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Abstract: Multiconnectivity allows user equipment/devices to connect to multiple radio access tech-
nologies simultaneously, including 5G, 4G (LTE), and WiFi. It is a necessity in meeting the increasing
demand for mobile network services for the 5G and beyond wireless networks, while ensuring that
mobile operators can still reap the benefits of their present investments. Multipath TCP (MPTCP)
has been introduced to allow uninterrupted reliable data transmission over multiconnectivity links.
However, energy consumption is a significant issue for multihomed wireless devices since most
of them are battery-powered. This paper employs software-defined networking (SDN) and deep
neural networks (DNNs) to manage the energy consumption of devices with multiconnectivity
running MPTCP. The proposed method involves two lightweight algorithms implemented on an
SDN controller, using a real hardware testbed of dual-homed wireless nodes connected to WiFi
and cellular networks. The first algorithm determines whether a node should connect to a specific
network or both networks. The second algorithm improves the selection made by the first by using a
DNN trained on different scenarios, such as various network sizes and MPTCP congestion control
algorithms. The results of our extensive experimentation show that this approach effectively reduces
energy consumption while providing better network throughput performance compared to using
single-path TCP or MPTCP Cubic or BALIA for all nodes.

Keywords: multipath TCP; software-defined networking; energy consumption; neural networks;
congestion control; wireless; multihoming; multiconnectivity

1. Introduction

The massive increase in the data traffic volume and the user demand for high-speed
data rates and high-quality services has created a requirement for innovative and adaptable
network implementations in the existing wireless technologies. The machine-to-machine
(M2M) and the Internet of Things (IoT) paradigms [1] presume the connectivity of billions
of wireless devices in diverse application domains, such as smart grids, vehicular networks,
and many others, which demands low latency, high reliability, and high throughput.

The fifth-generation (5G) wireless network standard came with radio enhancements
(new radio) to provide users/devices with communication services such as ultra-reliable
and low-latency (URLLC) communication, high-throughput mobile broadband (eMBB), and
the massive support of machine-type communication (mMTC). However, the increasing
demand for wireless bandwidth may negatively impact the performance of these services.
Thus, the 3GPP introduced a method known as dual connectivity/multiconnectivity, in
which a user device can send and receive data concurrently to and from two or multiple
nodes using the same (e.g., macro-cell and small cells) or different technologies (e.g., cellular
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base stations and WiFi access points) [2,3]. This can boost the amount of bandwidth avail-
able to a user’s device, help to manage its mobility more effectively, and increase reliability.

At the same time, the emergence of the multipath transmission control protocol
(MPTCP) [4] can aid the realization of multiconnectivity by allowing a user to simulta-
neously transmit through multiple radio interfaces, such as WiFi and LTE or 5G, while
providing the reliability of single-path TCP. MPTCP provides concurrent and uninterrupted
data transmissions through multiple paths via multiple subflows. Each one is connected to
one wireless network. It overcomes the limitations in the traditional TCP by maximizing
throughput and redundancy, in addition to providing a resilient reaction to failure [5].

Using devices with dual or multiconnectivity can be challenging due to energy con-
sumption, especially with battery-powered wireless devices used in emerging technologies
like IoT. It is crucial for wireless devices to be energy-efficient while providing optimal
performance. Higher energy consumption leads to increased battery capacity and a larger
device size and weight. Therefore, minimizing energy consumption is crucial to extend
the battery life (for the same form factor) and maintain a small carbon footprint. When
using two wireless interfaces simultaneously, it is essential to ensure that the overall energy
consumed by both interfaces does not significantly exceed that of a single interface.

The operation of the MPTCP protocol relies on two main components, namely a
scheduler and a congestion control algorithm. The scheduler selects the traffic path (the
wireless interface) for each packet, whereas the congestion control algorithm estimates
the amount of data to be sent over each path in order to avoid congestion. The execution
of both components controls the traffic share of each interface, which directly affects the
energy consumed by each interface, as the more data sent, the longer the time that the
interface will be used and hence more energy is consumed. For the first component
(the scheduler), the MPTCP Linux kernel implementation uses the default scheduler,
which splits the traffic on each path based on the round-trip time (RTT) experienced over
that path. However, for the second component (the congestion control algorithm), there
are five different algorithms available as Linux kernel implementations, namely OLIA,
LIA, wVegas, Cubic, and BALIA [6–10]. To transfer some amount of data (e.g., a file),
each algorithm assigns the traffic load differently to the operating wireless interfaces (i.e.,
LTE/5G and WiFi) and hence it achieves different MPTCP throughput performance and,
in turn, consumes a different amount of energy. Thus, this research first experimentally
analyzes and compares the energy consumption of devices running MPTCP using the
aforementioned congestion control algorithms available as Linux kernel implementations.
Since the MPTCP scheduler and congestion control algorithm are the main contributors
to the MPTCP operation, various researchers propose modifying the implementation of
one, such as in [11,12], or both of them, as in [13,14], to reduce the energy consumption of
MPTCP. However, the proposed modification may impact the throughput performance
compared to other congestion control algorithms and affect the compatibility with other
nodes operating the Linux kernel implementation of single-path TCP or MPTCP.

Therefore, this paper proposes the usage of SDN accompanied by a deep neural net-
work (DNN) to reduce the energy consumption for devices with dual or multiconnectivity.
SDN [15] is an evolutionary paradigm with great potential in controlling network traffic
flows. It has recently enabled a significant leap forward in the networking industry as it
allows networks to become faster, more flexible, automated, and less complicated [16]. In
this paradigm, the network data plane and control plane are physically separated, where
the control plane manages several devices. The SDN controller generates the forwarding
tables and pushes them into the data plane [17]. It provides the necessary commands to
configure the network based on an overall network view and software programs written
over the controller. Moreover, it paves the way for the control of the network by software
functions from a central controller, by avoiding the difficulty of the manual reconfiguration
of network devices [18]. The integration of SDN with MPTCP can minimize the energy
consumption of wireless devices without modifying the MPTCP implementation [19].
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Thus, we propose a scheme employing the SDN concept to control the traffic flows
received by each node wireless network interface to minimize the downlink energy con-
sumption. In this scheme, the SDN controller decides on steering the flow of data packets
to the receiving nodes based on a lightweight interface selection algorithm relying on the
measured achievable throughputs of each node’s wireless interfaces. Moreover, the pro-
posed scheme offers another algorithm that also runs on the SDN controller to fine-tune its
interface selection based on energy consumption information provided by a trained DNN.

