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Abstract: Due to the precautions put in place during the COVID-19 pandemic, utilization of
telemedicine has increased quickly for patient care and clinical trials. Unfortunately, teleconsul-
tation is closer to a video conference than a medical consultation, with the current solutions setting
the patient and doctor into an evaluation that relies entirely on a two-dimensional view of each
other. We are developing a patented telehealth platform that assists with diagnostic testing of ocular
manifestations of myasthenia gravis. We present a hybrid algorithm combining deep learning with
computer vision to give quantitative metrics of ptosis and ocular muscle fatigue leading to eyelid
droop and diplopia. The method works both on a fixed image and frame by frame of the video in
real-time, allowing capture of dynamic muscular weakness during the examination. We then use
signal processing and filtering to derive robust metrics of ptosis and l ocular misalignment. In our
construction, we have prioritized the robustness of the method versus accuracy obtained in controlled
conditions in order to provide a method that can operate in standard telehealth conditions. The
approach is general and can be applied to many disorders of ocular motility and ptosis.

Keywords: telehealth; telemedicine; myasthenia gravis; ptosis; diplopia; deep learning; computer
vision; eyes tracking; neurological disease

1. Introduction

Telemedicine (TM) is an emerging tool for monitoring patients with neuromuscular
disorders and has significant potential to improve clinical care [1,2], with patients having
favorable impressions of telehealth during the COVID-19 pandemic [3,4]. There is great
promise in taking advantage of the video environment to provide remote alternatives
to physiological testing and disability assessment [2]. Telehealth is particularly well-
suited for the management of patients with myasthenia gravis (MG) due to its fluctuating
severity and the potential for early detection of significant exacerbations. MG is a chronic,
autoimmune neuromuscular disorder that manifests with generalized fatiguing weakness
with a propensity to involve the ocular muscles. For this purpose, the Myasthenia Gravis
Core Exam (MG-CE) [5] was designed to be conducted via telemedicine. The validated
patient reported outcome measures typically used in clinical trials may also be added to
the standard TM visit to enhance the rigor of the virtual examination [6]. In this study, we
address the first two components of the MG-CE [5], evaluation of ptosis (exercise 1) and
diplopia (exercise 2), thus focusing on the tracking eye and eyelid movement.

Today’s standard medical examination of MG relies entirely on the expertise of the
medical doctor, who grades each exercise of the protocol by watching the patient. The
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examiner rates the severity of ptosis by qualitatively judging the position of the eyelid in
relationship to the pupil and monitoring for ptosis becoming more severe over the course
of the one-minute assessment [7]. The determination of diplopia is entirely dependent on
the patient’s report. Further, the exam is dependent entirely on the patient’s interpretation
of what is meant by double vision (versus blurred vision) and further complicated by the
potential suppression of the false image by central adaptation, and in some situations,
monocular blindness, which eliminates the complaint of double vision. The objective of
our method is to provide unbiased, automatic quantitative metrics of ptosis and ocular
misalignment during the telemedicine visit.

Our long-term goal is to complement the neurological exam with computer algorithms
that quantitatively and reliably report information directly to the examiner, along with
an error estimate on the metric output. The algorithm should be fast enough to provide
feedback in real-time and automatically enter the medical record. A similar approach was
used by Liu and colleagues [8], monitoring patients during ocular exercises to bring a
computer-aided diagnosis, but with highly controlled data and environment. We aim to
use a more versatile approach by extracting data from more generic telehealth footage and
requiring as little additional effort from the patient and clinician as possible.

By use of videos, the algorithm should capture the dynamic of ptosis and ocular
misalignment over time that is inherent to the neuromuscular fatigue of MG. This feature
may not be readily detected by the human examiner, who simply watches the patient
perform tasks: the doctor estimates the eye motion at the end of the ptosis exercise versus
the initial eye position with a simple scale from 0 to 3. For the diplopia exercise, the doctor
enters in the report if the patient experienced double vision or not because of the great
difficulty in judging ocular eye misalignment during a telemedicine visit.

It is understood that the medical doctor is the final judge of the diagnostic. Our
method is a supporting tool, as are AI generated image annotations in radiography [9], and
it is not intended to replace the medical doctor’s diagnostic skill. Further, our approach
does not supplement the sophisticated technology used to study ocular motility for over
five decades [10].

Symptoms of double vision and ptosis are expected in essentially all patients with
MG, and the evaluation of lid position and ocular motility is a key aspect of the diagnostic
examination and ongoing assessment of patients, with ocular myasthenia being the most
common first form of the disease, before progressing to the generalized form [7]. In
many neurological diseases, including dementias, multiple sclerosis, stroke, and cranial
nerve palsies, eye movement examination is important in diagnosis. We expect that
our algorithm will also be useful in the diagnosis and monitoring of many neurological
disorders via telehealth [11–13]. The technology may also be adapted for assessment in the
in-person setting as a means to objectively quantitate the ocular motility examination in a
simple fashion.

