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Abstract: Air pollution is a global issue that impacts environmental inequalities, and air quality
sensors can have a decisive role in city policymaking for future cities. Science and society are
already aware that during the most challenging times of COVID-19, the levels of air pollution in
cities decreased, especially during lockdowns, when road traffic was reduced. Several pollution
parameters can be used to analyse cities’ environmental challenges, and it is more pressing than ever
to have city climate decisions supported by sensor data. We have applied a data science approach
to understand the evolution of the levels of carbon monoxide, nitrogen dioxide, particulate matter
2.5, and particulate matter 10 between August 2021 and July 2022. The analysis of the air quality
levels, captured for the first time via 80 monitoring stations distributed throughout the municipality
of Lisbon, has allowed us to realize that nitrogen dioxide and particulate matter 10 exceed the levels
that are recommended by the World Health Organization, thereby increasing the health risk for those
who live and work in Lisbon. Supported by these findings, we propose a central role for air quality
sensors for policymaking in future cities, taking as a case study the municipality of Lisbon, Portugal,
which is among the European cities that recently proposed be climate-neutral and smart city by 2030.

Keywords: air quality sensors; air pollution; health; environmental inequalities; data analysis;
municipality of Lisbon; future cities; smart cities

1. Introduction

Improving air quality should continue to be a policy target, as poor air quality is
known to be harmful to health. According to the World Health Organization (WHO),
air pollution is still one of the largest health threats worldwide. Every year, there are
seven million premature deaths caused by air pollution [1]. Regions and cities have been
motivated to protect citizens’ health and design and implement plans to improve air quality
parameters. One of the Lisbon region’s planned measures for improving air quality [2] is to
promote the study of areas with insufficient information and potentially relevant impacts
regarding air pollution emissions. To this end, and to fill the spatial gap in air quality
measurement, in mid-2021, the Lisbon City Council (CML, Câmara Municipal de Lisboa)
installed a new sensor network with 80 air-monitoring stations. Using this new network,
and for the first time with this breadth, it is possible to obtain an air data thinner mesh
and map the distribution of air quality in the municipality. Therefore, the first objective
of this study was to map the spatial distribution of air quality parameters in Lisbon’s
urban space. It was thus possible to carry out a comprehensive assessment of air quality
parameters with the widest spatial coverage of permanent stations for a time horizon of
one year. The second objective was to compare this distribution with the city’s physical
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space, namely, transport infrastructure and housing density, which are fundamental issues
for dealing with environmental inequalities in future cities. The contributions of our work
are as follows:

• We characterize the municipality of Lisbon based on the locations of air-quality-
monitoring stations, green spaces, road infrastructures, and housing density, with the
goal of relating these characteristics to the distribution of air quality parameters.

• We characterize four air pollution parameters: Carbon Monoxide (CO), Nitrogen
Dioxide (NO2), Particulate Matter 2.5 (PM2.5), and Particulate Matter 10 (PM10), over
a period of one year, starting in August 2021. With the first validated and available
data series, the collected data are used to build data models. Then, based on statis-
tics and graphics, we analyse the results and relate them with the main road traffic
infrastructures and green areas.

• We adapt the Cross Industry Standard Process for Data Mining (CRISP-DM) method-
ology [3] to the problem of air inequalities in the municipality of Lisbon’s while
instantiating the CRISP-DM phases.

The results of our work can lead to the deployment of new policies geared towards
improved air quality sustainability across the municipality of Lisbon and inspire other
cities to invest in more advanced sensor policies. The remainder of this paper is organized
as follows: Section 2 highlights the relevant literature, Section 3 presents the sensor data
analysis methodology, Section 4 characterizes the infrastructures of the municipality of
Lisbon relevant to our study, Section 5 introduces the air quality parameters, Section 6
presents the air quality measurement data, and Section 7 analyses the results of our study.
Finally, Section 8 provides a discussion and draws conclusions for future cities.

2. Theory

Sustainable cities, the digital society, and environmental inequalities are decisive
challenges of our time. Cities are decisive spaces in which to tackle climate change and
reduce environmental inequalities and health risks. The pertinent theory points out a very
complex circular relationship between environmental inequalities and social inequalities
and the cumulativeness between both. This relationship can be summarized in three points:

(a) Exposure to pollution: social inequalities are a factor in exposure to different pollution
levels, i.e., so-called differential exposure [4–9]. The most commonly adopted hypothe-
sis is that the most disadvantaged social categories are more exposed to pollution [4,5].
Although this hypothesis has been confirmed in many places, mainly in semi-urban
and rural areas [9], it is not always correct in some large urban regions, wherein highly
polluted areas can also have a high cost of living [10,11], which is sometimes caused
by planning and the historical development of cities. In this scenario, it becomes
essential to study and evaluate the relations between environmental inequalities and
health risks in urban contexts and in specific areas within cities.

(b) The effects of exposure to pollution: differential exposure to pollution, along with en-
vironmental inequalities, are understood to be factors of social inequalities, especially
in the field of health. Studies have pointed out that social inequalities mediate the
capacity to combat and prevent the effects generated by equal levels of environmental
exposure, i.e., so-called differential susceptibility or vulnerability [4–7,9,11]. In other
words, more favoured social categories have a greater capacity to combat the harmful
effects on health resulting from exposure to environmental pollution. Inversely, the
most disadvantaged social categories are less able to combat environmental pollution’s
harmful health effects.

(c) The relationship between social behaviour and pollution levels: social inequality
is seen as a factor that generates different levels of pollution. Recent studies have
pointed out that the rich and their consumption and lifestyles are damaging the
environment and that the current levels of pollution are mainly caused by wealthy
citizens in the most-developed countries, who also have the power to globally spread
industrial pollution to other less-developed countries [12–15].
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The territorial distribution of pollution has repercussions on environmental inequali-
ties [12], that is, different social categories are subjected to various pollution levels. In fact,
pollution has a harmful effect on human health [16], as environmental inequalities have
an impact on a set of health and disease indicators, life, and death [17], which are vital
inequalities [18]. To identify the levels of pollution harmful to human health, the WHO
defined a set of guidelines serving as a global goal for countries, cities, and governments
to work towards in order to improve their citizens’ health; this topic will be considered
further ahead [1].

To reduce the main sources of air pollution, energy policies and investments can be
enacted and made, respectively, to support an energy transition. Cleaner transport systems,
more energy-efficient homes, and better municipal waste management can effectively
improve environmental parameters and, consequently, mitigate a population’s exposure to
these compounds. Many legal and public policies applied to the transport sector promise
to help achieve decarbonization targets. Examples include the shift from gasoline and
diesel to lower-carbon fuels or electric vehicles, whether through batteries or fuel cells;
an increase in the number of cycling and pedestrian routes; car sharing; and investments
in public transport networks. Cities have been making efforts to improve air quality by
implementing cycle paths, carrying out road network refinement, and increasing green
spaces.