This paper offers two main contributions. Firstly, it provides a comparative experi-
mental study of the data transfer throughput and energy consumption of different MPTCP
congestion control algorithms, namely LIA, OLIA, BALIA, Cubic, and wVegas, which are
all available as Linux kernel implementations. Secondly, it presents two algorithms that
select which wireless interface should operate in each network node to minimize the overall
network energy consumption. These algorithms are implemented using a Ryu-based SDN
controller, which manages an Open vSwitch-based switch via the OpenFlow protocol.
Based on the comparative study results, the first algorithm selects the operating radio
interfaces of each node mainly based on their probed achievable throughput. The second
algorithm uses a trained DNN to make an informed decision about whether the interfaces
selected by the first algorithm are the best selection in terms of energy consumption or need
further tuning. Both algorithms are tested on a real hardware testbed that fully implements
a single-cell LTE network (with a real eNodeB and a fully fledged evolved packet core) and
a WiFi network using dual-homed single-board computers as sending/receiving nodes.

The rest of the paper is organized as follows. Section 2 reviews the most relevant
research works in the literature. The background regarding different MPTCP congestion
control algorithms available as Linux kernel implementations is introduced in Section 3.
Section 4 outlines the system model. The details of the used experimental setups and
procedures are described in Section 5. Section 6 introduces the proposed algorithms.
Section 7 presents the experimental results and provides a discussion of the findings. The
paper is concluded in Section 8.

2. Related Works

Several previous research works address the management of wireless MPTCP connec-
tions using an SDN framework. The works propose the usage of SDN to manage MPTCP
mainly focusing on routing, controlling the path, and path resilience. For instance, the
WRR MPTCP scheduler is used for multipath routing in [20]. A dynamic path control in
MPTCP using SDN is proposed by the authors of [21]. In [22], the authors offer a resolution
to the bandwidth utilization problem in wireless network sets (WNS) by observing and
dynamically controlling the network access by implementing an SDN-based flow manage-
ment system. The authors of [23] investigate the use of an SDN to manage heterogeneous
home networks. They analyze OpenFlow-enabled link switching under normal conditions
and link failure situations. Izumi et al., in [24], suggest employing SDN to create MPTCP
subflows to reduce the difference in mean delay between them. Other authors consider
managing MPTCP connections via SDN in other system models with a similar focus. For
instance, the authors of [25–27] utilize the SDN-MPTCP framework in naval battlefields,
LEO satellites, and V2I communication, respectively.

Several research works address the reduction of MPTCP energy consumption by
devising a new scheduling scheme. An energy-aware MPTCP (eMPTCP) model is proposed
by [28] and tested on an Android platform to increase energy efficiency, but the bandwidth
changes in different scenarios adversely affect the performance gain in eMPTCP. In [29],
the authors propose an MPTCP scheduler to save energy by switching to the most efficient
network path. They use an MDP with energy models and application tracing to generate
schedules. Morawski et al., in [30], create an MPTCP scheduling algorithm for downlink
traffic that minimizes energy consumption by distributing loads across multiple interfaces
and adjusting channel usage with flow control.
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Moreover, the authors in [31] address an MPTCP-based content distribution scheme
(eMTCP) that is energy-aware by shifting the traffic to the interface with low energy con-
sumption. Dong et al. [11] propose an energy-saving scheduling system named ES-MPTCP
that prioritizes subflows to reduce energy consumption while ensuring network through-
put. In [12], the authors propose an energy-efficient multipath scheduler for IoT monitoring
systems, which considers both network throughput and energy consumption. In [32],
the authors address scheduling in MPTCP using a stochastic optimization approach to
maximize the average throughput, reduce congestion, and achieve energy efficiency. They
compare the proposed solution using a simulation with the base version of MPTCP and
eMPTCP without targeting specific congestion control algorithms. Wu et al. [33,34] propose
energy-efficient MPTCP schemes specifically for quality-guaranteed video transmission
over heterogeneous wireless networks. They design MPTCP schedulers that consider
both the energy consumption of mobile devices and the quality of video transmission by
leveraging wireless channel diversity and video frame priority.

A few researchers discuss minimizing MPTCP energy consumption by proposing
congestion control schemes different from the Linux kernel implementation ones. For
example, the authors of [14] suggest a receiver energy-efficient congestion control method
based on MPTCP to allow mobile devices powered by batteries to receive more data than
MPTCP while using the same amount of energy. In [13], Zhao et al. propose an energy-
aware congestion control mechanism for MPTCP. The proposed algorithm aims to reduce
energy consumption while maintaining network performance by shifting traffic to low-
delay, lower-energy-consumption paths. Their algorithm’s performance is compared with
that of LIA.

Other authors target MPTCP energy consumption analysis and modeling. For in-
stance, the authors of [35] analyze the energy consumption of MPTCP versus standard
TCP on mobile devices. They also develop a decision-making process to identify the
energy-efficient MPTCP setup for a node streaming with a constant bit rate. An energy
consumption model for smartphones with MPTCP or standard TCP is derived in [36]
based on real-life measurements by considering four multimedia services such as video
streaming, voice over IP, web browsing, and file download. In [37], the authors perform
energy consumption measurements of a specific mobile device with handover in different
modes of operation. The authors of [38] perform a hardware-based comparative analysis
for the energy consumption of three MPTCP congestion control algorithms.

Thus, the previously mentioned research works addressing MPTCP energy consump-
tion mainly aim at changing the current MPTCP Linux kernel implementations by modify-
ing the scheduler [28–34] or the congestion control algorithm [13,14]. On the other hand, the
works combining MPTCP and SDN do not address energy consumption. A comparative
summary of the above-mentioned related works is presented in Table 1.

