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Abstract: This paper presents a novel circularly polarized rectenna designed for efficient electro-
magnetic energy harvesting at the 2.45 GHz ISM band. A compact antenna structure is designed to
achieve high performance in terms of radiation efficiency, axial ratio, directivity, effective area, and
harmonic rejection over the entire bandwidth of the ISM frequency band. The optimized rectifier
circuit enhances the RF harvested energy efficiency, with an AC-to-DC conversion efficiency ranging
from 36% to 70% for low-level input power ranging from −10 dBm to 0 dBm. The stable output
of DC power confirms the suitability of this design for various practical applications, including
wireless sensor networks, energy harvesting power supplies, medical implants, and environmental
monitoring systems. Experimental validation, which includes both the reflection coefficient and
radiation patterns of the designed antenna, confirms the accuracy of the simulation. The study found
that the proposed energy harvesting system has a high total efficiency ranging from 53% to 63% and
is well-suited for low-power energy harvesting (0 dBm) from ambient electromagnetic radiation.
The proposed circularly polarized rectenna is a competitive option for efficient electromagnetic
energy harvesting, both as a standalone unit and in an array, due to its high performance, feasibility,
and versatility in meeting various energy harvesting requirements. This makes it a promising and
cost-effective solution for various wireless communication applications, offering great potential for
efficient energy harvesting from ambient electromagnetic radiation.

Keywords: RF energy harvesting; circularly polarized antenna; harmonic rejection; stable DC power

1. Introduction

Electromagnetic (EM) energy harvesting has received a lot of attention for a long time.
In the early 1900s, Nikola Tesla experimented with wirelessly transmitting power through
microwaves. However, his work was largely left unimplemented, as his experiments were
vastly ahead of their time and the technology did not yet exist to make energy harvesting
via microwaves feasible [1]. Advances in wireless technologies in the last few decades
have made far-field energy harvesting a useful technology that has numerous applications
and benefits, such as the Internet of Things (IoT), RF identification (RFID), wireless sensor
networks (WSNs), and more [2–5].

Electromagnetic energy harvesting relies heavily on rectifying antennas (rectennas),
which can convert RF energy to DC power. The low-pass filter (LPF), diodes, and DC
pass capacitor are the main components of the standard rectenna, as shown in the block
diagram of Figure 1 [3]. The task of RF power harvesting is performed by converting
sent/ambient RF electromagnetic waves into an AC signal through the receiving antenna.
This AC signal is then rectified into DC which can be stored in batteries or used directly to
drive a specific circuit.
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The greatest challenge in this system is the nonlinearity of the rectifier circuit, which
has some drawbacks. On the one hand, the rectifier conversion efficiency from AC to DC
depends on the input power. In other words, the greater the AC input power available
at the rectifier, the higher the conversion efficiency that can be achieved, up to a certain
point [6]. This issue can be mitigated by improving the performance of the pre-rectifying
stages (i.e., the receiving antenna and matching circuit). Therefore, if a proper lossless
matching network is used to match the antenna impedance to the rectifier impedance,
maximum power transfer is achieved [4]. Consequently, the received antenna is the main
part that improves the system’s efficiency. The antenna structure should have a high
conversion efficiency to convert RF power into AC power [7,8]. Furthermore, the antenna
should have a higher capturing efficiency that enables it to capture sufficient RF power to
drive the rectifier circuit into the interested region. Increasing capturing efficiency means
having a higher radiation efficiency, higher directivity, a lower load mismatching factor, and
a lower polarization mismatching factor [9]. In [10], a dual-purpose radial-array rectenna
was proposed for RF-energy harvesting IoT sensors, significantly enhancing RF energy
capturing from a 360◦ region. It also enables precise orientation sensing using 5.8 GHz
antennas, showcasing its versatility and potential for various applications.