The manuscript is organized as follows: First, we provide background on the develop-
ment of our study. Second, we describe in detail our method and algorithms and place into
context of previous studies to illustrate the novelty of our approach. Then we report the
results followed by discussion. Finally, we summarize our finding in the conclusion and
provide some recommendations on follow-up investigations.

2. Background

The NIH Rare Disease Clinical Research Network dedicated to myasthenia gravis
(MGNet) initiated an evaluation of examinations performed by telemedicine. The study
recorded the evaluations, including the MG Core Exam, to assess reproducibility and exam
performance. We took advantage of the Zoom recordings performed at George Washington
University to evaluate our technology. We used two videos of each subject performed on
different days for quantitative assessment of the severity of ptosis and diplopia for patients
with a confirmed diagnosis of MG. The patients were provided instructions regarding their
position in relationship to their cameras and levels of illumination, as well as to follow the
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examining neurologist’s instructions during the examinations. In exercise 1, the patient is
asked to hold their gaze upwards for 61 s (see Figure 1). The goal is to assess the severity of
ptosis (uncontrolled closing of eyelid), if any, during the exercise [14] and rating severity:
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Figure 1. Subject looking up for evaluation of ptosis with identification of key landmarks. The red
dots are the landmarks obtained with the machine learning method. The green lines correspond to
the detected position of upper and lower eyelids and the iris boundary.

0: No visible ptosis within 45 s
1: Visible ptosis within 11–45 s
2: visible ptosis within 10 s
3: Immediate ptosis
However, another grading system was proposed for the MG-CE using the following ratings:
0: No ptosis
1: Mild, eyelid above pupil
2: Moderate, eyelid at pupil
3: Severe, eyelid below pupil
In exercises 2, the patient must hold their gaze right or left for 61 s—see Figure 2. The

goal is to assess for double vision, and when it appears. Severity rating ranges from 0 to 3:
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Figure 2. Subject looking eccentrically in exercise 2 to evaluate for development of diplopia.

0: No diplopia with 61 s sustained gaze
1: Diplopia with 11–60 s sustained gaze
2: Diplopia within 1–10 s but not immediately
3: Immediate diplopia with primary or lateral gaze
Our goal was to take accurate and robust measurements of the eye anatomy in real-

time during the exercises, and to automatically grade ptosis and ocular misalignment.
The algorithm should reconstruct the eye geometry of the patient from the video and the
position of the pupil inside that geometric domain. The difficulty is to precisely recover
these geometric elements from a video of the patient where the eye dimension in pixels is at
best about 1/10 of the overall image dimension. Most of the studies of oculometry assume
that the image is centered on the eye and that it occupies most of the image. Alternatively,
eye trackers do not rely on a standard camera using the visual spectrum but rather use
infrared in order to isolate clearly the pupil as a feature in a corneal reflection image [15–17].

Localization of eye position can take advantage of deep learning methods but requires
large, annotated data sets for training [18,19]. As described later, we use an existing open-
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source library to take advantage of such information. From a model of eye detection, we
can focus the search for pupil and iris location in the region of interest [20]. Among the
popular techniques to detect the iris location [21] are the circular Hough transform [22,23]
and the Daughman’s algorithm method [24].

We found in our telehealth application, using a standard camera operating in the
visual spectrum, that these methods have a robustness issue due to their insensitivity to
low resolution of the eyes’ Region Of Interest (ROI), poor control on illumination of the
subject, and specific eye geometry consequent to ptosis. Next, we will present our hybrid
method, combining an existing deep learning library for face tracking and a local computer
vision method to build ptosis and diplopia metrics.

3. Method
3.1. Dataset

We used twelve videos acquired by Zoom during the ADAPT study telehealth sessions
of six patients with MG. Each subject had telemedicine evaluations within 48 h of each
other and participated in a set of standardized outcome measures including the MGNet
Core Exam [5]. Telehealth sessions were organized as Zoom meetings by a board-certified
neurologist with subspecialty training in neuromuscular disease in the clinic, providing the
assessments of all patients at their homes. In practice, these Zoom sessions were limited in
video quality to a relatively low resolution in order to accommodate the available internet
bandwidth and because they were recorded on the doctor side during streaming. We
extracted fixed images at various steps of the exercise to test our algorithm, as well as on
video clips of about 60 s each for each exercise 1 and 2, described above. The number of
pixels per frame was as low as 450 × 800 at a rate of 30 Frames Per Second (FPS). We also in-
cluded half a dozen videos of healthy subjects acquired in similar conditions to the ADAPT
patients in order to have a base line on eye motion during both eye tracking exercises.

