errors during training. Lower values for this parameter
make the model less sensitive to misclassified training samples, leading to a simple model
but increasing the risk of underfitting. Conversely, higher parameter values push the
model to reduce classification errors for the training samples, even at the expense of a
narrow decision margin, increasing the risk of overfitting. The kernel-specific parameters
depend on the type of kernel chosen. For instance, the Gaussian kernel has a parameter
called the kernel scale that adjusts the shape of the decision boundary. Higher kernel
scale values may create rigid boundaries, risking underfitting, while lower values allow
for flexible boundaries that can capture complex data patterns but may cause overfitting.
The multiclass method specifies the strategy used to handle multiple classes. Common
approaches include one-vs-one and one-vs-rest strategies. In the one-vs-one strategy, a
separate SVM model is trained for each pair of classes, while in the one-vs-rest strategy, an
individual SVM model is trained for each class against all other classes.

3.2.4. KNNs

KNN:s are a supervised learning algorithm that is valued for its simplicity and broad
applicability. KNNs first identify the k training instances closest to a given test instance.
Then, the test instance is subsequently categorized into the most prevalent class among
these k neighbors [18]. The principal hyperparameter for KNNs is k, representing the
number of neighbors to consider during classification. Smaller k values make the model
sensitive to noise, whereas larger k values increase computational demand. The choice of k
is, thus, a trade-off between model stability and computational efficiency.
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3.2.5. Hyperparameter Tunning Using Bayesian Optimization

Optimizing hyperparameters is crucial for achieving the highest level of performance
in machine learning models. While there are numerous proposed methods for automati-
cally tuning hyperparameters [19,20], tackling the non-convex nature of hyperparameter
optimization problems necessitates the usage of global optimization algorithms. In line
with this, we employed Bayesian optimization in this study [21]. Bayesian optimization
provides an effective and sophisticated approach to hyperparameter tuning. The effec-
tiveness of Bayesian optimization lies in its strategic design for the global optimization
of computationally expensive functions. It constructs a probability model of the objective
function by using past evaluations and employing Bayesian inference and Gaussian pro-
cesses. This allows the algorithm to smartly explore and exploit the hyperparameter space,
thereby pinpointing the hyperparameters most likely to yield superior performance.

To evaluate the performance of different hyperparameter settings in a robust man-
ner, we utilized k-fold cross-validation. This involves partitioning the training dataset
into k equally sized subsets or folds. Each subset serves as a validation set exactly once,
while the model is trained on the remaining k — 1 subsets. The objective function that
guides Bayesian optimization toward optimal hyperparameters is the average classification
accuracy obtained from these validation sets. In this way, k-fold cross-validation comple-
ments the Bayesian optimization procedure, providing a more reliable assessment of each
hyperparameter setting’s performance.

Standard 5-fold cross-validation was used, as it strikes a balance between accurately
estimating model performance and managing computational costs. Each model had specific
hyperparameters configured: DTs involved maximum splits and split criterion; KNNs
used 10 neighbors and squared inverse distance weight; RFs employed ensemble method,
number of learners, maximum splits, and predictors to sample; SVMs featured one-vs-one
multiclass method, box constraint level, kernel scale, Gaussian kernel, and standardized
data. These hyperparameter settings were determined to optimize each model’s perfor-
mance.

3.2.6. Evaluation Metrics

The performance of the machine learning models in classifying malicious URLs was
evaluated using three assessment metrics: precision, recall, and F1 score. Precision, cal-
culated using Equation (1), is a measure that encapsulates the proportion of true positive
instances within all the instances that the model classified as positive. For a specific class,
e.g., malware, precision is equal to the ratio of URLs accurately identified as malware over
the total URLs predicted as malware. Recall is a metric that computes the proportion of
true positive instances that the model correctly identified (Equation (2)). For the malware
category, as an example, recall is the ratio of URLs that are correctly classified as malware to
the overall actual malware URLs. The F1 score combines precision and recall, providing a
balanced measure of the two metrics in a model’s performance (Equation (3)). In Equations
(1)—(3), true positives are the instances correctly predicted as positive—e.g., malware URLs
correctly identified as malware. False positives are the instances that are incorrectly pre-
dicted as positive—e.g., non-malware URLs wrongly flagged as malware. False negatives
are the instances incorrectly predicted as negative—e.g., malware URLSs incorrectly labeled
as non-malware.

Precision = (True positives)/ (True positives + False positives) 1)

Recall = (True positives)/ (True positives + False negatives) 2)

F1 Score = 2 x (Precision x Recall)/ (Precision + Recall) (©)]
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4. Results and Discussion

This section presents an assessment and comparison of the performance of the machine
learning models as well as the instance selection methods in classifying malicious URLs.
The effectiveness of the models was evaluated using the precision, recall, and F1 score.
The results provided valuable insights into the capabilities and limitations of the models,
enabling a better understanding of their performance in identifying malicious URLs. All
the experiments were conducted in MATLAB 2022.