Cities are at a turning point for improving quality of life, inclusion, and equity for those
who live, work, and visit them, and this is also because of the harmful effects that pollution
causes in terms of health, well-being, resilience, and sustainable development [19,20]. The
European Union (EU) has established a need to deeply interlink the European Green Deal
and the Digital Transition towards attaining neutral-climate and smart cities. Achieving
these objectives is really challenging [21]. To minimize the pertinent impacts and accelerate
the energy transition through climate and mobility policies, it is necessary to evaluate the
causes of pollution using an effective monitoring system and accurate data, such as those
employed in sensor data analysis, to support the decisions made in this regard [22–24].

The EU goal of achieving neutral-climate and smart cities by 2030, as in the case of
Lisbon, involves facing problems relating to aspects such as air quality, climate change,
mobility, transportation, and lifestyles [25,26]. Today, the urban development agenda and
its structural investments are based on the achievement of decarbonization, the use of clean
energies, and a circular economy. Many public policies at the European, national, regional,
and municipal levels arecross-cutting EU priorities of green, digital, just, and inclusive
cities [27].

The development of smart cities is supported by the development of sensor networks
and the Internet of Things (IoT). This kind of system enables the collection and transfer of
information through a defined network with minimal human intervention. This allows for
automatic and efficient processing of data.

A smart city uses data collected by electronic sensors to manage resources and monitor
interactions within its boundaries. The constant need to collect, store, process, and analyse
data requires efficient technological techniques to interact with the big data generated
through the process [28].

Several cities are investing in sensor networks. Monitoring air quality (AQ) levels
can help to define new policies that aim to reduce air pollution [29] and improve citizens’
quality of life. Europe already has a significant network of air quality sensors, and this
number is expected to continue to grow. In Asia, many countries have AQ sensors that
are monitored since their air pollution levels have increased. A study was conducted
to predict AQ in India using data collected in 23 cities [30,31]. Several cities in China
also employ air quality sensors to collect data on pollution parameters [32,33]. Several
studies [34,35] have shown that the United States of America also has a dense network
of AQ sensors spread throughout its states. In the Lisbon region of Portugal, the authors
of [36] analysed the area’s air quality, whereas [37] examined the effects of the economic and
financial crisis in relation to the effectiveness of pollution reduction measures, such as the
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low-emission zone [38–40]. Other studies have considered data provided by Copernicus,
the European Union’s Earth Observation Programme, to assess the effect of confinement
during the COVID-19 pandemic [41], while another study used temporary air quality
stations to collect spatial data [42]. In 2022, the Portuguese non-governmental organization
ZERO highlighted that pollution levels were higher in three Lisbon locations with heavy
traffic (Parque das Nações, Segunda Circular next to Telheiras, and Cais de Sodré) when
compared to another location, Lisbon’s Avenida da Liberdade, which also has low air
quality [43]. This study analysed data from four temporary stations in Lisbon, located in
areas other than the six permanent stations, provided by the national air-quality-monitoring
network/QualAr of the Portuguese Environment Agency (APA) [44], showing evidence
that the APA’s network is insufficient for characterizing the levels of air quality within
the municipality [45]. It is thus relevant to analyse the air parameter data of the new
80 monitoring stations distributed throughout the municipality of Lisbon.

3. Sensor Data Analysis Methodology

This study adopts the Cross Industry Standard Process for Data Mining (CRISP-DM)
methodology, which is widely used in research and practice [3]. It has six phases loosely
connected and aims to provide non-restrictive guidance to allow for the success of data
mining projects. Figure 1 presents a diagram that integrates the CRISP-DM into our
problem. We used the data collected and prepared to build data models based on statistics
and graphics to draw recommendations. This study was divided into five phases, which
are presented below (Figure 1). The first phase—Business understanding—consisted of the
characterization of the municipality of Lisbon in terms of monitoring stations, green spaces,
road infrastructure, and housing density. This analysis is presented in Section 4. Then, to
understand the data collected by the monitoring stations, the air quality parameters are
described in Section 5.
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Figure 1. Instantiation of the CRISP-DM methodological approach.

Phase 2—Data Collection—explained the data collection process carried out by the
Lisbon City Council’s (CML) monitoring stations. These data are open-source and available
at the “Portal Lisboa Aberta” [46]. Section 6.1 presents the process of collecting the databases
used to develop the present study.

Phase 3—Data Cleaning—was split into two subphases that are presented in
Sections 6.2 and 6.3. Section 6.2 presents the data description phase that allowed for
the identification of errors in the data. A study of the maximum and minimum values and
an exploratory analysis of each parameter were carried out. The identified problems in the
data were treated in two subphases. The data-cleaning phase is explained in Section 6.3, as
well as the analysis and removal of outliers..
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In Phase 4, the Air Quality Study, several outputs were generated and analysed,
enabling us to draw conclusions about air quality. The charts and maps presented in
Section 7 were generated using both Python and QGIS. Maps of the average distribution of
air quality parameters are analysed in Section 7.

In Phase 5, Discussion, Conclusions and Perspectives, we used the outputs generated
in Phase 4 to draw conclusions regarding the behaviour and spread of the air quality
parameters under study (Sections 8 and 9).

4. Case Study: The Municipality of Lisbon

Lisbon is Europe’s westernmost capital city, and its geographical characteristics have
positioned it by the Atlantic Ocean and the Tagus River. Lisbon has regular port activity,
receiving commercial and leisure maritime transport. Another very relevant characteristic
is the airport’s presence within the city. This airport has a high intensity of traffic, and it is
currently at the limit of its capacity.

With a resident population of about 544,000, the municipality of Lisbon has lost about
33% of its residents in the last 40 years. In recent decades, housing expansion of the areas
surrounding Lisbon has been observed. The city of Lisbon has a population density of
5455 inhabitants per km2, which was surpassed by two of its neighbouring cities, Odivelas
and Amadora, with the latter having 7210 inhabitants/km2, constituting the city with the
highest population density in Portugal [47].

Figure 2 presents the housing density in Lisbon. This map was created using statistical
subsection census data, which were created in 2011 [48] (2021 census data were not yet
available at the time of this study). Each subsection is an area composed of 300 houses.
Given this, the area of a subsection is inversely correlated with its housing density, i.e., the
smallest subsection is the densest one. The area with the highest housing density is the city
centre ([zone Z1)] (Baixa Chiado), and the area with the second-highest housing density is
Benfica ([Z2)], with 36,821 inhabitants [49]. Monsanto Natural Park ([Z3)] is an area with
1000 hectares of forest, representing more than 10% of the municipality of Lisbon, and it is
the lowest- housing- density zone. The second- largest low- housing- density zone is in the
northern part of the municipality, Lisbon’s Airport [Z4].
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Housing density is relevant since urban and building infrastructures are important,
especially in the cases of NO2 and PM2.5 [50]. Liu et al. [50] stated that a lower building
density promotes the diffusion of PM2.5 and NO2, thereby mitigating their concentrations.