To the best of our knowledge, no research work in the literature experimentally intro-
duce SDN combined with DNN to manage the energy consumption of multiconnectivity
wireless nodes running MPTCP, which avoids the need to make any changes in the MPTCP
Linux kernel implementation.
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Table 1. Related works comparison table.

Ref.
Number

SDN-
Related

Energy-
Saving
Scheme

Modified
MPTCP
Component

Summary

[20] X - - A WRR MPTCP scheduler controlled by SDN for multipath routing

[21] X - - A dynamic path control on MPTCP using SDN

[22] X - - A solution for bandwidth utilization problem in WNS using SDN-based flow management

[23] X - - A scheme using SDN to manage heterogeneous home networks

[24] X - - A scheme using SDN to reduce the delay between MPTCP subflows

[25] X - - An SDN-MPTCP framework in naval battle fields

[26] X - - An SDN-MPTCP implementation in LEO satellite networks

[27] X - - A study on the benefits of SDN and MPTCP in V2I communication

[28] - X Scheduler A scheme (eMPTCP) for improving MPTCP energy efficiency

[29] - X Scheduler An MPTCP scheduler to choose energy-efficient network path

[30] - X Scheduler An MPTCP scheduling algorithm for downlink traffic with energy minimization by load distribution and flow control

[31] - X Scheduler An energy-aware MPTCP-based content distribution scheme

[11] - X Scheduler A scheduling system (ES-MPTCP) prioritizing subflows for energy minimization

[12] - X Scheduler An energy-efficient multipath scheduler for IoT monitoring systems

[32] - X Scheduler An energy-efficient MPTCP scheduling scheme using stochastic optimization approach

[33,34] - X Scheduler Energy-efficient MPTCP scheduling schemes for video transmission over heterogeneous wireless networks

[14] - X Congestion Control A receiver energy-efficient congestion control scheme based on MPTCP

[13] - X Congestion Control An energy-aware congestion control mechanism that shifts traffic to low-delay and lower-energy paths

[35] - - - An energy consumption analysis of MPTCP and power models for streaming data to mobile devices

[36] - - - An MPTCP energy consumption model for smartphones for different multimedia services

[37] - - - Energy consumption measurements of a mobile device with handover in different operation modes

[38] - - - A hardware-based energy consumption comparative analysis of three MPTCP congestion control algorithms

This work X X No Modification Energy consumption management of multiconnectivity devices running MPTCP using SDN and DNN

3. MPTCP Congestion Control Background

The MPTCP protocol contains a scheduler to select the traffic path for each packet and
a congestion control algorithm to estimate the amount of data to be sent over each path in
order to avoid congestion. The default scheduler of the Linux kernel implementation splits
the traffic on each path based on the round-trip time (RTT) experienced over that path. In
this section, we provide a basic background of the congestion control algorithms available
as a Linux kernel implementation, namely LIA, OLIA, Cubic, BALIA, and wVegas.

3.1. Linked Increases Algorithm (LIA)

This algorithm utilizes the RTT and congestion window size of all subflows to deter-
mine the congestion window of a subflow, which increases until congestion is detected.
When congestion is detected, the transmission rate is reduced to alleviate the issue. The
LIA algorithm strikes a balance between the rate of increasing and decreasing the con-
gestion window to ensure a stable transmission rate. It is highly suitable for fluctuating
network conditions as it facilitates smooth and stable data transfer while making the most
of available resources. LIA utilizes the same algorithms as TCP-Reno, including slow
start, fast retransmit, and fast recovery. During the congestion avoidance phase, LIA also
employs an additive increase multiplicative decrease (AIMD) algorithm, which increases
the congestion window (CW) proportionally to the sum of the congestion windows of all
subflows upon receiving an acknowledgment (ACK) on each subflow. The congestion
window size increase for MPTCP subflows is calculated using

min(δ1, δ2) (1)

where δ1 = α
CWtotal

and δ2 = 1
CWi

[39]. The congestion window size for each MPTCP
subflow and the combined size of all subflows’ congestion windows are represented by
the variables CWi and CWtotal , respectively. The formula calculates the disparity between
the increase in congestion window size for the MPTCP subflow and the increase that a
typical TCP flow would experience in comparable conditions, where α is given by (2). This
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approach ensures that MPTCP subflows do not exhibit more aggressive behavior than
regular TCP flows in the same scenario [39].

α = CWtotal ×
maxi

(
Ci

RTTi

)
(

∑j Cj

)2 (2)

where, for any subflow x,

Cx =
CWx

RTTx
.

The terms Ci and Cj refer to the value of Cx for subflows i and j, respectively. It is
assumed that the congestion window size is maintained in terms of packets and the increase
in the congestion is per ACK. In (2), the parameter α determines how aggressively MPTCP
behaves. This calculation ensures that MPTCP’s total bandwidth is similar to that of a
regular TCP flow on the best path available. Additionally, in the event of packet loss, the
congestion window size is reduced by CWi

2 [39].

3.2. Opportunistic Linked Increases Algorithm (OLIA)

OLIA aims to improve performance in changing network conditions. Compared to
LIA, the algorithm increases the sending rate more aggressively, leading to the faster use
of network resources. It also uses an opportunistic approach to flow control by utilizing
the available bandwidth across multiple network paths to achieve higher throughput
than regular TCP. Additionally, OLIA has a probing mechanism that allows the sender
to evaluate the bandwidth on various paths. This information is then used to adjust the
sending rate in real time.

OLIA uses a congestion control algorithm for all subflows and provides TCP-Reno’s
response to packet loss. It adopts a slightly modified TCP slow start algorithm to avoid
sending traffic over congested paths. OLIA lowers the slow start threshold to one maxi-
mum segment size when multiple paths are available, preventing the overloading of any
particular path with traffic [39].