We aimed to achieve 2-pixel accuracy of anatomic markers, allowing us to compute
ptosis and eye alignment. This was chosen for the following reasons: (1) When one looks
for an interface location, two pixels is about the best accuracy one may achieve since it is
projected on a discrete grid of pixels; (2) this metric is independent of the resolution of the
image. As a matter of fact, there is no control of the dimension of eyes expressed in pixels
in a video frame during the telemedicine session, since the assessment is posteriori on
existing videos; (3) in addition, high definition camera footage with a patient far away from
the camera will have lower resolution of ocular anatomy than a standard Zoom recording
with a patient close to the camera, as the eye dimension is expressed in pixels.

The distance of the patient to the camera and illumination of the subject leads to
variability of the evaluations. These conditions are inherent limitations of the telehealth
standard to accommodate patients’ equipment and home environment.

We used our new telehealth platform, which includes a Lumens B30U PTZ camera
(Lumens Digital Optics Inc., Hsinchu, Taiwan) with a resolution of 1080 × 1920 at 30 FPS
and is connected to a Dell Optiplex 3080 small form factor computer (Intel processor i5-
10500 t, 2.3 GHz, 8 Gb Ram), for processing video analysis. This system, tested initially on
healthy subjects, was used on one patient, following the MG-CE protocol. Through this
process, we have acquired a data set that is large enough to evaluate the robustness and
quality of the algorithms. Error rates depending on resolution and other human factors are
compared in the Section 4. Next, we describe the algorithm construction.

Full session videos were divided into short clips of each exercise using an editing
software. The clips were then processed one at a time. For every applicable exercise, the
video went through the Machine Learning algorithm, saving landmark positions of the face
using [15] in Python. Once the landmarks were saved, they were exported to a Matlab script
where the rest of the processing using conventional computer vision methods coded in
Matlab was performed. All processes were executed automatically on a laptop. We can also
use the Matlab compiler to accelerate processing and protect the software from alterations.
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3.2. Face and Eyes Detection

The first step was to detect the face in the image. Previous investigations have devel-
oped face tracking algorithms and compared methods for facial detection [25,26]. Among
the most widely used algorithms and the one we chose to use was OpenCV’s implementa-
tion of the Haar Cascade algorithm [27], based on the detector of R. Lienhart [28], which is
a fast method and, overall, the most reliable for real-time detection.

Once the bounding box of the face is detected, key facial landmarks were required to
monitor the patient’s facial features, which would be the foundation of our segmentation
and analysis to evaluate ptosis and ocular misalignment. For facial alignment, many
methods exist. Some of these image-based techniques were reviewed by Johnston and
Chazal [29]. One of the most time-efficient for real-time application is based on the shape
regression approach [30]. We used DLib’s implementation of the regression tree technique
from V. Kazemi and J. Sullivan [31], which was trained on the 300 W dataset [32] fitting
a 68 points landmark to the face (Figures 3 and 4). The ROI for each eye is the polygon
formed by points 37 to 42 for the right eye, and 43 to 48 for the left eye, in reference to the
model in Figure 3.
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Figure 4. Eye Opening distance (blue arrow) and eye area (in green), obtained from the machine
learning landmarks (red dots).

We present below the postprocessing of each video frame, concentrating on the ROI
specific to each anatomic landmark (upper lid, lowerlid, and part of the iris boundary).
While in principle, processing of the video instead of serial images one by one would be
advantageous, blinking and rapid eye movements interferes with the process and make a
robust solution more difficult to build.

3.2.1. Computing the Ptosis Metric

First, we processed the time window of the video clip when the patient is focusing eye
gaze upwards.

The ROI construction for each eye may give a first approximation of ptosis for exercise
1 of the MG-CE as follows: We used eyelid distance and eye area, as shown in Figure 4.
The eyelid distance (ED) approximation is the average distance between points of the
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upper eyelid (segment 38–39 for the right eye and 44–45 for left eye) and lower eyelids
(segment 42–41 for the right eye and 48–47 for left eye), as determined by the landmarks
in Figure 3. Eye area is the area contained in the outline of the eye determined by the
landmark (Figure 4). We normalize these measurements by the eye length (EL), as the
horizontal distance between the corners of each eye (Figure 5).
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As a byproduct, we also identify the blink rate, as shown in Figure 6.
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Figure 6. Blinking Identification: The downward spikes of the graph are perfectly synchronized and
correspond to blinks.

The eye lid location provided by the deep learning algorithm may not be accurate, as
shown in Figure 7. For example, here the lower landmarks (41) and (42) are quite far off the
contour of the eye, and landmarks (37) and (40) are not precisely localized at the corners of
the eye. The accuracy of this library varies depending on the characteristic of the subject,
such as iris color, contrast with sclera, skin color, etc. The accuracy is also dependent on the
frame of the video clip and effect of lightning or variations of head position. We also found
that the hexagon of the model identified by the deep learning algorithm may degenerate to
a pentagon when a corner point overlaps another point of the hexagon. In some extreme
cases, we found the ROIs at the wrong location; for example, the algorithm confused the
nares with the eye location. Such an error was relatively easy to detect but improving the
accuracy of the deep learning library for a patient performing an eccentric gaze position,
such as in exercise 1 and 2, would require re-training the algorithm with a model having a
larger number of landmarks concentrating on the ROI. This is feasible but would require a
large traing set. MG is a rare disease, and no large data sets suitable for training a deep
learning techniques exist at present. Further, we have no way to predict the size of data set
necessary to effectively train the algorithm.