The housing density on the periphery of Lisbon also has implications for mobility
since several citizens work or study outside their place of residence. According to [47], in
the Lisbon Metropolitan Area (LMA), the percentage of people who study or work outside
the city is between 22% and 33%. Approximately 408,000 people (75% of the resident
population) enters Lisbon every day, which means that almost a million people circulate in
the city daily.

The movement of the surrounding population towards the city centre is associated not
only with the use of public transport but also with a high number of individual modes
of transportation. In the LMA, the proportion of the resident population using individual
transport for their journeys to work or study is between 43% and 72% [49]. The charac-
terization presented justifies the interest in studying the air quality parameters in Lisbon.
Lisbon and its surrounding municipalities have adopted several mitigation measures. The
promotion of the use of public transport, the construction of cycle paths [51], the creation of
more green spaces, and the encouragement of using electric vehicles [52,53] are examples
of some of the actions taken that have been integrated into city’s environmental strategy
and policy for the prevention of climate change. Lisbon’s improvement of its population’s
environment and quality of life is a work in progress, which is constantly being updated in
the city’s agenda. In 2022, the city of Lisbon was considered one of the 100 green cities of the
European Union aiming to move towards carbon neutrality by 2030 (EU Mission—Climate-
Neutral and Smart Cities) (https://research-and-innovation.ec.europa.eu/funding/funding-
opportunities/funding-programmes-and-open-calls/horizon-europe/eu-missions-horizon-
europe/climate-neutral-and-smart-cities_en, accessed on 10 January 2023).

Figure 3 presents the CML’s air-quality-monitoring stations and the basic road infras-
tructure, green spaces, car parks, and mobility infrastructures of the municipality of Lisbon.
This figure was developed using geo-referential data available at the Portal Lisboa Aberta
(PLA) [46], and each layer in the map corresponds to a Java Script object notation (JSON) or
shape file. These layers were imported from QGIS software 3.32.0 and carefully included to
provide relevant information and an understandable depiction of the city. Figure 3 shows
the city of Lisbon, which is partially surrounded by the river. To connect with the southern
part of the LMA municipalities, Lisbon has two bridges, represented by the letters A and B.
The shortest bridge (A) is 2.28 km long and is called the 25th of April Bridge. This bridge
usually has high traffic volumes, especially during rush hours. The second bridge, the
Vasco da Gama Bridge (B), is 12.35 km long. The area indicated with the letter C in Figure 3
is Lisbon’s airport.

The CML sensor network consists of 80 air-quality-monitoring stations, which are
represented by black circles on the map. The distribution of these sensors is generally
uniform throughout the city, except for two specific areas: the vicinity of the airport (C)
and the central part of the Monsanto Forest Park (D).

The municipality of Lisbon is surrounded by a structured road network that enables
individuals to travel long-distance urban routes and supports a second-level main distri-
bution network. This second level enables an inter-sector distribution including the city
centre (red ellipse). The main distribution network also has the function of distributing and
collecting the traffic from the third-level secondary distribution network, which distributes
the traffic within urban sectors connecting to local roads. Travel via bicycle is only allowed
in the third- and second-level networks, and it is only allowed in the latter if it is segregated.
The car park hotspots of the Saldanha area (E) and Expo (F) are also indicated.

https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe/eu-missions-horizon-europe/climate-neutral-and-smart-cities_en
https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe/eu-missions-horizon-europe/climate-neutral-and-smart-cities_en
https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe/eu-missions-horizon-europe/climate-neutral-and-smart-cities_en
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Finally, as Ahn et al. [54] concluded that urban greenways reduce pollution exposure,
we decided to analyse the spread of green spaces inside the municipality of Lisbon. The
city centre of Lisbon (red ellipse) has few green spaces. The only relevant green spaces in
the central part of the municipality are the Baixa Chiado green corridor, the Avenida da
Liberdade corridor, and Eduardo VII Park, located near mark E. There are green corridors
surrounding the perimeter of the riverbank. The Monsanto Forest Park (D) corresponds to
the largest green area in the municipality of Lisbon, with almost 10 km2.

Figure 4 presents an example of an air-quality-monitoring station in Lisbon, where it
is possible to observe several sensors used to measure different air quality parameters. The
information about the sensors can be found at Portal Lisboa Aberta [46].
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5. Air Quality Parameters

Figure 5 shows the locations of the monitoring stations according to the air quality
parameters they measure.
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The street address of each monitoring station, identified by its sensor ID, is presented
in Appendix A.

5.1. Carbon Monoxide

The incomplete combustion of fossil fuels and other organic materials containing
carbon is the anthropogenic process responsible for CO reduction [1]. CO can also be
obtained from natural sources, such as volcanic eruptions and forest fires [55]. However,
in a non-volcanic and urban context, it is expected to be present due to human-related
activities.

In cities, one of the main sources of CO is car traffic. Traffic conditions, namely, jams or
areas of low traffic speed, where engines are running at high rotations per minute, impact
CO concentrations. Furthermore, beyond vehicles with combustion engines, CO also results
from electricity production and industrial, commercial, or residential combustion [44]. The
WHO provides air quality guidelines for CO, where the CO limit for an 8 h average time is
10,000 µg/m3, and the annual average limit is 4000 µg/m3 [1]. Prolonged exposure to this
gas can cause health problems. The brain, the cardiovascular system, and skeletal muscles
are some of the organs and tissues most affected by prolonged exposure to CO.

5.2. Nitrogen Dioxide

Nitrogen Dioxide (NO2) is a highly toxic gas that results from combustion pro-
cesses [56] wherein fossil fuels are burnt at elevated temperatures. Industrial, commercial,
and residential combustion; combustion engines used for road or marine transport [57];
and manufacturing processes involving the use of nitrogen, such as the production of
nitrogen fertilizers, are some methods of producing this gas. NO2 can also have a natural
origin, i.e., bacterial activity and thunderstorms [58].

In urban areas, transport is the primary source of NO2, and emissions from car exhaust
primarily come in the form of NO, an unstable molecule that reacts quickly in the presence
of oxygen to form NO2; in urban areas with high traffic levels, NO2 concentrations follow
changes in car traffic [1]. The WHO’s maximum recommended level of NO2 for an average
time of 24 h is 25 µg/m3 and 10 µg/m3 for an annual average [1].
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NO2 causes various harmful effects ranging from eye and throat irritation to decreased
breathing capacity, chest pain, breathing problems, and damage to the central nervous
system and tissues. These effects depend on the concentrations and time of exposure and
can cause lung malfunction, which may potentiate a response to allergens in more sensitive
individuals [1].

5.3. Particulate Matter 2.5 and 10

Particulate matter (PM), such as smoke, dust, dirt, or soot, essentially results from
emissions from car traffic, tire degradation, domestic heating, and industrial activities [44].
Natural emissions are also sources of these particles, as is the case with dust from the North
African deserts and that resulting from forest fires, which can significantly contribute to
increasing PM levels in the Portuguese territory [44].

PM2.5 pollutants are among the most hazardous since they constitute tiny particulate
matter with a diameter of 2.5 micrometres or less. These particles can pass through the
lung barrier and enter the bloodstream, which may result in serious health problems such
as cancer and cardiovascular and respiratory diseases [1].