Ci
RTTi(

∑j Cj

)2 +
λi

CWi
. (3)

The first term in (3) incorporates TCP-compatible resource pooling, congestion balanc-
ing, and fairness, whereas the second term uses the parameter λi to ensure responsiveness
and prevent oscillations. The congestion window increase algorithm is responsive and
adaptive to changing network conditions because OLIA adjusts λi based on the availability
of subflows with smaller congestion window sizes. This adaptive behavior improves
network performance and ensures that resources are used efficiently [39].

3.3. Cubic

The Cubic algorithm [40] controls congestion window growth using a gradual and
smooth cubic function. It also includes a hybrid slow start mechanism to boost window
growth at the start and a fast recovery mechanism to increase the window rapidly after a
loss. When implemented in MPTCP, Cubic operates on each subflow independently.

The increase in the congestion window size in Cubic is calculated as

CW = S(T − D)3 + CWmax (4)

where

D =
3

√
CWmax · (1 − γ)

S
. (5)
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Here, γ is the multiplicative decrease factor and S is the scaling constant. T and CWmax
are the time elapsed from the previous window reduction and congestion window size
before the last reduction, respectively.

3.4. Balanced Linked Adaptation Algorithm (BALIA)

BALIA is a congestion control algorithm that prioritizes both friendly flow behavior
and responsiveness to changing network conditions. It dynamically adjusts the sending
rate based on the available bandwidth and loss rate, while also balancing the sending rate
across multiple subflows. BALIA has proven to be more effective than traditional TCP
algorithms, especially in high-bandwidth and high-latency networks.

The BALIA algorithm enhances the effectiveness of TCP’s congestion avoidance algo-
rithm in contemporary network settings that have multiple paths and changing network
conditions. BALIA alters both the increase and decrease phases of the AIMD algorithm
employed in TCP.

The BALIA algorithm relies solely on the congestion window size and RTT of the
subflow paths. Upon receiving an ACK, the increase in congestion window size for subflow
i is determined using

Ci(
∑j Cj

)2 ·
(

βi + 1
2

)
·
(

βi + 4
5

)
. (6)

When a congestion event occurs, BALIA decreases the TCP-Reno CW for subflow i in
the range of [1, 1.5] using (7) as (

CWi
2

)
· min(βi, 1.5) (7)

where

βi =
maxj Cj

Ci
. (8)

This reduces the size of the congestion window by a factor of 2 multiplied by the
minimum of βi and 1.5. This ensures that the rate of decreasing the congestion window
size is faster for subflows with a larger βi value, indicating a higher relative bandwidth
share [39]. The value of βi is 1 if a single path is used [39].

3.5. Weighted Vegas (wVegas)

wVegas [8] is designed to provide a more accurate representation of network condi-
tions. It estimates the RTT for each subflow individually and uses packet marking to detect
congestion, instead of relying solely on loss events like traditional TCP algorithms. To
adjust the sending rate, it uses a weighted average method, resulting in a more stable and
gradual response to changes in network conditions.

4. System Model

Since MPTCP is applied with dual or multiconnectivity, where more than one wireless
interface is used in data transfer, energy consumption remains a significant issue, especially
for devices with limited energy supply (e.g., battery-operated devices).

Consider a scenario where several stationary devices are receiving data traffic from
some sending nodes via a communication backbone using MPTCP. The receiving nodes
can connect to this backbone through dual connectivity via the simultaneous usage of
different radio access technologies (RATs), such as WiFi and LTE/5G. This implies that
the receiving nodes are under the overlapped coverage of a WiFi access point (AP) and
an eNB or a gNB as shown in Figure 1. The wireless channel of each interface of each
node is assumed to be different and affected by the location and the surroundings of the
receiving node. This scenario can represent human-based traffic, where users with dual-
interface user equipment (UEs) download files or stream data from some server over the
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Internet. It may also represent dual-interface IoT gateways receiving data from their cloud
management entities or servers. This implies that only the receiving nodes are energy-
constrained (battery-powered devices), while the sending nodes (e.g., servers) are assumed
to be connected to the power grid. Moreover, we assume that all traffic from the sending
nodes is routed through SDN-enabled network switches managed by an SDN controller
that can steer the traffic of MPTCP subflows before it arrives at the wireless interfaces of
each receiving node, and hence it can send the MPTCP traffic over a receiving node’s WiFi
interface only, its cellular interface only, or both interfaces. The SDN controller is assumed
to be capable of running deep learning artificial intelligence models such as DNNs [41].

Figure 1. System model.

5. Experimental Setups and Procedures

In this section, the experimental setups used in this research are presented along with
the experimental procedures. It is worth noting that due to budget limitations, the cellular
configuration of the dual connectivity realization in the testbed is implemented with a
reasonable scale using LTE (4G) technology, which can be achieved using communication
modems of affordable cost, in contrast to 5G technology.

5.1. Setup I Configuration

The experimental setup imitates the system model using a testbed based on a real
scenario, which enables dual connectivity by transmitting data packets over two wireless
networks of different technologies. The wireless nodes employed in the lab experiments are
single-board computers (SBCs), which can simultaneously connect to an LTE network via
attached LTE universal serial bus (USB) modems and connect to the WiFi network through
attached USB WiFi adapters. Due to budget and space limitations, the experiment engages
only 10 SBCs: one acts as a sender and the rest are receivers. All SBCs run the Ubuntu
Linux server with the Linux kernel implementation of MPTCP, supporting five congestion
control algorithms, namely, OLIA, LIA, Cubic, BALIA, and wVegas. The receiving nodes
are connected to a WiFi router, which is directly connected to another WiFi router serving
the sending node. The two routers run on two different WiFi frequency channels. Moreover,
the receiving nodes are connected to a real (not simulated) single-cell LTE network, which
consists of a real eNodeB implemented using software-defined radio (SDR) connected to
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a real evolved packet core (EPC) system implementing the mobility management entity
(MME), serving gateway SGW, packet data network gateway (PGW), and home subscriber
server (HSS). The LTE network uses the 2.6 GHz band. Therefore, all the LTE modems
connect to the network through an isolated RF enclosure, which constrains the locations of
the nodes. The sending node has two interfaces. One is connected to a WiFi router, whereas
the other is connected to the EPC via an Ethernet switch, as shown in Figure 2.