On the other hand, nonlinear rectifying circuits, such as diodes, produce harmonics
of the fundamental frequency. The unwanted harmonics impair system performance and
result in harmonic interference that reduces the efficiency of the antenna and nearby circuit
due to the coupling effect. As a result, a low-pass filter (LPF) is needed to suppress the
harmonics to prevent harmonic interference, power re-radiation, and noise with antennas
and nearby circuits [11]. However, the LPF will have insertion losses and increase the size
and cost of the system. To elevate this effect, filters and microstrip antennas are usually
fabricated together on the same substrate to improve cost and efficiency [12]. However,
designing an antenna that does not resonate at the second and third resonance frequencies
(i.e., also called a filtenna) would be the optimum solution [11]. Additionally, a wide-
bandwidth antenna is also preferred, but it comes with decreasing efficiency. Furthermore,
the effective bandwidth of the antenna will be limited by the lowest bandwidth of other
energy-harvesting circuitry, such as rectifiers, that suffer from decreasing efficiency with
increased bandwidth [7,13]. Moreover, improving the mismatching polarization factor
makes circularly polarized antennas more preferable to linear polarization for some electro-
magnetic energy harvesting applications, especially due to the independence of the rotating
angle and fading resistance [14].

Therefore, researchers focus on obtaining a competitive design that satisfies the afore-
mentioned aspects or those required by different applications of ambient RF energy harvest-
ing. The antenna used in such systems can be of any type, yet microstrip patch antennas are
widely used due to their economical and electromechanical advantages [9,15–18]. However,
lower bandwidth, directivity, and efficiency are the main drawbacks of such antennas [19].
Various techniques can be employed to overcome the disadvantages of antenna systems.
For instance, using multiple antenna elements in an array can enhance the directivity of
the system. However, this comes at the cost of increasing the size of the receiving antenna,
which is dependent on the number of elements used. As a result, there is an increasing
amount of research being dedicated to the development of compact and highly efficient
antenna elements, which can enable the realization of high-performance antenna arrays
in a small form factor [14,20–22]. Therefore, an antenna structure that combines harmonic
rejection, higher directivity, and efficiency could be a good candidate for low-cost and
compact energy harvesting.
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In the existing literature, numerous designs have been proposed for electromagnetic
energy harvesting applications. However, it is important to note that no single design
can be considered perfect or universally suitable for all applications in this field. In [23],
compact circularly polarized filtennas at 2.45 GHz are presented, but they have radiation
efficiencies of less than 60%. In [24], the authors design a broadband antenna for energy
harvesting, but its RF to DC efficiency is less than 55%, and the implementation complexity
is high since the filter is printed on another layer. The authors of [25] proposed a highly
efficient cross-dipole antenna with a reflector and filter integrated on the same substrate,
achieving a high efficiency of 90%. However, the antenna size was very large, approaching
the wavelength of the electromagnetic wave.

In [6], two-layer, two-port antennas were used to improve the collected power by
obtaining dual linear polarization, but the size and cost of the antenna increased due to
the need for two LPF filters, a matching circuit, and a rectifier. In [26], the focus was on
minimizing the antenna structures (with maximum dimensions approaching a quarter
wavelength) for energy harvesting applications. Although the design achieved a gain of
4.6 dBi and was very compact, it was a linearly polarized antenna with a very narrow
bandwidth of 0.55%. In [27], a circularly polarized antenna with a gain of 6 dBi was
presented, but the matching and axial ratio (AR) bandwidths were very small at 1.7%
and 0.68%, respectively. Additionally, the antenna could not reject harmonics. In [28], a
circularly polarized antenna was designed for use in RFID applications with a gain of
6.9 dB, but its bandwidth was limited to 1.5% at 2.45 GHz.

Metamaterial-based energy harvesting structures have also garnered significant atten-
tion from researchers due to their unique properties. The ability to engineer a metasurface
and metamaterial surface with negative permeability and permittivity has opened up
novel applications in various frequency bands, including energy harvesting [29], perfect
lensing [30], and perfect absorption [31]. For instance, the metamaterial’s integration in the
antenna design in [32] leads to a significant enhancement in the antenna’s gain across all
frequency bands. This notable improvement solidifies the antenna as a promising solution
for high-performance wireless communication systems. Moreover, a compact metamaterial-
inspired antenna (MIA) enables efficient WiFi energy harvesting without complex networks,
producing a rectified DC voltage for powering distributed microsystems [33]. In a related
study [34], a dual-band metasurface simplifies design and facilitates high-efficiency electro-
magnetic energy harvesting at Wi-Fi frequencies, making it suitable for applications such
as wireless power transfer. Additionally, an efficient miniaturized metasurface achieves
over 78% conversion efficiency at 5.54 GHz, making it ideal for compact wireless sensor
networks with wide angles [35]. However, a significant limitation of metamaterials is their
narrow bandwidth of operation due to the resonance frequencies of their structures. This
bandwidth limitation, coupled with the cost of fabrication, presents a challenge for the
practical implementation of metamaterial-based energy harvesting structures. Nonetheless,
ongoing research in this area holds great promise for the development of efficient and
cost-effective energy harvesting solutions for a wide range of applications.