The respiratory system is the most affected by inhalable particles, and their risk to
human health depends on their chemical composition and size. Thus, larger PM is usually
filtered at the nose and upper respiratory tract level and may be related to irritation and
the hypersecretion of the mucous membranes. Smaller particles are usually more harmful,
as they are deposited in the functional units of the respiratory system [44]. The WHO
recommends an annual limit of PM2.5 of 5 µg/m3 and a 24 h average limit of 15 µg/m3. The
annual limit of PM10′ is 15 µg/m3, for which there is a 24 h average limit of 45 µg/m3 [1].

6. Air Quality Measurement Data
6.1. Data Collection

The air quality measurement datasets are available in JSON format. Each file contains
measurements of a specific parameter and location. Our study is based on the analysis of
data on four parameters collected from 80 monitoring stations scattered throughout the
city in distinct locations. These data were rendered publicly available by the municipality
of Lisbon. Each monitoring station has a set of sensors to measure different air quality
parameters. Specifically, 320 files were downloaded from the Portal Lisboa Aberta [46]. In
this study, only four parameters are considered. The fifth parameter, ozone, is measured
in few locations; therefore, we decided to exclude it in this study. Some of the files are
empty since not every monitoring station measures every parameter. Each database can
be accessed using a Uniform Resource Locator (URL), to which four variables are passed:
the parameter, the monitoring station id., and the start and end dates. We developed a
script to automate the process of collecting all the database data. The first step consists of a
function that generates all the URL combinations of pairs of parameters and a monitoring
station’s identification. In the second step, the databases are imported and saved in different
folders according to the type of parameter. Each folder ends up with 80 files, with one
file per monitoring station. All the files are joined, by parameter, to optimize access to the
information.

6.2. Data Description

Our study uses data collected by the Lisbon city council (CML) sensor network, the
locations of which are presented in Figure 3. The case study focuses on measurements
collected between 1 August 2021 and 31 July 2022. The starting date corresponds to the
first full month for which the data were rendered publicly accessible after the fieldwork
calibration period. The following four air quality parameters, measured in µg/m3, allowed
for the study of the air quality of the municipality of Lisbon: carbon monoxide (CO);
nitrogen dioxide (NO2); particulate matter 2.5 (PM2.5); and particulate matter 10 (PM10).
The full dataset comprises 1,984,322 total observations, of which 143,696 are non-available
(NA) values, representing 0.57% of the data (Table 1).
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Table 1. Parameter information, characterization, and data.

Parameter Unit Size N. Sensors NA% Outliers %

CO µg/m3 467,057 65 0.17 0.25

NO2 µg/m3 479,646 80 2.18 0.03

PM2.5 µg/m3 518,370 80 0.00 2.51

PM10 µg/m3 519,249 80 0.00 2.64

Figure 6 presents a heatmap containing the sensor efficiencies of the four selected
parameters. It is evident that most of the sensors’ efficiencies are above 80%.
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6.3. Data Cleaning

Table 2 presents the statistics for each parameter. It is fundamental to identify inconsis-
tencies in data. Before conducting this analysis, the missing values, encoded as −99, were
removed. Upon analysing the contents of Table 2, several inconsistencies can be identified.
Firstly, PM2.5 and PM10 do not allow for negative values, since these are density measures,
but the minimum recorded value is−66. All PM-negative observations were removed from
the dataset, given that these are impossible values.

Table 2. Parameters’ statistics before (a) and after cleaning (b).

Parameter Min (a) Mean (a) Max (a) Min (b) Mean (b) Max (b)

CO 0.0009 174.96 10,025.75 0.0009 172.05 925.06

NO2 1.00 73.33 8122.00 1.00 73.12 396.00

PM2.5 −66.00 10.88 52,852.00 0.00 6.94 29.00

PM10 −66.00 24.53 99,096.00 0.00 16.54 69.00

The maximum values, for some parameters, are very far from the average value. This
situation is clearly visible for PM2.5 and PM10. Since these values are so high, they affect
the calculated average, thereby biasing the study. To solve this problem, an outlier study
was carried out (as presented hereafter).

To find the optimal outlier to remove, boxplots and histograms were generated for
each parameter to analyse the distributions of the data. For the four air quality parameters,
the following approach was used:

• Calculate Quartiles 1 and 3 (Q1 and Q3);
• Calculate the Inter Quartile Range (IQR = Q3 − Q1);
• Remove all values below Q1 −M × IQR;
• Remove all values above Q3 + M × IQR.

This method was consisted of trying different margin (M) values and analysing the
distributions of each parameter through histograms. Several margin values, between one
and five, were implemented. When using lower margins, e.g., between one and two, the
outlier’s cut-off point affects the distribution curve. To avoid deleting many observations,
higher margin values were used. Following this method, only very extreme measurements
were deleted from the database, thereby preserving more information. The adopted margin
value was four.

Figure 7a presents a boxplot and a histogram of the CO measurements. Figure 7b
presents a boxplot and a histogram of the PM10 measurements. The histograms in
Figure 7a,b present the distribution curves of CO and PM10, respectively. The right tail of
both curves tends to zero, meaning that very few observations were removed during the
outlier removal process. As Table 1 shows, the percentages of outliers in CO and PM10 are
0.25 and 2.64, respectively. NO2 is the parameter that presents the lowest presence of
outliers, namely, only 0.03%. PM2.5 presents 2.51% outliers in the corresponding data. This
method allows for the cleaning of incorrect observations without losing much information.
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Figure 7. (a) Boxplot and histogram of CO measurements after the treatment of the outliers;
(b) Boxplot and histogram of PM10 measurements after the treatment of the outliers.

7. Results

Using the Python language and the QGIS tool, four air quality yearly average distri-
bution maps in the municipality of Lisbon were generated. The air quality yearly average
value for each monitoring station was computed using latitude and longitude values. The
scale corresponds to the WHO’s air quality guidelines (Table 3), with green implying that
such thresholds were not exceeded (Figures 8–11).

Sensors 2023, 23, x FOR PEER REVIEW 13 of 24 
 

 

Figure 7. (a) Boxplot and histogram of CO measurements after the treatment of the outliers; (b) 

Boxplot and histogram of PM10 measurements after the treatment of the outliers. 

7. Results 

Using the Python language and the QGIS tool, four air quality yearly average distri-

bution maps in the municipality of Lisbon were generated. The air quality yearly average 

value for each monitoring station was computed using latitude and longitude values. The 

scale corresponds to the WHO’s air quality guidelines (Table 3), with green implying that 

such thresholds were not exceeded (Figures 8–11). 

 

Figure 8. Average annual distribution of CO in the municipality of Lisbon. The source of information 

is the Portal Lisboa Aberta [46]. This map was created by the authors of this paper. 
Figure 8. Average annual distribution of CO in the municipality of Lisbon. The source of information
is the Portal Lisboa Aberta [46]. This map was created by the authors of this paper.