Many eye detection methods have been developed in the field of ocular motility
research, but they rely on images taken in controlled environments with specific infrared
lights allowing for maximal contrast to define the eye and orbital anatomy, and are focused
exclusively on the eye.

The essential feature of our approach is to start from the ROI, i.e the polygons provided
by deep learning that delineate roughly the eye “contour”. This result is relatively robust
with a standard video but is not very accurate overall. Therefore, we zoomed in on
spatial subdomains of the ROI in a divide and conqueer manner to segment each interface
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individually using standard computer vision algorithms. Special features are the upper
lid/lower lids and bottom of the iris boundary for ptosis and the visible side of the iris
boundary for diplopia. We have separated the upper lid, lower lid, and the iris boundaries
as we are looking for a single interface in each rectangular box, as in Figure 7. In principle,
these interface boundaries should cross the rectangle horizontally for lid position and
vertically for ocular misalignment. One must check with an algorithm that the interface
partitions the rectangle into two connex sub domains. The segmentation algorithm may
shrink the rectangle to a smaller dimension as much as necessary to separate each anatomic
feature.
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To be more specific, we first describe the local search method to position the lower lid
and the lower boundary of the iris during ptosis exercise 1. The description below is set
for the right eye, with the processing of left eye being analagous. As shown in Figure 7,
to improve the lower lid positioning, we draw a small rectangle including the landmark
points (42) (41) and look for the interface between the sclera and the skin of the lower
lid. Similarly, we draw a rectangle that contains (38), (39), (40), and (41) and identify the
interface of the iris and sclera.

The interface found by the computer vision algorithm would be acceptable only if it is
a smooth curve (H1) that crosses the rectangle horizontally (H2). For the iris bottom, we
expect the curve to be convex (H3).

As the computer vision is concentrated in a rectangle of interest that contains the
interface we are looking for, the problem is simpler to solve, and the solution can be found
accurately provided that the two subdomains separated by the interface have clear distinct
features. To that purpose, we first enhance the contrast of the image in that rectangle before
further processing. Second, we used several simple techniques, such as kmeans, restricting
ourselves to two clusters, or open snake, which maximizes the gradient of the image along
a curve. Those numerical techniques come with numerical indicators to show how well two
regions are clearly separated in a rectangular box. For example, with the kmean algorithm,
we center the two clusters clearly separated, and each cluster should be a connex set (H4).
For the open snake method, we check on the smoothness of the curve and the gradient
value across that curve.

If the computer vision algorithm fails to find an interface that satisfies all our hypothe-
ses (H1 to H4), we either reran the k-means algorithm, changing the seed, or shrink the
size of the rectangle until convergence to an acceptable solution. If the computer vision
algorithm fails to find a smaller rectangle that fits the search, we cannot conclude on the
lower lid and upper lid position and must skip that image frame from our reconstrution of
the ptosis/diplopia metrics we are building. This may happen if there is a lack of contrast
due to poor illumination or a diffuse image due to motion.

The kmean algorithm and snake are some of the simplest algorithms used to separate
the two subdomains of the rectangle and draw an interface that satisfies the criteria (H1) to
(H4). We used both algorithms simultaneously to determine concurrence of each algorithm.
As shown in the Section 4, this solution is robust and has satisfactory accuracy. There is



Sensors 2023, 23, 7744 8 of 16

no difficulty in using a more sophisticated level set or graph cut technique, other than the
additional cpu requirement.

In the example seen in Figure 7, the model provides the correct location of the upper
lid, and the contrast between the iris and the skin above is clear.

Overall, our hybrid algorithm combines deep learning with local computer vision
output metrics, such as the distance between the lower lid and the bottom of the iris as well
as the lower lid and the upper lid. The first distance is useful to determine that the patient
is performing the exercise correctly, while the second distance provides an assessment
of ptosis. It is straightforward to assess the diameter of the iris as the patient is looking
straight and the pupil should be at the center of the iris circle.

3.2.2. Computing the Diplopia Metric

As illustrated in Figure 2, we use a similar method to identify the upper lid and lower
lid position. The only novelty here is to identify the correct side boundary of the iris as the
patient is looking left or right, using a computer vision algorithm in a small horizontal box
that starts from the corner of the eye landmark (37) or (40) and goes to the landmarks of the
upper lid and lower lid on the opposite side, i.e., (39) and (41) or (38) and (42). The same
algorithm is applied to the right eye, as described above, and the left eye, except that the
inteface is now crossing the rectangle of interest vertically. We compute the barycentric
coordinate denoted α and the horizontal distance of the point P that is the visible lateral
point of the iris boundary to the corner of the eye, relative to eye length, as shown in
Figures 2 and 8. We denote these as αleft and αright the measurement α for the left and
right eyes, respectively. The distance from the face of the patient to the camera is much
larger than the dimension of the eye and makes the barycentric coordinate quasi-invariant
to the small motion of the patient head during the exercise.
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In principle, Pleft and Pright should be of the same order, as the subject is looking
straight at the camera; αleft and αright should also be strongly corelated, as the subjects
direct their gaze horizontally. As fatigue occurs, the difference between αleft and αright
should change with time and correspond to the misalignment of both eyes. We assume that
diplopia occurs when the difference between αleft–αright deviates significantly from its
initial value at the beginning of the exercise.