This paper presents a highly effective area rectenna for the 2.45 GHz ISM band,
achieving compactness, circular polarization, high efficiency, harmonic rejection, sufficient
improved bandwidth covering the ISM band, and high gain compared to traditional patch
antennas. By effectively combining these features in a balanced tradeoff, the design en-
hances efficiency and expands the potential applications for energy harvesting. The antenna
design structure has a bandwidth ratio of 4.08%, a directivity of 7.2 dBi, and a radiation
efficiency of 92.5%. Moreover, the total size of the antenna is around 0.5 × 0.5 wavelength.
The antenna can reject the second and third harmonics, which means it can be used without
an LPF. The structure is one port and one layer, making it a simple and low-cost design. An
optimized rectifier is also presented to evaluate the total rectenna performance and meet
the antenna requirements.
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2. Rectenna Design

To build a rectenna system, the most important parameters to evaluate the system
should be considered. One of these parameters is the received power by the antenna used
in this system, which is directly related to the receiving antenna’s effective area as [9]

Pr = Ae f f Winc (1)

where Ae f f is the antenna effective area that can be found by Equation (2), and Winc is the
incident power density of the plane wave that can also be given by Equation (3).

Ae f f = τ ηrad
λ2D
4π

PLF (2)

Winc =
|Ei|2

2η0
(3)

where τ is the matching transmission coefficient of the loaded antenna, which can be
given by Equation (4), ηrad is the radiation efficiency of the antenna, λ is the wavelength
of the incident wave, D is the antenna directivity, PLF is the polarization mismatching
loss factor that is given by Equation (5), Ei is the incident electric field intensity, and η0 is
the surrounding medium’s characteristic impedance, which is assumed to be air in this
research, so η0 = 120π Ω.

τ =
4RARL

|ZA + ZL|2
(4)

PLF = |ai.ar|2, (5)

where RA and ZA are the receiving antenna input resistance and impedance, respectively;
RL and ZL are the antenna load resistance and impedance, respectively; ai and ar are
the incident field’s instantaneous direction vector and the antenna polarization direction
vector, respectively. It must be emphasized that (Winc times λ2D/(4π)) is the maximum
effective area used to find Pr when there is no mismatching loss (i.e., τ = 1) or polarization
mismatching loss (i.e., PLF = 1).

2.1. Antenna Geometry

The structure of a slotted circular patch antenna and its main important parameters are
shown in Figure 2. The proposed antenna is a single-layer antenna consisting of a slotted
circular patch on the front side, which is etched on a 60 mm × 60 mm Roger RT/duroid
5880 dielectric, a fully grounded reflector on the backside, a centered short via connecting
the front and back sides, and coaxial probe feeding. The antenna shows the advantages of
small size, high efficiency, directivity, and good matching in the 2.45 ISM band with circular
polarization. In addition, it has harmonic rejection properties at the second and third
harmonics. Thus, it is more suitable for power transfer and energy harvesting applications.
This was achieved by minimizing the loss (i.e., increasing the radiation efficiency) and
minimizing the rectenna size by self-suppressing the second and third harmonics.

Coaxial probe feeding was chosen because it has low transmission line loss and
minimizes the area, thereby reducing the aforementioned problems. The feed position is
chosen to achieve right-hand circular polarization.

The antenna is etched on a 60 mm × 60 mm (i.e., ~0.5 λ × 0.5 λ) Roger RT/duroid
5880 substrate with a dielectric constant (εr = 2.2) and electric tangent loss (tan(δ) = 0.0009),
which are more suitable for enhancing the radiation efficiency. Although a low dielectric
constant is not good for radiation characteristics, especially with a thin substrate [16], the
proposed antenna has demonstrated good performance, as presented in the next section.
The slotted edge is useful for obtaining this advantage since it causes the input impedance
of the antenna to be constructively matched with the port impedance.
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the antenna.