Sensors 2023, 23, 7702 13 of 23
Sensors 2023, 23, x FOR PEER REVIEW 14 of 24 
 

 

 

Figure 9. Average annual distribution of NO2 in the municipality of Lisbon. The source of infor-

mation is the Portal Lisboa Aberta [46]. This map was created by the authors of this paper. 

 

Figure 10. Average annual distribution of PM10 in the municipality of Lisbon. The source of infor-

mation is the Portal Lisboa Aberta [46]. This map was created by the authors of this paper. 

Figure 9. Average annual distribution of NO2 in the municipality of Lisbon. The source of information
is the Portal Lisboa Aberta [46]. This map was created by the authors of this paper.

Sensors 2023, 23, x FOR PEER REVIEW 14 of 24 
 

 

 

Figure 9. Average annual distribution of NO2 in the municipality of Lisbon. The source of infor-

mation is the Portal Lisboa Aberta [46]. This map was created by the authors of this paper. 

 

Figure 10. Average annual distribution of PM10 in the municipality of Lisbon. The source of infor-

mation is the Portal Lisboa Aberta [46]. This map was created by the authors of this paper. 
Figure 10. Average annual distribution of PM10 in the municipality of Lisbon. The source of
information is the Portal Lisboa Aberta [46]. This map was created by the authors of this paper.



Sensors 2023, 23, 7702 14 of 23
Sensors 2023, 23, x FOR PEER REVIEW 15 of 24 
 

 

 

Figure 11. Average annual distribution of PM2.5 in the municipality of Lisbon. The source of infor-

mation is the Portal Lisboa Aberta [46]. This map was created by the authors of this paper. 

Table 3. WHO yearly air quality guidelines. 

Parameter Period Limit Value 

CO 1 year 4000 μg/m3 

NO2 1 year 10 μg/m3 

PM2.5 1 year 5 μg/m3 

PM10 1 year 15 μg/m3 

7.1. Yearly Average Distribution of Carbon Monoxide 

Figure 8 presents the mean CO levels estimated for the municipality of Lisbon. Dur-

ing the period under analysis, the average value of all the CO measurements was 175.05 

μg/m3, and the threshold of 4000 μg/m3 was never surpassed in any location. 

The monitoring station that presented the highest average value is in Avenida da 

República (I—Figure 8); this average value was 574.28 μg/m3, which is more than three 

times greater than the global average value. As a study of the traffic in the municipality of 

Lisbon shows, the surrounding area of this monitoring station is one of the roads with 

higher levels of traffic [59] (see Figure 5 of the cited study). Using this information, it is 

possible to associate the CO levels with the traffic density. 

The monitoring station of Avenida Infante D. Henrique (II—Figure 8) presented the 

second-highest average value, 487.11 μg/m3, but it did not present high traffic levels, as 

Figure 5 of the traffic study shows [59]. This seems to indicate that the CO generated in 

the surrounding area of this monitoring station does not come from vehicle emissions 

alone. A possible explanation for the source of the CO in the area near this monitoring 

station is the cruise ship terminal of Lisbon. This terminal is a destination for many large 

cruise ships throughout the year, and these ships generate extremely high levels of com-

bustion gases. A single cruise ship can generate more pollutant emissions than 12,000 

Figure 11. Average annual distribution of PM2.5 in the municipality of Lisbon. The source of
information is the Portal Lisboa Aberta [46]. This map was created by the authors of this paper.

Table 3. WHO yearly air quality guidelines.

Parameter Period Limit Value

CO 1 year 4000 µg/m3

NO2 1 year 10 µg/m3

PM2.5 1 year 5 µg/m3

PM10 1 year 15 µg/m3

7.1. Yearly Average Distribution of Carbon Monoxide

Figure 8 presents the mean CO levels estimated for the municipality of Lisbon. During
the period under analysis, the average value of all the CO measurements was 175.05 µg/m3,
and the threshold of 4000 µg/m3 was never surpassed in any location.

The monitoring station that presented the highest average value is in Avenida da
República (I—Figure 8); this average value was 574.28 µg/m3, which is more than three
times greater than the global average value. As a study of the traffic in the municipality
of Lisbon shows, the surrounding area of this monitoring station is one of the roads with
higher levels of traffic [59] (see Figure 5 of the cited study). Using this information, it is
possible to associate the CO levels with the traffic density.

The monitoring station of Avenida Infante D. Henrique (II—Figure 8) presented the
second-highest average value, 487.11 µg/m3, but it did not present high traffic levels, as
Figure 5 of the traffic study shows [59]. This seems to indicate that the CO generated in the
surrounding area of this monitoring station does not come from vehicle emissions alone.
A possible explanation for the source of the CO in the area near this monitoring station
is the cruise ship terminal of Lisbon. This terminal is a destination for many large cruise
ships throughout the year, and these ships generate extremely high levels of combustion
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gases. A single cruise ship can generate more pollutant emissions than 12,000 vehicles
together [60]. It should be noted that there are cycle paths and wide pedestrian walkways
in this riverside area, as it is one of the areas with the greatest tourist and leisure value.
Additionally, many residents practice outdoor physical activity in this area.

In addition, the areas with the highest levels of CO pollution are in the central area of
the municipality, including the historic and downtown areas. These are areas with a high
housing density, and they also have a high share of public transport facilities, including
metro and train, both of which are environmentally friendly. Some of the avenues, such as
Avenida da República/Saldanha and Avenida da Liberdade, also have bike lanes and wide
walkways for pedestrians. The entry zone from the north via the Segunda Circular and the
entry zone from the south via the 25th of April Bridge, both of which are level 1 structuring
roads, also have higher levels of CO.

7.2. Yearly Average Distribution of Nitrogen Dioxide

Figure 9 presents the mean NO2 levels estimated for the municipality of Lisbon.
During the period under analysis, the average level of all the NO2 measurements was
73.12 µg/m3, which is more than seven times higher than the level stipulated in the WHO
guidelines. Hence, it is clear that the NO2 levels are very high in the municipality of Lisbon.
Locations that present a yearly average NO2 level above 10 µg/m3 exceed the health limits
set by the WHO guidelines.

All the monitoring stations surpass the yearly NO2 guidelines defined by the WHO.
There are thirty-seven monitoring stations that present NO2 concentration levels between
10 and 50 µg/m3, representing 46.8% of the entire network; 27.8% of the monitoring
stations present NO2 levels between 50 and 100 µg/m3,while 26.6% of the monitoring
stations present NO2 values between 100 and 150 µg/m3. Finally, there are four monitoring
stations where the average NO2 value was 15 times greater than that stipulated in the WHO
guidelines. These four areas are analysed in the next paragraph in more detail.