Figure 2. Experimental setup I.

5.2. Setup I Experimental Procedure and Observations
5.2.1. Experiment Procedure

The experimental procedure is performed by transferring a certain amount of data
from the sending to the receiving nodes using the MPTCP protocol. The data are generated
using the iperf traffic generation tool, which is also used to measure the data transfer
throughput. The downlink energy consumption is measured during data transfer using
an energy meter, as depicted in Figure 2. Each experiment is repeated for around 20 to 30
samples to obtain accurate statistics of the average throughput and energy consumption.
The experiment is performed with a varying number of receiving nodes.

5.2.2. Observations

The results of using experimental setup I to measure the energy consumption of dual
connectivity receivers running MPTCP with different congestion control algorithms such
as OLIA, LIA, BALIA, Cubic, and wVegas are revealed in this section.

The energy consumed in the downlink of the receiving nodes when transferring
some data volume (60 MB) by the sending node is measured in a scenario where the
receiving nodes are varied from one to nine. Figures 3 and 4 show the data transfer
throughput and energy consumption obtained with one receiving node for different MPTCP
congestion control algorithms, respectively. The figures reveal the direct relation between
the throughput and energy consumption. Apparently, the congestion control algorithm
capable of transferring with a high throughput achieves lower energy consumption since
data transfer happens in a shorter time interval.

Moreover, from Figure 4, it can be noted that BALIA and Cubic consume less downlink
energy over dual connectivity MPTCP connections when compared with the other three
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congestion control algorithms. Thus, in our further experimentation, we use BALIA and
Cubic to measure the performance of the proposed algorithms.

Furthermore, we analyze the energy behavior of different congestion control algo-
rithms while varying the number of receiving nodes, as depicted in Figure 5. The figure
shows that the energy consumption increases gradually with the number of nodes, as
shown in Figure 5. This is mainly due to the reduction in average throughput as the
capacity of the wireless channel is distributed on a larger number of nodes. From the
figure, the MPTCP energy value differences while running different congestion control
algorithms, such as OLIA, LIA, BALIA, Cubic, and wVegas, are also visible. Again, it can
also be noticed that BALIA consumes the least amount of energy, followed by Cubic, which
consumes a slightly higher value.

OLIA LIA BALIA Cubic wVegas
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Figure 3. MPTCP data transfer throughput using WiFi and LTE interfaces.
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Figure 4. MPTCP energy consumption using WiFi and LTE interfaces.
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Figure 5. Energy consumption with the number of nodes for different MPTCP congestion control
algorithms.

5.3. Setup II Configuration

This setup uses a similar configuration to setup I. However, it additionally incorporates
an SDN controller and uses a multi-Ethernet interface computer running Open vSwitch
(OVS), instead of a normal Ethernet switch. Both WiFi routers (for the sending and receiving
nodes) and the EPC system are connected to the OVS switch. The SDN controller is
implemented using Ryu for simplicity. It employs the standard OpenFlow protocol [42] to
manage the operation of the OVS switch. This includes controlling the switch’s data flow,
forwarding rules, and other traffic flows.

5.4. Setup II Experiment Procedure

The OVS switch can monitor the incoming packets to each receiving node and record
the packet arrival rate, packet size, and transmission duration. By collecting this informa-
tion, the switch can measure the throughput value of each receiving node and communicate
it to the SDN controller. Once the SDN controller receives the throughput measurements
from the OVS switch, it utilizes this information to make an informed decision about the
interface to be used to transmit the packets.

Consequently, the controller manages the data flows by dynamically changing the
flow table rules in the switch. For instance, if the data are required to be received only over
the WiFi interface of a receiving node, the SDN controller commands the OVS switch to
stop forwarding the data of the LTE flow. Similarly, the OVS switch can allow only the LTE
flow by dropping the WiFi route from the flow table. The flows through both interfaces are
also provided in the flow table of the OVS switch. Ultimately, the entirety of setup II, as
shown in Figure 6, automatically provisions the appropriate usage of the interfaces of each
node that achieves the least energy consumption by running the algorithms presented in
Section 6.
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Figure 6. Experimental setup II.

6. Proposed Algorithms

The proposed algorithms aim to achieve the lowest overall network energy consump-
tion by sending the data packets through the wireless interface(s) of each node that can
achieve this. Thus, the outcome of the proposed algorithms is a combination of interfaces.
Here, the term "combination" refers to the mix of interfaces through which the data trans-
fer occurs for each number of nodes. For instance, if three nodes are used, the interface
combination that gives the lowest energy consumption may be WiFi for Node 1, LTE for
Node 2, both interfaces for Node 3, or the treble (W, L, B). We propose two algorithms. The
first selects a combination of interfaces by using SDN (the SDN controller and OVS switch)
based on the achieved throughput, whereas the second algorithm performs fine-tuning of
the outcome of the first algorithm with the help of neural networks.

The SDN controller runs the developed algorithms as Ryu applications after measuring
the achievable channel throughput via the information received from the OVS switch using
the OpenFlow protocol. The SDN controller and algorithms are intended to be lightweight.
This is easily achieved using the Ryu framework, which also allows seamless integration
with machine-learning Python libraries. The SDN controller runs the interface selection
algorithm initially and collects the throughputs of the resultant combination of interfaces
obtained. Furthermore, these throughputs are given to the trained DNN, and the tuning
algorithm runs, as mentioned in the following.

6.1. SDN-Based Interface Selection (IS) Algorithm

In this algorithm, the SDN controller probes the achievable throughputs of each
interface by sending some traffic via the OVS switch through this interface separately for
each node. Indeed, every node has specific achievable throughput values for each interface
based on its channel condition.

The IS algorithm compares these achievable throughputs for each interface of each
node. The interface that achieves significantly higher throughput than the other is selected
to receive the traffic. If the channel conditions of both interfaces lead to slightly different
throughput values (within 10%), both interfaces are selected.