3.2.3. Eye Gaze and Reconstruction of Ptosis and Diplopia Metrics in Time

Thus far, we have described a hybrid algorithm that we used for each frame of the
video clips during Exercise 1 and 2. As before, we used a simple clustering algorithm for
the ROI for each eye to reconstruct the scleral area and detect the time window for each
exercise: the sclera should be one side left or right of the iris in Exercise 2 and one side
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below the iris in Exercise 1. Since we know, a priori, that each exercise lasts one minute, we
do not need a very accurate method to reconstruct when the exercise starts or ends. For
verification purposes, the result of left eye gaze and right eye gaze should be consistent.

We cannot guarantee that the computer vision algorithm converges for each frame.
We are required to check for:

• Stability: the patient should keep their head in approximately the same position
• Lightning effects: the k-means algorithm shows non-convex clusters in the rectangle

of interest when reflecting light affects the iris detection, for example.
• Instability of the deep learning algorithm output: when the landmarks of the ROI

change in time independently of the head position.
• Exception of quick eye movements due to blinking or reflex that should not enter the

ptosis or diplopia assessment.

As our method eliminates all the frames that do not pass these tests, we generate a
time series of measures for ptosis and diplopia during each one-minute exercise that is
not continuous in time. Rather, we use linear interpolation in time to fill the holes and
provide that the time gaps are small enough, i.e., a fraction of a second. All time gaps that
are greater than a second are identified in the time series and may correspond to marker
fatigue during the evaluation.

To obtain the dynamic of the ptosis and diplopia measure that is not part of the
standard core exam, and to present some interest for neuromuscular fatigue, we further
postprocess the signal with a special high order filter, as in [13], that can take advantage of
Fourier technique for nonperiodic time series.

4. Results

To construct the validation of our method, we visually compare the result of our
hybrid segmentation algorithm to a ground true result obtained on fixed images. In order
to obtain a representative data set, we extract an image every two seconds from the videos
of patients. We used six videos of the ADAPT series with the first visit of six patients. The
subjects were three women, three men—one African American/Black, one Asian, and three
White, with one person who identified as Hispanic.

We extracted one image every 2 s of the video clip for Exercise 1, assessing ptosis,
and the two video clips corresponding to Exercise 2, assessing ocular misalignment. We
conducted the same analysis with the patient video that was recorded with the Inteleclinic
system equipped with a high-definition camera.

Each exercise lasts about one minute, and we obtained about 540 images from the
ADAPT series and 90 from the Inteleclinic. The validation of the image segmentation was
performed for each eye, which doubles the amount of time.

For Exercise 1, we check three landmarks positions: the points on the upper lid, iris
bottom, and lower lid situated on the vertical line that crosses the center of the ROI. For
exercise 2, we identify the position of the iris boundary that is opposite to the direction of
gaze. If the patient looks to their left, we determine the position of the iris boundary that is
furthest to the right.

To facilitate the verification, our code automatically generates these images with an
overlay of the grid of spatial steps at two pixels. This rule is used vertically for exercise 1
and horizontally for exercise 2.

We consider that the segmentation is correct to assess ptosis and ocular misalignment
when the localization of the landmarks is correct within two pixels. It is often difficult to
judge the results based on our own inspection, as demonstrated in the image of Figure 9.
We used independent visual verifications by two reviewers to make our determinations.
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Figure 9. Visual verification on zoomed image of eyes using a 2-pixel rule for Exercise 1 on left,
Exercise 2 on right. Green lines are the detected positions of upper and lower eyelids and iris
boundary. The red dots correspond to the landmarks detected with the machine learning method.

Not all images are resolved by our hybrid algorithm. It is critical to have an adequate
time frame in the video to reconstruct the dynamic of ptosis and ocular misalignment. First,
we eliminated all the images from the data set in which the Deep Learning library failed to
correctly localize the eyes. This can be easily detected in a video, since the library operates
on each frame individually and may jump from one position to a completely different
one while the patient stays still. For example, for one of the patients, the deep learning
algorithms confused each of the nostrils with the eyes.

The MG-CE videos had low resolution, especially when the displays of the patient and
the medical doctor were side by side, or have poor contrast, focus, or lighting. Therefore, it
is impressive that, on average, we were able to use 74% of the data set for further processing
with our hybrid algorithm.