It is possible to identify important NO2 hotspots. For example, close to the Calçada
da Carriche (I—Figure 9), a main entrance and exit point of traffic to and from Lisbon
and a level 1 structuring road, there are four stations that presented average NO2 values
between 100 and 150 µg/m3. Additionally, the area marked as IV (Figure 9) presented
high concentration levels of both NO2 and CO (Figure 8, II). This monitoring station, as
mentioned above, is close to the cruise terminal of Lisbon. The monitoring station in the
Encarnação area (II—Figure 9) presents a yearly average level of 162.11 µg/m3. 7.3. Yearly
Average Distribution of Particulate Matter 10

Figure 10 map shows the yearly average distribution of PM10, where more than half,
55.7% (46 in number), of the monitoring stations surpass the yearly PM10 concentration
set by the WHO guidelines, i.e., 15 µg/m3 (Table 3). There are 16 stations, representing
20% of the network, that present yearly average values above 20 µg/m3. These locations
are presented in orange and analysed hereafter. During the period under analysis, the
average value of PM10 was 15.7 µg/m3. The areas denoted by roman numerals correspond
to the zones where the PM10 concentration in the air is higher. Area I, the Belém area, con-
tains two monitoring stations with high average PM10 concentrations of 23.06 µg/m3 and
20.56 µg/m3. Area II (Figure 10), located in the central part of the municipality, contains
three monitoring sensors with average values above 20 µg/m3. This area contains the two
monitoring stations that present the highest average values for PM10 in the municipality:
24.16 µg/m3 and 23.58 µg/m3. The sensor in the Calçada da Carriche (III—Figure 9)
presents an average PM10 concentration of 23.04 µg/m3, the fourth highest in the munici-
pality. The area of Areeiro (IV—Figure 10) has two monitoring stations with levels above
20 µg/m3, with yearly average values of 21.12 and 20.44 µg/m3. As previously verified for
the CO and NO2 concentrations, aside from the Belém area, the most problematic areas are
in the central part of the municipality, from south to north.
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7.3. Yearly Average Distribution of Particulate Matter 2.5

In Figure 11, the predominant colour is yellow, which represents areas that present
a yearly average PM2.5 concentration between 5 and 7.5 µg/m3, which is thus above the
WHO threshold. There are 51 monitoring stations that present a yearly average between
these two levels, representing 64.5% of all the monitoring stations. Only six monitoring
stations, representing less than 10% of all the stations, do not surpass the yearly WHO
guideline for PM2.5. Twenty-two monitoring stations present yearly averages between 7.5
and 10 µg/m3. A detailed analysis of the PM2.5 yearly average of some of these locations is
presented hereafter. The legend’s dark red colour is not present on the map because there
are no monitoring stations with yearly averages above 10 µg/m3.

By comparing Figures 10 and 11, we can verify that there is a strong correlation
between PM10 and PM2.5 given that the two maps present a similar pattern. This means that
these two air quality parameters are not only chronologically but also spatially correlated
with each other. This observation makes sense given that these two air quality parameters
belong to the same type of particles, with the only difference between them being their
diameters. The PM2.5 and PM10 hotspots overlap in most cases, but the main difference is
that the PM10 levels do not break the guidelines in as many areas as the PM2.5 levels.

8. Discussion

Our data analysis shows that the pollution parameters that most exceed the limits
defined by the WHO are NO2 and suspended particles (PM). Moreover, in the set of four
air quality parameters analysed, the areas with the highest levels of pollution tended to
be in the zones with the highest housing density, which also coincides with a greater
density of public transport and bike lanes (on a smaller scale). This finding allows us
to draw two main conclusions. The first is that despite the efforts to reduce pollution in
the centre of Lisbon, which include the creation of low-emission zones and an increase
in pedestrian zones and bike paths, for specific parameters, the air quality has not yet
decreased below the maximum levels proposed by the WHO. The second conclusion is
that users of collective means of transport or individual means of transport with low or no
environmental impact (such as bicycles and trolleys), that is, active users of environmentally
friendly means of transportation, are passively exposed to significant and harmful levels of
pollution. This fact generates a discrepancy between environmentally friendly practices and
exposure to pollution. A discrepancy between practices and exposure has been previously
identified, for example, in England and Wales [61]; however, the cited study mainly
focused on comparing the practice of using private combustion vehicles and exposure
to the subsequent air pollution, concluding that the rich pollute more and the poor are
more exposed. In our study, it was revealed that those who pollute less may be more
exposed to levels of pollution that are more harmful to their health since they are directly
breathing in the pollution emitted by combustion vehicles when they are walking or cycling.
This constitutes an inequality in terms of exposure to pollution since car users are more
protected inside their own vehicles. Liao et al. [17] demonstrated that the effects of air
pollution increase health inequality (physical discomfort, chronic disease, and self-rated
health), harming the most disadvantaged groups to a greater extent since the rich can pay
more attention to their health conditions and change their health behaviours. For this
reason, it is important to determine who the pedestrians and users of bicycles, trolleys, and
public transport are and compare them to car users. In terms of summarizing the results
obtained, the following aspects stand out: The distribution of the air quality in Lisbon is
heterogeneous and depends on the parameter under analysis. This means that the new
network of 80 sensors allows for obtaining a more accurate spatial reading than the national
air-quality-monitoring network/QualAr from APA, comprising only six sensors within
the municipality of Lisbon. As previous studies have suggested [43], the highest levels
of NO2 are not registered in Avenida da Liberdade only but also in Calçada de Carriche
(a major structural road), Avenida Infante Dom Henrique (next to the cruise port), and
Avenida 24 de Julho, among other locations. Therefore, despite obtaining a more reliable
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characterization of air quality in the municipality, this new network of air quality sensors
can still be expanded, either with respect to the number of stations or in terms of the
number of sensors per station, since not all parameters are measured at all the stations.

Moreover, this study confirms that there are considerable environmental inequalities
in Lisbon. There are some zones in which some of the parameters exceed the annual limits
defined by the WHO. The distribution of the air quality parameters also varies depending
on the air quality parameter under analysis. Particularly, annual limits for CO were never
exceeded at any location, while those for PM2.5, PM10, and NO2 were exceeded. Of the
previous three pollutants, NO2 is the most problematic. The levels of NO2 are higher next
to road networks, the cruise port, and in areas with higher population density. For PM2.5
and PM10, the highest levels were found not only in areas with greater road traffic but also
in areas with less population density, such as Monsanto Forest Park. Air quality can be
evaluated based on the concentrations of these specific air pollutants using a global Air
Quality Index. Future research can be performed by assigning corresponding categories
(such as “Good”, “Moderate”, “Unhealthy”, etc.) to indicate the air quality level and
potential health risks for citizens. Knowing the places where the air is most polluted can
help define a set of policies and measures to help reduce or overcome the pollution problem.
For the development of an action plan to minimize pollution, it is necessary to identify
the sources of pollution, such as industrial emissions, vehicle traffic, and construction
activities. Subsequently, it will be necessary to implement specific, targeted strategies
to address each major source of pollution, for example, by introducing stricter emission
standards for vehicles, implementing emission reduction technologies in industries, and
regulating construction activities. In addition, it will be necessary to promote sustainable
forms of transportation, encouraging the use of public transport, cycling, and walking to
reduce vehicle emissions. Another method is to create infrastructures that support these
modes of transport. In general terms, it is also necessary to strengthen the regulatory
framework, establishing and enforcing regulations to control emissions, thus ensuring that
enforcement mechanisms are effective. Urban planning and the existence of green spaces
will help reduce the heat island effect and improve air quality. Finally, public awareness of
these issues, which can be stoked through launching public awareness campaigns about
the health risks of poor air quality and the steps that individuals can take to reduce their
contribution to pollution, is critical for reducing emissions. This action plan can be executed
to reduce the emissions in the specific locations where the levels are higher. To develop
this action plan, it is necessary to consider the factors affecting air-quality-monitoring
results. In fact, the measurements can indeed vary according to several different factors.
While no factor should be completely ignored, some factors might have a larger impact on
accuracy and reliability than others. The following is a general ranking of the factors that
can influence the results:

(1) Sensor calibration and maintenance: regular calibration and maintenance of monitor-
ing equipment are crucial to ensuring accurate measurements.