While sending the packets from the sender to the receivers, the algorithm checks
which of the achievable throughputs of the receivers fall into which of the aforementioned
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categories. Consequently, the SDN controller alters the flow table accordingly. Thus, the
SDN controller manages the data packet forwarding by executing the flow rules on the
OVS switch, which forwards the packets to the selected interfaces of the receiving nodes.

Since the achievable throughput controls the amount of time for which an interface is
used to receive the transmitted data, it directly affects the energy consumption. MPTCP
mainly uses RTT, packet loss, or both to estimate the amount of data to be pushed over
each interface and hence the technology used by the wireless interface does not affect the
operation of the IS algorithm. Thus, it can be applied to multiconnectivity networks using
different technologies, such as 5G, LTE, and WiFi.

In the following steps, we use the first interface and second interface to refer to the
two different wireless interfaces used.

• Step 1: Send the probe packets on the first interface of all the nodes and measure the
achievable throughput R1 of each.

• Step 2: Send the probe packets on the second interface of all the nodes and measure
the achievable throughput R2 of each.

• Step 3: If a slight difference between the first and second interface throughputs (within
10%) is detected, send the packets through both interfaces.

• Step 4: If the first interface throughput is greater than the second, send the packets
through the first interface. Otherwise, send them via the second interface.

Figure 7 summarizes the algorithm in a flowchart.

Figure 7. The interface selection (IS) algorithm flowchart.

6.2. Deep Neural Network-Based Tuning Algorithm

The main objective of this algorithm is to fine-tune the outcome of the IS algorithm
based on the energy consumption values provided by a trained DNN.
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6.2.1. Dataset Generation and DNN Structure

The dataset for the development of the algorithm is created using experimental setup
I. A specific amount (60 MB) of data is transferred from one sender node to a varying
number of receiving nodes (from 1 to 9) with different congestion control algorithms, such
as OLIA, LIA, BALIA, Cubic, and wVegas. For each case (a certain number of receiving
nodes and a congestion control algorithm), the average throughput and corresponding
energy consumption are measured when a single interface (WiFi or LTE) is used or both
interfaces are. To train the DNN, 30 samples are used for each case. Similarly, 15 samples
are used for testing with the DNN. The regressor used is based on a DNN following a
multilayer perceptron (MLP) architecture with five hidden layers and 200 neurons in each
layer. The ’ReLU’ activation function is used for the hidden layer. The DNN is trained for a
large number of iterations on the generated dataset to obtain accurate results. The neural
network model is depicted in Figure 8.

Figure 8. Neural network model.

6.2.2. The Tuning Algorithm

Since the IS algorithm mainly depends on the achievable throughput to select the
interface combination of the receiving nodes, the Tuning algorithm tries to tune or ensure
this selection. This is done mainly for the nodes where the achievable throughput of both
of their interfaces are slightly different (within 10%). Using the trained DNN and the
available information about the achievable throughput of the interfaces of each node, the
algorithm calculates the overall network energy consumption based on the outcome of the
IS algorithm. After this, the Tuning algorithm revisits the nodes where both interfaces are
selected and tries to tune this selection; it then checks the resultant energy consumption
using the DNN. The outcome after tuning will only be selected if it achieves lower energy
consumption than the outcome of the IS algorithm.

It is worth noting that the Tuning algorithm runs in the SDN controller. It depends
on a pre-trained model trained offline on a dataset with measured values that relates the
throughput values of the utilized interfaces to the total energy consumption of a user device.
Thus, the training time is not included in the operation of the algorithm. Moreover, the
DNN training and the algorithm execution do not contribute to the energy consumption of
the receiving nodes under study. In addition, the controller is not battery-powered and is
supposed to be run by the network provider.

The SDN controller executes the algorithm first by calculating the energy consumption
of all nodes from the pre-trained DNN model after starting the transmission using the
selected interfaces by the IS algorithm. Next, it simply alters the outcome of the IS algorithm
only if both interfaces are selected for a node and uses only the faster interface. After this, it
remeasures the throughput values and recalculates the tuned energy consumption for all the
nodes using the pre-trained DNN model; it then compares the tuned overall consumption
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with the overall consumption from the IS algorithm. This makes the complexity of the
Tuning algorithm O(n) of the controller processing time needed to calculate the energy
consumption of each node using the pre-trained DNN model, where n is the number of
nodes under the overlapped coverage of an LTE/5G cell and a WiFi AP.

Figure 9 explains the Tuning algorithm in detail.
The following steps compose the Tuning algorithm.

• Step 1: Train the DNN (an offline step).
• Step 2: Feed the output of the IS algorithm for all network nodes to the trained DNN.
• Step 3: Calculate the sum of the energy consumption of all network nodes using the

trained DNN based on the measured throughput values.
• Step 4: For the nodes with both interfaces selected by the IS algorithm, select only the

interface with the highest achievable throughput.
• Step 5: Measure the throughput by the SDN controller based on the newly tuned

selection and feed it to the DNN.
• Step 6: Obtain the energy values of all nodes from the DNN.
• Step 7: Compare the energy values from Step 3 and Step 6; if the energy sum after

tuning is greater, use the interfaces as chosen by the IS algorithm for the data transfer.
Otherwise, use the interfaces as chosen by the Tuning algorithm.

Figure 9. The Tuning algorithm flowchart.

7. Performance Results of Proposed Algorithms

The addition of the SDN in experimental setup II is realized by inserting the OVS
switch in the data path between the sending node and the receiving nodes. This allows the
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SDN controller to execute the proposed algorithms, which run as a Ryu application, select
the energy-optimized combination of interfaces, and communicate the selection to the OVS
to implement it.

Figures 10 and 11 show the energy differences after the Interface Selection algorithm
and Tuning algorithm for the Cubic and BALIA congestion control algorithms, respectively.