2.2. Rectifier Design

To build a full rectenna system, a rectification circuit was designed based on the
antenna’s results. The rectifier circuit schematic built into ADS is shown in Figure 3.
The goal was to maximize the DC output power at 1 KΩ, Pin = −10 to 10 dBm, and
f = 2.37− 253 GHz.
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The design of the rectifier circuit was based on optimizing the microstrip transmission
line (impedance matching circuit) with different lengths and widths to achieve the desired
goal. To ensure proper impedance matching, a Roger RT5880 substrate with a dielectric
constant (εr = 2.2) and electric tangent loss (tan(δ) = 0.0009) was used.

To analyze the rectifier in the proposed rectenna system, the Harmonic Balance (HB)
simulator was used due to the presence of the nonlinear Schottky diode (HSMS2860).
HSMS2860 belongs to the HSMS-286x family of DC-biased detector diodes, which have
been designed and optimized for use from 915 MHz to 5.8 GHz. The HSMS-286x family
is ideal for RF/ID and RF Tag applications as well as large signal detection, modulation,
RF to DC conversion, or voltage doubling. The electrical specification and spice parameter
elements of this circuit are defined by the datasheet of the HSMS286x series in [36]. The
circuit contains a series of transmission lines, a shorted stub, an open-circuited stub, and a
microstrip radial stub between the 50 Ω port and the HSMS2860 diode.

To achieve optimal performance, a series HSMS 2860 Schottky diode was selected for
its low turn-on voltage and fast switching speed at a frequency of operation of 2.45 GHz.
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Additionally, a shunt capacitor of 200 pF was chosen to appear as a short circuit for GHz
frequencies and an open circuit for the rectified DC power.

Table 1 shows the optimized parameters of the impedance matching circuits, which
were critical in achieving high AC-to-DC conversion efficiency ranging from 36% to 70%
for low input power levels.

Table 1. Simulation results.

Shorted Stub
L1/W1

Open-Circuited Stub
L2/W2

Microstrip Radial Stub
L3/W3/θ3

7.71/8.67 4/0.1 8.73/0.707/78◦

3. Simulation Results

The antenna port is excited by a Gaussian pulse with a 50 Ω probe feeding, propagating
from the back of the antenna towards a positive z-axis direction, as depicted in Figure 2.
To solve the electromagnetic problem with open boundaries (far-field problem), the finite
integration technique (FIT) solver in Computer Simulation Technology (CST) is utilized.
Furthermore, practical measurements are employed to validate the designed antenna and
ensure its performance in real-world scenarios. In parallel, the performance evaluation of
the proposed rectifier is carried out using the Harmonic Balance (HB) technique within
the ADS full-wave simulator. This approach allows for a comprehensive analysis of the
rectifier’s behavior and efficiency.

3.1. Antenna Reflection Coefficient and Input Impedance

The reflection coefficient (S11) of a 50 Ω port as well as the input impedance of the
antenna are shown in Figure 4. The antenna has a bandwidth of around 100 MHz with
S11 < −10 dB, which covers the whole ISM bandwidth.
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The antenna design process is arranged into five stages. The first stage started by
selecting the structure that would minimize the size and achieve good performance at the
required bandwidth of 2.45 GHz in the ISM band. Thus, a probe-fed circular-patch mi-
crostrip antenna with Roger RT/duroid 5880 low permittivity and loss substrate material is
first chosen based on recommendations in [17]. Then, using the design formula Equation (6)
in [9], the radius of the circular patch, r, is calculated at the center resonance frequency,
2.45 GHz, using Roger RT/duroid 5880 material of a 2.2 permittivity (εr) and 1.6 mm
thickness (h). The radius calculation result of 23.13 mm is used to simulate the circular
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patch antenna using the full-wave simulator, where the feeding position and ground size
are also chosen according to the recommendations of [9,17].

r =
F{

1 + 2h
πεr F

[
ln
(

πF
2h

)
+ 1.7726

]}1/2 , F =
8.791× 109

fr
√

εr
(6)