(2) Sensor technology: the technology of the sensors used for monitoring plays a vital
role, as high-quality sensors are generally more accurate and reliable.

(3) Location of monitoring stations: the location of the monitoring stations determines
how representative measurements are in the surrounding area. Stations should
be strategically placed in areas with different pollution sources but also free from
obstructions that could distort measurements.

(4) Local topography: the local topography, such as valleys and hills, can influence the
movement and dispersion of pollutants.

(5) Meteorological conditions: weather conditions, such as wind speed and direction,
temperature, and humidity (emulsions formation [62]), can impact the dispersion and
concentration of pollutants.

(6) Emission sources: the proximity and intensity of emission sources, such as industrial
facilities, vehicular traffic, and construction sites, can significantly affect local air
quality.
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(7) Sampling time and frequency: the frequency of data collection and the time at which
samples are taken influence results.

(8) Data validation and quality control: implementing data validation techniques, such
as outlier detection and quality control procedures, is important for identifying and
correcting erroneous measurements.

(9) Natural Sources: natural sources, such as pollen and dust, can impact air quality
measurements. While not negligible, these might be of less concern in urban areas
compared to anthropogenic sources.

These actions can also be coupled with an adaptive traffic-management system [63] to
reduce vehicle waiting times and congestion.

9. Conclusions and Perspectives

The findings of heterogeneity in the distribution of air quality in Lisbon (covering both
more- and less-populated places, including recreational areas, road areas, maritime areas,
and historical areas of high cultural and touristic value), which are associated with different
sources of pollution, whether anthropogenic or natural, reveal that the implementation
of sensor networks is necessary to understand in detail the environmental inequalities of
urban territories. Using the data collected by the air monitoring stations, it was possible
to map the spatial distribution of environmental inequalities and relate this distribution
to the complex socio-morphological characterization of cities. Thus, this study highlights
the need to implement air-monitoring stations whose criteria for choosing the location and
number of sensors to be installed are comprehensive, given that cities are multifaceted
spaces.

Smart cities, particularly those incorporating air-quality sensors and IoT technol-
ogy [64], are a step forward with respect to facilitating a reliable analysis of the spatial
distribution of air quality and, consequently, lead to more assertive policymaking. Smart
cities’ air quality is dependent upon the use of sensor data to efficiently monitor air mea-
sures. However, while sensors generate enormous quantities of data, their analysis for
understanding patterns is more useful if it can contribute to policymakers’ promotion of
changes towards the realization of a more sustainable city environment. Additionally, there
is a need to maintain such sensors in proper working order, as our analysis was affected by
missing values in the available dataset, and to prepare and clean meaningless values.

Our study is limited by 1 year of data, which prevented us from analysing any
seasonality effect that may prevail and affect how the municipality of Lisbon should
manage its policies according to the season and month. Thus, in the future, we intend
to include a timeframe of 3 years to assess seasonality effects. Additionally, measures of
meteorological parameters will be included to enable the analysis of their relations with
and effects on air quality parameters. Furthermore, supported by the findings of this
research, we intend to conduct machine learning and deep learning modelling to predict
how air quality metrics can evolve, which is key to taking preventive actions to reduce
exposure to bad air quality levels. Accurate air quality predictions might be useful for
people suffering from respiratory problems, such as asthma, chronic obstructive pulmonary
disease, pulmonary fibrosis, or pneumonia. Knowing which areas will present elevated
levels of a determined pollutant beforehand allows citizens to choose which areas to
frequent or avoid based on data. The main goal of a smart city is to allow its citizens and
policymakers to make data-driven decisions that contribute to a more balanced, inclusive,
sustainable, and healthy city.

Another limitation of our study is related to the sensors’ positioning and external
influences, which we could not directly remedy. Nevertheless, given the emergence of
important studies reflecting advances in sensing and measurements for both sensor place-
ment [65] and the influence of uncertain parameters (e.g., environmental parameters) [66],
future studies should be proposed to the CML that would enable the exploitation of these
recent advances for the better use of sensing technologies.
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The boundary of this study is the municipality of Lisbon since it was the first to install
a dense air-quality-monitoring network in Portugal. The methodology can and should be
applied to other geographic areas where air-quality-monitoring networks will be installed.
In the future, supported by both data science and statistical analysis, a further step will be to
evaluate the policies of the municipality of Lisbon regarding the realization of a European
neutral-climate and smart city by 2030. Monitoring sensors for air quality, in Lisbon as in
other cities, is a fundamental scientific and political strategy to help future cities achieve
higher quality of life, inclusion, resilience, and sustainable development. The expansion of
the air quality sensor network in cities [67], their maintenance, and investment in support
policymaking are decisive paths towards better future cities. However, when deploying
sensor networks and capturing sensor data, one should also highlight the imperative of
ensuring users’ data privacy protection [68].
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Appendix A

Table A1. Monitoring stations’ addresses (based on Portal Lisboa Aberta [46]).

Sensor ID Address Sensor ID Address

1 Calçada da Ajuda 41 Jardim do Braço de Prata
2 Restelo—Rua Gonçalo Velho Cabral 42 Travessa de Francisco Rezende
3 Cais do Sodré 43 Avenida Almirante Gago Coutinho
4 Alcântara—Rua dos Lusíadas 44 Avenida do Santo Condestável
5 Avenida 24 de Julho 45 Rua Frei Carlos
6 Avenida Infante Santo 46 Entrecampos

7 Santa Apolónia—Avenida Infante Dom
Henrique 47 Avenida dos Estados Unidos da América

8 Baixa—Rua do Ouro 48 Avenida Lusíada
9 Praça do Comércio 49 Avenida de Roma

10 Alto da Ajuda—Rua Sá Nogueira 50 Chelas—Rua Dr. José Espirito Santo
11 Avenida de Ceuta 51 Avenida José Régio
12 Rua de São Bento 52 Avenida Lusíada / Qta da Granja
13 Rua Damasceno Monteiro 53 Rua Lúcio de Azevedo
14 Praça Martim Moniz 54 Avenida Marechal Gomes da Costa
15 Campo de Santa Clara 55 Avenida do Brasil
16 Cemitério dos Prazeres 56 Avenida General Norton de Matos
17 Jardim Botânico 57 Campo Grande—Museu da Cidade
18 Parque de Campismo de Lisboa 58 Jardim Professor António Franco

https://lisboaaberta.cm-lisboa.pt/index.php/pt/
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Table A1. Cont.