The prepared dataset was divided into two parts to ensure both efficient learning and
accurate model evaluation: the outer training set, encompassing 85% of the total samples,
and the outer test set, constituting the remaining 15%. Given the considerable size of
the training dataset, comprising 552,500 instances, we applied instance selection (random
selection, DRLSH, and BPLSH) on the outer training set to address potential computational
inefficiencies. Figure 3 shows the number of samples across categories in each derived
dataset. The benign category consistently holds the highest sample count for all three
datasets, reaching a peak in the DRLSH dataset at 112,712. The dataset derived by BPLSH,
however, displays a notably higher count of phishing samples, 60,708, compared to the
datasets obtained by DRLSH and random selection. The malware category consistently has
the least samples across all datasets, particularly within the DRLSH dataset at 3054. These
variations underscore the different sampling techniques’ effects on the sample distributions
within categories.

120,000
100,000
80,000

60,000

Number of samples

40,000

20,000

Benign Defacement . Malware Phishing
Categories

Random selection [l ORLSH |l BPLSH

Figure 3. Number of samples in each obtained dataset using random selection, DRLSH, and BPLSH.

In the next step, the machine learning models were trained on the derived datasets.
The hyperparameters of the models were tuned using Bayesian optimization in combination
with k-fold cross-validation. The number of folds k was set to 5, providing a good balance
between accurately estimating the model’s performance and managing the computational
cost of cross-validation.

The performance of the trained models was evaluated on the outer test set, comprising
approximately 97,500 samples. Figure 4 shows the number of samples for each category
in the test set. As can be seen, each category has a different number of instances. This
variation reflects the real-world distribution of different types of URLs, enabling a more
realistic evaluation of the models’ performance in classifying various categories.

The evaluation results of the trained models on the test set in terms of precision, recall,
and F1 score are shown in Table 1. Table 1 also shows the training time for each model. The
effect of the instance selection methods and machine learning models on the classification
of URLs is noticeable. RFs generally show a high precision, recall, and F1 score, especially
when trained with randomly selected data or using the BPLSH method. In these cases,
RFs notably outperform all other models. SVMs, while also demonstrating competitive
performance, are hindered by considerably higher training times. DTs and KNNs show
more variability in their performance across different instance selection methods. The
DT model maintains moderate performance on all datasets. The KNN model, in contrast,
exhibits a significant decrease in performance when trained on the BPLSH-selected dataset.
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Overall, the results show that the choice of instance selection method can significantly
impact the performance of different machine learning models, highlighting the importance
of this step in the machine learning pipeline. It also points to the necessity of striking
an optimal balance between performance and computational efficiency when selecting a
model.

70,000
60,000
50,000
40,000

30,000

Number of samples

20,000

10,000 -

Benign Defacement Malware Phishing
Categories

Figure 4. Number of samples for each category in the test dataset.

Table 1. Model’s training time, precision, recall, and F1 score in each dataset obtained using random
selection, DRLSH, and BPLSH.

Instance Model Training Precision (%) Recall (%)  F1 Score (%)

Selection Time (s)

Random RFs 71s 93.19% 91.19% 92.18%
Random SVMs 10,793 s 92.29% 90.23% 91.25%
Random DTs 16s 90.64% 89.72% 90.18%
Random KNNs 94 s 87.56% 85.74% 86.64%
DRLSH RFs 82s 83.32% 85.79% 84.54%
DRLSH SVMs 18,390 s 92.21% 85.05% 88.49%
DRLSH DTs 21s 80.94% 82.88% 81.90%
DRLSH KNNs 92s 79.60% 80.07% 79.84%
BPLSH RFs 75s 86.13% 89.89% 87.97%
BPLSH SVMs 16,681 s 82.55% 88.80% 85.56%
BPLSH DTs 23's 81.92% 86.87% 84.32%
BPLSH KNNs 88s 67.44% 79.01% 72.77%

Figures 5-8 show the true positive rates (TPR) for each category across all machine
learning models and instance selection methods. The TPR show the percentage of positive
instances correctly identified by the model compared to the total number of positive
instances in the dataset. It is clear that classifying phishing URLs remains a challenge for all
models, with consistently lower true positive rates in this category compared to others. In
contrast, the defacement category is typically the best-identified category by most models,
showing the highest true positive rates. While RFs and SVMs tend to maintain strong
overall performance, the results vary depending on the instance selection method. The
KNNs model, for example, shows a notable decrease in performance when the BPLSH
method is used. The effectiveness of instance selection methods also substantially differs
depending on the model and category. The results emphasize the importance of carefully
selecting both the appropriate machine learning model and instance selection method to
optimize the identification of malicious URLs within the cybersecurity domain.
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Figure 8. True positive rates for each category for the KNN model.