Our algorithm cannot precisely find the landmark of interest when the deep learning
library gives an ROI that is significantly off the target. The bias of the deep learning
algorithm was particularly significant during exercise 1, in which the eyes are wide open,
and the scleral area is decentered below the iris. The lower points of the polygon that mark
the ROI are often far inside the white scleral area above the lower lid. The end points of
the hexagon in the horizontal direction may become misaligned with the iris too far off the
rectangular area of local search we wish to identify.

We automatically eliminated 44% of the images of the video clips of the ADAPT series
and 10% of the Inteleclinic series for exercise 1. The Inteleclinic result was acquired in better
lightning conditions and with a higher resolution than the ADAPT videos.

We consider that the segmentation is correct if the three landmarks of the ptosis exer-
cises, as defined earlier, are within two pixels of the ground true result obtained manually.

For exercise 1 with the ADAPT series, we obtained a success rate for identification of
73% for the lower lid, 89% for the bottom of the iris, and 78% for the upper lid. For exercise
1 and for the Inteleclinic series of images, we obtained a success rate of 77%, 100%, and
77%, respectively.

For exercise 2, the quality of the acquisition was somewhat better. We eliminated 18%
of the image ROIs for the ADAPT series and 13% for the Inteleclinic series.

The localization of the iris boundary, used to check ocular misalignment, was better,
with a success rate of 95%. The eyelids are less open than in exercise 1 and are held in the
primary position. The upper and lower lid landmarks were obtained with a success rate of
73% and 86%, respectively.

Overall, the success rates between the ADAPT series, provided by standard Zoom call,
and the Inteleclinic system result, which uses an HD camera, were similar. Under the same
conditions of distance between the patient and the camera, as well as the 2-pixel accuracy,
Inteleclinic may provide a submillimeter accuracy of eye motion that is remarkable and
much better than the ADAPT series result. However, the Inteleclinic is more sensitive to
the head motion of the subject.

We now present summary results of the ptosis and diplopia assesments of MG subjects,
which were the goal of the eye and lid motion algorithm development.
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As illustrated in Figure 3, we can determine, from the polygon obtained by the deep
learning algorithm, a first approximation of ptosis severity by computing the area of the
eye that is exposed to the view, as well as the vertical dimension of the eye. As a byproduct
of this metric, we can identify blinking (see Figure 6). We appreciated that left and right eye
blinking occur simultaneously, as is expected. Not every subject with MG blinks during
the exercise.

The time dependent measure of diplopia or ptosis obtained by our algorithm contains
noise. We can improve the accuracy of the measures by ignoring the eyes with identified
detection outliers, provided that the time gaps corresponding to these outliers are small. To
recover the signal without losing accuracy, we use the same high order filtering technique
that we used in a previous paper to analyze thermal imagery signal [13]. The Inteleclinic
data set is working well, as shown in Figure 10.

Sensors 2023, 23, 7744 11 of 17 
 

 

remarkable and much better than the ADAPT series result. However, the Inteleclinic is 

more sensitive to the head motion of the subject. 

We now present summary results of the ptosis and diplopia assesments of MG sub-

jects, which were the goal of the eye and lid motion algorithm development.  

As illustrated in Figure 3, we can determine, from the polygon obtained by the deep 

learning algorithm, a first approximation of ptosis severity by computing the area of the 

eye that is exposed to the view, as well as the vertical dimension of the eye. As a byproduct 

of this metric, we can identify blinking (see Figure 6). We appreciated that left and right 

eye blinking occur simultaneously, as is expected. Not every subject with MG blinks dur-

ing the exercise. 

The time dependent measure of diplopia or ptosis obtained by our algorithm con-

tains noise. We can improve the accuracy of the measures by ignoring the eyes with iden-

tified detection outliers, provided that the time gaps corresponding to these outliers are 

small. To recover the signal without losing accuracy, we use the same high order filtering 

technique that we used in a previous paper to analyze thermal imagery signal [13]. The 

Inteleclinic data set is working well, as shown in Figure 10. 

 

Figure 10. Linear least square fitting coefficient of the upper lid drop from right and left eye, respec-

tively = [−0.15, −0.17]. The green line shows a least square approximation of the distance between 

the lower lid and upper lids of the patient. The red curve shows the distance between the lower 

point of the iris and the lower lid below. This second curve is used to check that the patient performs 

the exercise correctly. 

We observe a 15% decay in lid opening that is very difficult to appreciate by human 

inspection of video clip or during the in person medical doctor examination. As a matter 

of fact, this low shift of the upper lid is slow and almost unnoticeable during a 60 s obser-
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Figure 10. Linear least square fitting coefficient of the upper lid drop from right and left eye,
respectively = [−0.15, −0.17]. The green line shows a least square approximation of the distance
between the lower lid and upper lids of the patient. The red curve shows the distance between the
lower point of the iris and the lower lid below. This second curve is used to check that the patient
performs the exercise correctly.