Figure 10 shows that the Tuning algorithm is successful in reducing energy consump-
tion, especially when the number of nodes increases. This is due to the fact that increasing
the number of nodes leads to decreasing the throughput values of both interfaces. Since
the throughput is also affected by the channel condition of each interface, this leads to a
higher possibility of having nodes with both interfaces achieving close throughput values,
which requires the Tuning algorithm to make a fine adjustment to the decision of the IS
algorithm. Similarly, in the case of the BALIA algorithm, the Tuning algorithm shows, in
general, reduced energy consumption when increasing the number of nodes, as depicted
in Figure 11. The reduction in energy consumption after using the DNN-based Tuning
algorithm, as presented in Figures 10 and 11, appears to be limited since we use a 60 MB
file in the conducted experiments to finish every sample run in a reasonable time. The
larger the amount of downloaded data, the greater the energy saving achieved by using
the Tuning algorithm per node, which leads to considerable overall energy savings for all
battery-powered nodes across the network, given that running the Tuning algorithm does
not affect the energy consumption of battery-operated devices.
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Figure 10. Energy consumption with the number of nodes for Cubic algorithm after applying IS and
Tuning algorithms.
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Figure 11. Energy consumption with the number of nodes for BALIA algorithm after applying IS
and Tuning algorithms.
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Figure 12 shows a comparison of the average throughput of the Cubic algorithm in
various scenarios, with and without the proposed SDN-based scheme. These scenarios
involve using either single-path TCP (SPTCP) over a single interface (LTE or WiFi) or both
interfaces for all nodes. Figure 13 displays the energy consumption results for the same
scenarios as Figure 12. It is clear from both figures that using the proposed algorithm leads
to increasing throughput and decreasing energy consumption compared with the other
studied scenarios. Similarly, Figures 14 and 15 show that the proposed algorithms are able
to achieve higher throughput and better energy consumption.

3 4 5 6 7 8

Number of Nodes

15

20

25

30

35

40

45

50

55

A
v
g

e
ra

g
e

 T
h

ro
u

g
h

p
u

t 
(M

b
p

s
)

Proposed SDN-based Scheme with Cubic

WiFi and LTE (MPTCP Cubic)

LTE (Single-Path TCP)

WiFi (Single-Path TCP)

Figure 12. Comparative average throughput using Cubic algorithm.
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Figure 13. Comparative energy consumption using Cubic algorithm.
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Figure 14. Comparative average throughput using BALIA Algorithm.
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Figure 15. Comparative energy consumption using BALIA algorithm.

Tables 2 and 3 summarize the throughput and energy consumption performance
comparison, respectively, of the proposed SDN scheme when it is applied with BALIA and
Cubic compared with MPTCP BALIA (without the SDN scheme), MPTCP Cubic (without
the SDN scheme), LTE (SPTCP), and WiFi (SPTCP).

Table 2. Throughput performance comparison (Mbps).

Number of
Nodes

Proposed SDN
Scheme (with

BALIA)
MPTCP BALIA

Proposed SDN
Scheme (with

Cubic)
MPTCP Cubic LTE (SPTCP) WiFi (SPTCP)

3 48 45.25 45.4 42.25 37.8 26.7
4 45.3 41 40.2 38.3 33.7 24.3
5 43.7 39.3 38.7 35.7 31 21.3
6 40.2 36.5 35.5 32.5 29.2 19
7 36.6 32 29.7 28.1 26.8 17.8
8 29.2 26.9 28.8 25.1 23.7 16.5
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Table 3. Energy consumption performance comparison (Joule).

Number of
Nodes

Proposed SDN
Scheme (with

BALIA)
MPTCP BALIA

Proposed SDN
Scheme (with

Cubic)
MPTCP Cubic LTE (SPTCP) WiFi (SPTCP)

3 45.9 57 46.2 57.5 47.9 50.7
4 46 57.2 46.3 57.8 48.1 50.9
5 46.8 57.3 46.9 58 48.35 51.3
6 47 57.5 47.25 58.2 48.7 51.6
7 47.2 57.6 47.5 58.3 49.2 51.9
8 47.3 57.9 47.5 58.5 49.35 52.2

Discussion

The proposed algorithms can enhance both the network energy consumption and
average throughput because they produce a mixed combination of the scenarios shown in
Figures 12–15 with the aid of the SDN. This means that certain nodes may only use the WiFi
interface, others may only use the LTE interface, and some may use both interfaces based
on the channel conditions of their interfaces. This implies that the proposed algorithms
indirectly distribute the LTE and WiFi network resources among the receiving nodes,
helping them to achieve high average throughput with low energy consumption.

Consequently, based on both algorithms, the SDN controller oversees and makes
informed decisions about which interface(s) should be used at each node. This makes the
proposed SDN-based scheme able to reduce the energy consumption by 19% compared
with MPTCP BALIA or MPTCP Cubic, while achieving, on average, 8% higher throughput
than them, as can be observed from Figures 12–15 and Tables 2 and 3. This is because these
MPTCP variants activate both interfaces even if one suffers from a poor channel condition,
leading to more energy consumption without a significant enhancement in the average
throughput.

8. Conclusions

This paper addresses the reduction of the energy consumption of multihomed wireless
devices using multiconnectivity via heterogeneous radio access technologies to receive
MPTCP data packets. We propose an SDN-based approach supported by a DNN to select
which wireless interface(s) a network node should use to reduce the overall network energy
consumption. The scheme employs two algorithms. One initially selects the wireless
interface(s) that should operate on each network node based on the achievable throughput.
After this, the other algorithm fine-tunes the selection of the first by applying a DNN to
select the interface(s), leading to the lowest overall energy consumption. Both algorithms
run at the SDN controller, which implies that no change in the MPTCP implementation,
either in the scheduler or the congestion control algorithm, is required. This preserves
the features and throughput performance of the currently available MPTCP Linux kernel
implementations while retaining operation compatibility.