Figure 5a shows the circular structure with the S11 of the five design process stages.
The first stage (stage #1) is to adjust the antenna size for the targeted ISM band without any
perturbations. In this stage, the antenna has a resonating mode of around 2.45 GHz and
also resonates around the second and third harmonics. Furthermore, the radiation in this
case is linear, and the antenna bandwidth is only 42 MHz. Therefore, the following design
process stages are to solve these challenges by allowing suitable current perturbations to
change the linear polarization to circular, increase the bandwidth, and reject the second
and third harmonics. To have circular polarization, two orthogonal modes are generated
in the second stage by loading the antenna with two optimum symmetric oval slots, as
shown in Figure 2, and locating the feeding at 45◦ from the slot axis. The symmetric
slots also improve the bandwidth and help minimize the radius of the circular patch from
23.13 mm to 21.86 mm. The size and position of these slots are adjusted and optimized
to achieve the desired bandwidth and polarization axial ratio. The achieved bandwidth
is 100 MHz, as shown in Figure 5a (see stage #2 line). The third stage (stage #3) aims to
reject the harmonic where the patch antenna is loaded with a V-slot on its center bottom
side to reject the second and third harmonics. The symmetric position with optimized
dimensions of the V-slot improves the harmonic rejection property. To finely adjust the
axial ratio and improve the matching, two triangular slits were introduced in the fourth
stage (stage #4). In the last stage (stage #5), a centered via is used to further suppress the
second and third harmonic frequencies at the second and third resonances. Therefore, this
structure works as a filtenna since it works as a stop-band filter for harmonics, as shown
in Figure 5b. Harmonics can cause rectenna performance degradation as well as nearby
circuitry degradation, as explained in the introduction. Accordingly, the antenna is suitable
for energy harvesting applications. The most important performance parameters that affect
the effective area of the antenna are discussed in the next section.
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Figure 5. The reflection coefficient of (a) five design process stages and (b) final optimized stage.

Figure 6 shows the current distribution of the proposed right-hand circularly polarized
antenna at 2.45 GHz, which varies at different phases, indicating the counterclockwise
movement of the surface current distribution at the edges. At all phases, the current
distribution exhibits maximum amplitude at the symmetric oval slots, V-slot, and edges.
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specific frequency range from 2.35 GHz to 2.55 GHz. The axial ratio, which is a measure 
of the polarization purity of an antenna, is plotted as a function of frequency, with the 
relevant frequency range highlighted for clarity. The results show that the proposed an-
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fact that the axial ratio remains very small over the entire frequency range of interest is a 
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3.2. Antenna Radiation Efficiency and Axia Ratio

The proposed antenna structure exhibits a radiation efficiency that varies between 80%
and 91% over the frequency bandwidth of the ISM band, as shown in Figure 7. This is a
significant achievement, as high radiation efficiency is critical for converting RF power into
AC power for energy harvesting applications.
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Figure 8 shows the axial ratio performance of a circularly polarized antenna over a
specific frequency range from 2.35 GHz to 2.55 GHz. The axial ratio, which is a measure of
the polarization purity of an antenna, is plotted as a function of frequency, with the relevant
frequency range highlighted for clarity. The results show that the proposed antenna is
circularly polarized around the 2.45 GHz frequencies. The antenna exhibits outstanding
circular polarization purity with an axial ratio consistently less than 3 dB. The fact that the
axial ratio remains very small over the entire frequency range of interest is a testament to the
antenna’s exceptional performance and its ability to maintain the desired polarization state
with minimal distortion. Consequently, the amount of captured power will be increased
to match the circular polarization and be half the amount for linear polarization ambient
EM waves.
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3.3. Antenna Directivity and Effective Area

The co-polarized directivity pattern of the proposed antenna at the studied frequency
is shown in Figure 9. The maximum directivity is around 7.2 dBi in the main lobe of
the center operating frequency, 2.45 GHz. The radiation pattern is unidirectional and
symmetric in both the azimuth and elevation planes, with no significant side or back lobes.
The plot of directivity with frequency variation in the same main lobe direction is shown in
Figure 10a. The directivity of the antenna indicates its ability to concentrate radiation in a
specific direction. However, directivity alone is not sufficient for a complete understanding
of the antenna’s performance. To assess its effectiveness, it is important to consider the gain
and realized gain as well. Gain refers to the ratio of the power radiated by the antenna in
a specific direction to the power that an ideal isotropic antenna would radiate, assuming
the same input power. It quantifies the antenna’s ability to efficiently radiate energy in a
specific direction.
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On the other hand, realized gain takes into account various factors such as losses,
impedance matching, and efficiency. It provides a more realistic measure of the antenna’s
performance in practical applications. Figure 10b,c present the antenna’s gain and realized
gain, respectively.