We observe a 15% decay in lid opening that is very difficult to appreciate by human
inspection of video clip or during the in person medical doctor examination. As a matter of
fact, this low shift of the upper lid is slow and almost unnoticeable during a 60 s observation.
This patient was considered as asymptomatic during the neurologist examination, but the
lid droop has been identified by our method. Control subject patients, even the elderly, did
not exhibit lid drop of a similar degree during the ptosis exercise.

During exercise 2 with the patient of the inteleclinic data set, we obtained no eye
misalignment (see Figure 11), but the eye opening was about half of its value during the
first ptosis exercise, and the eye opening does not stay perfectly constant. We observe, on
the Inteleclinic video, that the eye gaze direction to the left and to the right is so extreme
that one of the pupils might be covered, in part, by the skin at the corner of the eyes.
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Figure 11. Evolution of the barycentric coordinates for each eye during exercise 2. The green line
is the least square fitting of the barycentric coordinates evolution. It is perfectly horizontal which
means no weakness in eye motion was shown during the exercise.

The results of ptosis and diplopia assessments from the ADAPT video were less
satisfactory but still allowed an assessment of lid droop and ocular misalignment, though
with less accuracy. Figure 12 shows a representative example of the limits of our approach,
when the gap of information between two time points cannot be recovered. It should be
appreciated that the eye opening was of the order of 10 pixels as opposed to about 45 pixels
in the Inteleclinic data set. In this situation, the subject was not close enough to the camera,
which compromised the resolution significantly. However, a posteriori review identified
the gap identified by our algorithm and it corresponded to a short period of time when
the patient stopped looking up to rest from looking straight. It should be appreciated that
holding an upward gaze for one-minute is a strenuous atypical activity for anyone.
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Figure 12. Example of the assessment of one the ADAPT patient series. Note the patient closes his 

eyes at 35 s.  

  

Figure 12. Example of the assessment of one the ADAPT patient series. Note the patient closes his
eyes at 35 s.

5. Discussion

Due to the precautions caused by the COVID-19 pandemic, there has been a rapid
increase in the utilization of telemedicine in patient care and clinical trials. The move to
video evaluations offers the opportunity to objectify and quantify physical examination,
which presently relies on the subjective assessment of an examiner with varied levels
of experience and often limited time to perform a thorough examination. Physicians
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still remain reticent to incorporate telemedicine into their clinical habits, in particular in
areas that require a physical examination (neuromuscular diseases, movement disorders)
compared to areas that are primarily symptom-focused (headache). Telemedicine, on the
other hand, has numerous features that can provide an enhanced assessment of muscle
weaknesses, deeper patient monitoring and education, reduced burden and cost of in-
person clinic visits, and increased patient access to care. The potential for clinical trials
to establish rigorous, reproducible examinations at home provides similar benefits for
research subjects.

MG is an autoimmune, neuromuscular disease. Outcome measures are established for
MG trials, but these are considered suboptimal [33]. The MG CE, in particular for ocular
muscle weakness, has been standardized and is well defined [5]. Because of the benefit
for frequent monitoring for MG patients, reliable and quantitative teleconsultation would
be highly valuable for patient care. However, the grading of ptosis and diplopia relies
on repetitive and tedious examinations that the examiner must perform. The dynamic
component of upper eyelid dropping can be overlooked during the typical examination by
non-experts. Diagnosis of diplopia in these telehealth sessions relies on subjective patient
feedback. Overall, the physical examination relies heavily on qualitative, experienced
judgment, rather than on unbiased, rigorous, quantitative metrics.

Our goal is to move from 2D teleconsultation and its limitations to a multi-dimension
consultation. The system presented in this paper addresses that need by introducing
modern image processing techniques that are quick and robust in the process of recovering
quantitative metrics that should be independent of the examiner. The diagnosis and
treatment decisions remain the responsibility of the medical doctor, who has the knowledge,
and not our algorithm output.

One of the difficulties of standard telehealth sessions is the poor quality of video. The
resolution may be severely limited by the bandwidth of the network at the patient location.
Zoom video footage is also limited by the poor compression/decompression methods used,
which could cause artifacts with respect to the original raw video recording acquired by the
patient’s camera. Eventually the patient evaluation would benefit from software used on
their computers or tablets in order to directly compute all exam metrics with the resolution
of the native image before any compression occurs. These metrics, which are just a few
numbers, can be sent on a network directly to the physician without bandwidth limitations
In our study, the quality of the video was adequate to allow the medical doctor assess ptosis
and diplopia as specified by the protocol, but not ideal for image processing, especially
because the videos were recorded on the doctor side rather than recording the raw video
footages on the patient side. Light conditions and positioning of the patient in front of the
camera was often poorly controlled when patients are at home with their personal computer
or tablet. These factors are all of crucial importance to optimize numerical algorithm and
image processing that are robust and transparent on the level of accuracy they provide.
Eye tracking is highly sensitive to patient motion, poor resolution, and eyelid droop with
gaze directed eccentrically. However, use of standard telemedicine video will be necessary,
despite limitations, to support scalability and adoption of our approach for broad use by
physicians and patients.