Sensor ID Address Sensor ID Address

19 Monsanto—Alameda Keil do Amaral 59 Parque da Vinha—Estação Meteorológica

20 Avenida da Liberdade—Rua Manuel Jesus
Coelho 60 Olivais Sul—Quinta Pedagógica

21 Rua dos Sapadores 61 Quinta das Conchas—Avenida Maria Helena
Vieira da Silva

22 Campo de Ourique 62 Estrada do Paço do Lumiar
23 Avenida Almirante Reis 63 Estrada Militar
24 Rua Braamcamp 64 Alameda da Encarnação
25 Monsanto—Parque Ecológico 65 Avenida Doutor Alfredo Bensaúde
26 Parada Alto de São João 66 Rua Ilha dos Amores

27 Marquês de Pombal—Alameda Edgar
Cardoso 67 Rua Vasco da Gama Fernandes

28 Beato—Avenida Infante Dom Henrique 68 Laboratório de Bromatologia e Águas
29 Avenida Fontes Pereira de Melo 69 Calçada de Carriche
30 Avenida António Augusto de Aguiar 70 Rua Chen He
31 Largo da Madre de Deus 71 Estrada Militar às Galinheiras
32 Rua de Campolide 72 Rua Mário Botas
33 Largo do Leão 73 Rua Alferes Malheiro
34 Avenida da República 74 Rua da Venezuela
35 Praça São Francisco de Assis 75 Alameda Pedro Álvaro Proença
36 Estrada de Monsanto 76 Restauradores—Avenida da Liberdade
37 Praça de Espanha 77 Rua da Atalaia
38 Marvila—Rua Pedro de Azevedo 78 Jardim da Estrela
39 Estrada de Benfica 79 Avenida Doutor Francisco Luís Gomes
40 Avenida João XXI 80 Rua Nau Catrineta
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60. Lloret, J.; Carreño, A.; Carić, H.; San, J.; Fleming, L.E. Environmental and human health impacts of cruise tourism: A review. Mar.
Pollut. Bull. 2021, 173, 112979. [CrossRef]

61. Barnes, J.; Chatterton, T.; Longhurst, J. Emissions vs exposure: Increasing injustice from road traffic related air pollution in the
United Kingdom. Transp. Res. Part D Transp. Environ. 2019, 73, 56–66. [CrossRef]

62. Sousa, A.; Matos, H.; Pereira, M. A Properties of Crude Oil-in-Water and Water-in-Crude Oil Emulsions: A Critical Review. Ind.
Eng. Chem. Res. 2021, 61, 1–20. [CrossRef]

63. Lilhore, U.K.; Imoize, A.L.; Li, C.-T.; Simaiya, S.; Pani, S.K.; Goyal, N.; Kumar, A.; Lee, C.-C. Design and Implementation of an ML
and IoT Based Adaptive Traffic-Management System for Smart Cities. Sensors 2022, 22, 2908. [CrossRef]

64. Sharda, S.; Singh, M.; Sharma, K. Demand side management through load shifting in IoT based HEMS: Overview, challenges and
opportunities. Sustain. Cities Soc. 2021, 65, 102517. [CrossRef]

65. Yang, C.; Xia, Y. A novel two-step strategy of non-probabilistic multi-objective optimization for load-dependent sensor placement
with interval uncertainties. Mech. Syst. Signal Process. 2022, 176, 109173. [CrossRef]

66. Yang, C.; Xia, Y. A multi-objective optimization strategy of load-dependent sensor number determination and placement for
on-orbit modal identification. Measurement 2022, 200, 111682. [CrossRef]

https://doi.org/10.1016/j.jhazmat.2018.11.061
https://doi.org/10.1109/IGARSS47720.2021.9553829
https://doi.org/10.1109/IV51561.2020.00032
https://zero.ong/noticias/zero-identifica-tres-locais-em-lisboa-com-pior-qualidade-do-ar-que-a-av-da-liberdade/
https://rea.apambiente.pt/content/polui%C3%A7%C3%A3o-por-part%C3%ADculas-inal%C3%A1veis
https://rea.apambiente.pt/content/polui%C3%A7%C3%A3o-por-part%C3%ADculas-inal%C3%A1veis
https://lisboaaberta.cm-lisboa.pt/index.php/pt/
https://www.ine.pt/xportal/xmain?xpgid=censos21_sobre_censos&xpid=CENSOS2
https://www.ine.pt/xportal/xmain?xpgid=censos21_sobre_censos&xpid=CENSOS2
https://mapas.ine.pt/download/index2011.phtml
https://doi.org/10.1016/j.scs.2022.103972
https://doi.org/10.1080/23748834.2022.2084589
https://doi.org/10.3390/en14061686
https://doi.org/10.1016/j.scs.2021.102990
https://doi.org/10.1016/j.scs.2021.103038
https://apambiente.pt/ar-e-ruido/monoxido-de-carbono-co
http://www.epa.gov/ttn/catc
https://doi.org/10.1579/0044-7447-31.2.184
https://doi.org/10.3390/ijerph17176228
https://www.ncbi.nlm.nih.gov/pubmed/32867209
https://doi.org/10.3390/en14113044
https://doi.org/10.1016/j.marpolbul.2021.112979
https://doi.org/10.1016/j.trd.2019.05.012
https://doi.org/10.1021/acs.iecr.1c02744
https://doi.org/10.3390/s22082908
https://doi.org/10.1016/j.scs.2020.102517
https://doi.org/10.1016/j.ymssp.2022.109173
https://doi.org/10.1016/j.measurement.2022.111682


Sensors 2023, 23, 7702 23 of 23

67. Mano, Z.; Kendler, S.; Fishbain, B. Information Theory Solution Approach to the Air Pollution Sensor Location–Allocation
Problem. Sensors 2022, 22, 3808. [CrossRef]

68. Dave, M.; Rastogi, V.; Miglani, M.; Saharan, P.; Goyal, N. Smart Fog-Based Video Surveillance with Privacy Preservation based on
Blockchain. Wireless Pers. Commun. 2022, 124, 1677–1694. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/s22103808
https://doi.org/10.1007/s11277-021-09426-8

	Introduction 
	Theory 
	Sensor Data Analysis Methodology 
	Case Study: The Municipality of Lisbon 
	Air Quality Parameters 
	Carbon Monoxide 
	Nitrogen Dioxide 
	Particulate Matter 2.5 and 10 

	Air Quality Measurement Data 
	Data Collection 
	Data Description 
	Data Cleaning 

	Results 
	Yearly Average Distribution of Carbon Monoxide 
	Yearly Average Distribution of Nitrogen Dioxide 
	Yearly Average Distribution of Particulate Matter 2.5 

	Discussion 
	Conclusions and Perspectives 
	Appendix A
	References