In the next step, the most important features in each dataset were selected
using minimum redundancy—maximum relevance (MRMR) [22]. MRMR is designed to
select features that not only bear a high correlation with the classification outcome
(maximizing relevance) but also exhibit minimal intercorrelation (minimizing redundancy).
This dual purpose is achieved using mutual information, a metric quantifying the informa-
tion shared between variables. In MRMR, mutual information measures the relevance of
each feature by calculating its shared information with the target variable and assesses
the redundancy between features by examining the shared information between each pair.
By maximizing relevance and minimizing redundancy, MRMR results in the selection of
highly informative, non-overlapping features. Figure 9 shows the feature importance scores
for all 16 features in the datasets. According to Figure 9, the importance scores for random
selection and BPLSH are higher than those for DRLSH. Except for the features “has_http”
and “has_html”, the scores for DRLSH are less than 0.01. The total importance score for the
feature “has_http” in all datasets indicates that it plays the most crucial role in classifying
malicious URLs. URLs that use HTTP as a protocol are not encrypted and have a high
probability of being malicious.
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Figure 9. Comparative analysis of feature importance across different datasets: a visualization of
each feature’s relevance in classifying malicious URLs within each dataset.
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5. Conclusions and Future Work

Identifying and blocking malicious URLs can enhance cybersecurity and protect users
from cyber threats. This, in turn, can reduce the risk of financial harm and promote a
stable and sustainable economy:. In this study, we developed and evaluated four machine
learning models, namely, DTs, RFs, SVMs, and KNNss, for classifying malicious URLs. To
address the issue of computational inefficiency in training the models, three instance selec-
tion methods—random selection, DRLSH, and BPLSH—were applied. These techniques
generated three considerably smaller but representative datasets that expedited the training
process, ensuring computational efficiency. Additionally, applying the MRMR algorithm
aided in highlighting the most critical features in the datasets. These findings provide
valuable insights for cybersecurity practitioners, emphasizing the importance of tailored
model selection and the ongoing need for innovative approaches in the fight against cyber
threats.

The evaluation results revealed noticeable differences in the performance of the ma-
chine learning models. RFs generally delivered high precision, recall, and F1 scores, thereby
demonstrating superior performance. SVMs also offered competitive performance, albeit at
the cost of higher training times. DTs and KNNs exhibited more varied performance. While
DTs maintained moderate performance, KNNs showed a significant drop in performance
when trained on the BPLSH-selected dataset. These results highlighted the significance of
the choice of machine learning model in achieving an optimal balance between performance
and computational efficiency. Performance differences across the URL categories were also
noted, with phishing URLs consistently posing a challenge for all models, whereas the
defacement category showed a notably higher rate of accurate identification.

The three evaluated instance selection methods had distinct effects on model perfor-
mance. Models trained with data selected via the BPLSH method generally performed
well but caused a performance decrease in KNNs. On the other hand, all models trained
with randomly selected data showed high performance, with RFs demonstrating high
classification accuracies. These findings underscored the importance of an informed choice
of instance selection method, as it significantly affects the overall effectiveness of the model
in classifying malicious URLs. The total importance score of the “has_http” feature for
all three instance selection methods showed that it plays an important role in identifying
malicious URLSs. Its high score indicated that it greatly helps in accurately classifying URLs.

To enhance the study, some improvements can be offered for future studies. Firstly,
expanding the range of models under examination to encompass neural networks, NB,
XGB, and LGB would be advantageous. This diversification allows for a more thorough
exploration of alternative modeling approaches that could potentially outperform the
existing methods at the crucial task of malicious URL identification. Secondly, to bolster
the study’s relevance and effectiveness in the realm of cybersecurity, the incorporation
of additional categories of malicious URLs, such as redirect URLs, scam URLs, clickbait
URLs, and drive-by download URLs, is recommended. This expansion in categorization
aligns with the evolving landscape of cyber threats and facilitates the development of
more adaptable and robust defense mechanisms. Lastly, future research could significantly
benefit from integrating larger and more diverse datasets, encompassing URLSs from various
sources and contexts. Such dataset enrichment not only strengthens model performance
but also enhances this study’s practical applicability. These thoughtful directions for future
investigations hold the potential to advance the field of malicious URL detection and
classification while effectively addressing the limitations inherent in the current study.
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