As we digitalize the exercise output for assessing ptosis, we must rigorously define the
metric. We assessed instantaneous measurements as well as time dependent ones. From the
dynamic perspective, we could identify patients who show steady upper eyelid position
from those who start well and develop progressive eyelid weakness. We also separate
global measurement related to the overall eye opening from measurement that computes
the distance from the pupil to the upper lid. This last metric is clinically significant for
the patient when the droop covers the pupil and impairs vision. A decision on how these
metrics should classify ptosis severity remains the physician’s decision.

Similarly, we assumed that diplopia could be measured by the “misalignment” of the
left and right pupil during exercise 2. Vision involves not only the alignment of the ocular
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axes but also the brain’s ability to compensate for such the misalignment and eliminate the
complaint of double vision.

Both measurement of ptosis and diplopia were quite sensitive to the resolution of
the video. In Zoom recorded telehealth sessions, the distance from the pupil to the upper
lid is of the order of ten pixels. A two pixels error on the landmark positions may still
provide a relative error of about 20% on the ptosis metric. The deep learning algorithm
introduces even larger errors on the landmark points of the ROI polygon. However, with
the HD camera we tested, and the processing being conducted on raw footage rather than
on streamed recorded footage, this relative error is divided by two. Our analytical approach
has also been able to provide recommendations on how to improve the MG ocular exam.
For example, to ensure the reproducibility and quality of the result, our algorithm can
provide feedback in real-time to the medical doctor on how many pixels are available
to track the eyes and therefore give direction to the patient to position closer and better
with respect to the camera on their end. Similarly, exercise 2 may benefit from reduced
extreme eccentric gaze, which compromises definition of iris boundary, when covered by
the overlying eyelid. This would allow for a more appropriate situation to assess double
vision properly.

The general concept of our hybrid approach, starting from deep learning to obtain
the ROI, and zooming into specific regions of the eye using computer vision, might be
applied to assess eye movements in other neurological diseases [34]. However, this would
require significant additional analysis to adapt the method to a higher requirement on data
acquisition, for example in application of assessment of saccades or smooth pursuit.

6. Conclusions

We have presented a hybrid algorithm to estimate the eye and lid movements of
patients with myasthenia gravis using the established MG core examination. Our hybrid
algorithm starts from a standard machine learning algorithm in order to obtain a coarse
estimate of the eye contour with a hexagon. This off the shelf deep learning library is not
trained for ptosis and diplopia evaluation that changes dramatically with eye position,
but it provides a coarse estimate on eye “contour” in a robust way. We then use a divide
and conquer technique to define smaller rectangles that separate each anatomic marker
of interest, such as upper lid, lower lid, and part of iris boundary, needed to estimate the
lid and eye position. Because the problem of segmentation becomes much simpler in each
local rectangle, we can use a standard image segmentation technique and check that the
segmentation passes several tests to eliminate artifacts due to head motion, poor lightning
condition, and lack of image resolution in a frame-by-frame manner.

We assessed a large, representative data set of image frames that our algorithm deliv-
ered with a two-pixel accuracy in about 80% of cases, which is adequate to filter outliers
and compute ptosis and eye alignment metrics. As opposed to the standard MG core
examination, our method provides the dynamic evolution of ptosis and ocular alignment
during the standard 60 s exercise of the standard MG core examination. This information is
usually not accessible quantitatively to the neurologist during a standard telemedicine visit,
and has proven to be more sensitive than the neurologist assessment on several occasion.

It should be noted that our method highlights a few open clinical questions: how do
we make use of the time dynamic evolution of ptosis and diplopia during the exercises? Is it
meaningful to capture the fatigue effect or is overall observation by the examiner adequate?

Our methods have limitations, and there is still much room for improvement. Devel-
opment of a model of the eye geometry with iris and pupil geometric markers that extend
the model of Figure 3 in greater detail, including upper lid droop, is necessary. Applying
deep learning technology to this model would be quite feasible. This is certainly a worthy
effort, but it would require hundreds of patient videos with correct annotation to train
the algorithm [19]. However, given the expected expansion of telemedicine with ongoing
limitation of a patient’s technology and internet access, this is an important endeavor.
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Further, as we have seen, deep learning technology may have spectacular robustness that
were shown in annotated videos but may not ensure accuracy.

We currently are developing a high-performance telehealth platform [35] that can be
conveniently distributed at multiple medical facilities in order to build the large, annotated
quality data set that may help advance our understating of MG.

7. Patents

A smart Cyber Infrastructure to enhance usability and quality of telehealth consul-
tation, M. Garbey, G. Joerger, provisional 63305420 filed by GWU, January 2022 and as a
PCT/US23/61783, January 2023.
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