In the context of energy harvesting, the effective area is a critical parameter, as it
determines how much energy can be harvested from the ambient electromagnetic waves.
Once the incident field is co-polarized with the antenna structure (i.e., PLF ≈ 1) and the
connected load circuit is conjugate-matched (τ ≈ 1), the maximum absorbed power is
obtained. According to Equation (2), the effective area of the proposed antenna varies
between 36 cm2 and 55 cm2 over the frequency range of 2.4 to 2.5 GHz.

A performance comparison between various published works and the proposed
antenna is listed in Table 2. Among the listed designs, the proposed antenna exhibits a
better trade-off between minimization, bandwidth, efficiency, and self-filtering for harmonic
rejection (i.e., performing the LPF task). This makes it sufficient to drive the rectifier circuit
for the targeted application with a low level of incident EM power.
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Table 2. Comparison of antenna performance with the literature.

Ref. Dimensions (λ) Radiation Efficiency Relative Bandwidth Directivity LPF Feature

[13] 0.49 × 0.49 × 0.0136 45% 5.3% 6.7 dBi No

[24] 0.49 × 0.49 × 0.0136 50% 5.3% 6.9 dBi Yes

[27] 0.46 × 0.46 × 0.03 89% 1.5% 6.98 dBi -

[26] 0.474 × 0.474 × 0.0158 86% 1.7% 6.8 dBi -

This work 0.49 × 0.49 × 0.0136 92% 4.08% 7.2 dBi Yes

3.4. AC–DC Efficiency

The efficiency of converting the received AC power to DC power is critical for energy
harvesting applications. The AC-to-DC power conversion efficiency is calculated using
Equation (7).

ηAc−DC =
Vo × Io

Pin
(7)

where Pin is the total time-average power coupled to the 50 Ω input port of the impedance
matching network, and Vo and Io are the output voltage and current on the load of the
DC filter.

Figure 11 illustrates the AC-to-DC conversion efficiency at 2.45 GHz with a 1 KΩ
rectifier resistive load. The junction resistance in the equivalent circuit model of an HSMS
2860 Schottky diode [36] is dependent on the externally applied bias current, which makes
AC-to-DC radiation conversion efficiency depend on the input power levels. The results
show that for low input power levels ranging from −10 dBm to 0 dBm, the efficiency
gradually increases from around 36% to 70%. The maximum DC power inversion occurs at
an input AC power of 10 dBm. However, it is important to note that the performance of
conversion efficiency deteriorates for higher input power levels (>11 dBm).
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For practical wireless communication applications, the received input power levels
are typically between −10 dBm and 0 dBm (an interesting region). Therefore, the proposed
antenna structure with a rectifier circuit with AC-to-DC radiation conversion efficiency
ranging from 36% to 70% for low input power levels is suitable for energy harvesting from
wireless communication signals. The results demonstrate the advantages of the proposed
rectenna for efficient energy harvesting from ambient electromagnetic radiation, which
could be useful in various applications.
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The overall efficiency of the energy harvesting system is affected by various factors,
including the resistive load of the rectifier. Figure 12 shows the effect of changing the
resistive load of the rectifier on the output DC power. Electromagnetic energy harvesting is
utilized in various applications, including wireless sensor networks, RFID systems, energy
harvesting power supplies, medical implants, and environmental monitoring systems.
The input impedance of these applications varies, with wireless sensor networks typically
ranging from 1 kΩ to 10 kΩ, RFID systems ranging from 50 Ω to 100 Ω, and others typically
ranging from 1 kΩ to 100 kΩ [37]. The results of this work indicate that the DC power
is stable in the range of 1 KΩ to 4 KΩ resistive load rectifiers for practical input AC
power levels (−10 dB to 0 dB), which makes it a suitable candidate to support wireless
sensor networks, energy harvesting power supplies, medical implants, and environmental
monitoring systems.
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In addition to the resistive load, the energy harvesting performance also varies with the
input AC power level and operating frequency. Figure 13 shows the AC-to-DC conversion
efficiency for frequencies in the ISM band at three different input AC power levels. The
results indicate that the efficiency is within the range of 20% to 75% for the targeted
bandwidth and different input power levels ranging from −10 dBm to 0 dBm.