Two experimental setups mimicking realistic settings are utilized in this research. As
the congestion control algorithm used by MPTCP manages the amount of data sent over
a wireless interface, affecting its energy consumption, the first setup is used to conduct
experimental testing and build a dataset for the energy consumption performance of
different MPTCP congestion control algorithms available as Linux kernel implementations,
namely LIA, OLIA, Cubic, BALIA, and wVegas. The experimental results show that Cubic
and BALIA achieve the lowest energy consumption and the highest throughput among the
other MPTCP congestion control algorithms available as Linux kernel implementations.
Thus, the second setup tests the proposed scheme algorithms by implementing them on
a Ryu-based SDN controller managing an OVS switch via the OpenFlow protocol when
using either MPTCP BALIA or Cubic on the sender and receiving nodes.
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Extensive experimental results with a variable number of network nodes show that the
proposed scheme is efficient in reducing network energy consumption by 19% compared
with MPTCP BALIA or MPTCP Cubic while maintaining, on average, 8% higher throughput
than these MPTCP variants.

The future directions for this research include predicting the throughput values and
energy consumption of fast-moving mobile network nodes using machine learning via the
SDN controller. This prediction can be integrated with the proposed algorithms to cope
with the fast-changing network topology and node connection status.

Author Contributions: R.S. contributed to building the testbed, developed the algorithms, and
implemented them on the SDN controller. She conducted the experiments using the testbed. She also
contributed to paper writing. A.A. designed the network architecture of the testbed and contributed
to the design of the proposed algorithms. He also participated in writing the paper. M.A.B. and
K.A.N. contributed to reviewing and writing the paper. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by UAE University, UPAR grant number 12N008/31N456.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Madakam, S.; Lake, V.; Lake, V.; Lake, V. Internet of Things (IoT): A literature review. J. Comput. Commun. 2015, 3, 164. [CrossRef]
2. Technical Specification 36.410 V12.1.0 Rel.12 -LTE; Evolved Universal Terrestrial Radio Access Network (E-UTRAN); S1 general

aspects and principles. ETSI: Sophia Antipolis, France, 2015.
3. TS 37.340; Evolved Universal Terrestrial Radio Access (E-UTRA) and NR; Multi-connectivity. 3GPP: Sophia Antipolis, France 2023.
4. Paasch, C.; Bonaventure, O. Multipath tcp. Commun. ACM 2014, 57, 51–57. [CrossRef]
5. Peng, Q.; Walid, A.; Hwang, J.; Low, S.H. Multipath TCP: Analysis, design, and implementation. IEEE/ACM Trans. Netw. 2014,

24, 596–609. [CrossRef]
6. EPFL-LCA2; Opportunistic Linked-Increases Congestion Control Algorithm for MPTCP. Internet Engineering Task Force (IETF):

Fremont, CA, USA, 2013.
7. Le, T.A. Improving the performance of multipath congestion control over wireless networks. In Proceedings of the 2013

International Conference on Advanced Technologies for Communications (ATC 2013), Ho Chi Minh City, Vietnam, 16–18 October
2013; pp. 60–65.

8. Cao, Y.; Xu, M.; Fu, X. Delay-based congestion control for multipath TCP. In Proceedings of the 2012 20th IEEE international
conference on network protocols (ICNP), Austin, TX, USA, 30 October–2 November 2012; pp. 1–10.

9. Rhee, I.; Xu, L.; Ha, S.; Zimmermann, A.; Eggert, L.; Scheffenegger, R. RFC 8312; CUBIC for Fast Long-Distance Networks. RFC
Editor; Internet Engineering Task Force (IETF): Fremont, CA, USA, 2018.

10. Kimura, B.Y.L.; Loureiro, A.A.F. MPTCP linux kernel congestion controls. arXiv 2018, arXiv:1812.03210.
11. Dong, P.; Shen, R.; Li, Y.; Nie, C.; Xie, J.; Gao, K.; Zhang, L. An Energy-Saving scheduling algorithm for Multipath TCP in wireless

networks. Electronics 2022, 11, 490. [CrossRef]
12. Dong, Z.; Cao, Y.; Xiong, N.; Dong, P. EE-MPTCP: An Energy-Efficient Multipath TCP Scheduler for IoT-based power grid

monitoring systems. Electronics 2022, 11, 3104. [CrossRef]
13. Zhao, J.; Liu, J.; Wang, H. On Energy-Efficient Congestion Control for Multipath TCP. In Proceedings of the 2017 IEEE 37th

International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017; pp. 351–360. [CrossRef]
14. Wang, W.; Wang, X.; Wang, D. Energy efficient congestion control for multipath TCP in heterogeneous networks. IEEE Access

2017, 6, 2889–2898. [CrossRef]
15. Xia, W.; Wen, Y.; Foh, C.H.; Niyato, D.; Xie, H. A survey on software-defined networking. IEEE Commun. Surv. Tutorials 2014,

17, 27–51. [CrossRef]
16. Fundation, O.N. Software-defined networking: The new norm for networks. ONF White Pap. 2012, 2, 11.
17. Benzekki, K.; El Fergougui, A.; Elbelrhiti Elalaoui, A. Software-defined networking (SDN): A survey. Secur. Commun. Netw. 2016,

9, 5803–5833.
18. Feamster, N.; Rexford, J.; Zegura, E. The road to SDN: An intellectual history of programmable networks. ACM SIGCOMM

Comput. Commun. Rev. 2014, 44, 87–98.

http://doi.org/10.4236/jcc.2015.35021
http://dx.doi.org/10.1145/2578901
http://dx.doi.org/10.1109/TNET.2014.2379698
http://dx.doi.org/10.3390/electronics11030490
http://dx.doi.org/10.3390/electronics11193104
http://dx.doi.org/10.1109/ICDCS.2017.156
http://dx.doi.org/10.1109/ACCESS.2017.2785849
http://dx.doi.org/10.1109/COMST.2014.2330903


Sensors 2023, 23, 7699 21 of 22

19. Shams, R.; Abdrabou, A. Managing Energy Consumption of Wireless Multipath TCP Connections Using Software-Defined
Networking: A Review. In Proceedings of the 2021 6th International Conference on Renewable Energy: Generation and
Applications (ICREGA), Al Ain, United Arab Emirates, 2–4 February 2021; pp. 70–75.
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