Figure 14 presents the total efficiency of the energy harvesting system, which includes
both AC-to-AC and AC-to-DC conversion efficiencies, plotted against frequency for the
0 dBm input power level and 1 KΩ resistive load. The results demonstrate that the proposed
energy harvesting system offers a high total efficiency, ranging from 53% to 63%.

The high total efficiency of the energy harvesting system has important implications
for various applications where low-power energy harvesting is essential. The results
highlight the potential of the proposed antenna structure and energy harvesting system
to provide a cost-effective and efficient energy harvesting solution for various wireless
communication applications.
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3.5. Experimental Validation

This section provides experimental validation of the antenna simulation results. A
comparison is performed by analyzing the reflection coefficients and radiation patterns of
both the simulated and measured data.

The fabricated antenna and vector network analyzer system are shown in Figure 15.
Figure 16 presents a comparison between the measured and simulated S11 values of
the designed antenna, which indicates good agreement between the simulation and
measurement results. This agreement confirms that the designed antenna is highly
accurate and reliable.
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Figure 15. The fabricated antenna with vector network analyzer system. (a) The front side of the
antenna, (b) the backside of the antenna, and (c) the vector network analyzer measurement system
with the proposed antenna.
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Figure 17 shows the Geozondas [38] time-domain antenna measurement setup used
for measuring the radiation pattern of the designed antenna in the time domain. This setup
consists of a pulsed signal generator, a digital sampling converter, a transmitting antenna, a
receiving antenna, and an oscilloscope. The pulsed signal generator sends a short pulse to
the transmitting antenna, which then radiates the pulse into space. The receiving antenna
captures the signal, which is then analyzed by the oscilloscope to determine the receiving
antenna’s radiation pattern. Figure 18a,b illustrates the measured and simulated polar
radiation patterns of the designed antenna in the azimuth and elevation planes, respectively.
The agreement between the simulation and measurement results demonstrates the accuracy
and reliability of the designed antenna. The close match between the two sets of data in
both the reflection coefficients and radiation patterns provides strong evidence to support
the validity of the simulation approach and its ability to predict the behavior of the whole
rectenna (antenna and rectifier) system.
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with lens GZ0126 DRH (see Figure 17). The gain of the proposed antenna is then deter-
mined by comparing the power levels. The measured gain of the proposed antenna is de-
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The gain is measured by calculating the performance of the proposed antenna in
comparison to a reference antenna with a known gain. The two antennas are connected
alternately to the same transmitter, and the received power is measured for each antenna.
Both used antennas, the reference and the transmitter, are double-ridged horn antennas
with lens GZ0126 DRH (see Figure 17). The gain of the proposed antenna is then determined
by comparing the power levels. The measured gain of the proposed antenna is depicted in
Figure 19, demonstrating an accepted agreement with the simulated gain.
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4. Conclusions

This paper presents a circularly polarized rectenna designed for high-performance elec-
tromagnetic energy harvesting in the 2.45 GHz ISM frequency band. The proposed antenna
structure achieves a radiation efficiency ranging from 80% to 91%, an effective area between
36 cm2 and 55 cm2, an axial ratio consistently less than 3 dB, and harmonic rejection over
the bandwidth of the ISM band. Furthermore, it achieves a directivity of 7.2 dBi in the main
lobe direction with negligible side/back lobes at the center frequency. The optimized recti-
fier enhances the RF harvested energy efficiency, with an AC-to-DC conversion efficiency
ranging from 36% to 70% for input power levels ranging from −10 dBm to 0 dBm. The
proposed design is feasible, versatile, and a competitive option for electromagnetic energy
harvesting applications as a single element or in an array to meet various energy harvesting
requirements. The stable output DC power in the range of 1 KΩ to 4 KΩ resistive load
rectifiers for practical input AC power levels (−10 dB to 0 dB) confirms the suitability of
this design for various applications, including wireless sensor networks, energy harvesting
power supplies, medical implants, and environmental monitoring systems.

Additionally, the study finds that the proposed energy harvesting system has a high
total efficiency that ranges from 53% to 63% at 0 dBm ambient electromagnetic power.
Therefore, it is well suited for low-power energy harvesting, which has significant implica-
tions for various wireless communication applications.

The manufactured novel circularly polarized antenna was tested for its radiation
pattern and S11 characteristics, with simulation and measurement results exhibiting re-
markable agreement.
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